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Repair of DNA double-strand breaks by the nonhomologous
end joining pathway is central for proper development of the
adaptive immune system. This repair pathway involves eight
factors, including XRCC4-like factor (XLF)/Cernunnos and the
paralog of XRCC4 and XLF, PAXX nonhomologous end joining
factor (PAXX). Xlf�/� and Paxx�/� mice are viable and exhibit
only a mild immunophenotype. However, mice lacking both
PAXX and XLF are embryonic lethal because postmitotic neu-
rons undergo massive apoptosis in embryos. To decipher the
roles of PAXX and XLF in both variable, diversity, and joining
recombination and immunoglobulin class switch recombina-
tion, here, using Cre/lox-specific deletion to prevent double-KO
embryonic lethality, we developed two mouse models of a con-
ditional Xlf KO in a Paxx�/� background. Cre expressed under
control of the iVav or CD21 promoter enabled Xlf deletion in
early hematopoietic progenitors and splenic mature B cells,
respectively. We demonstrate the XLF and PAXX interplay dur-
ing variable, diversity, and joining recombination in vivo but not
during class switch recombination, for which PAXX appeared to
be fully dispensable. Xlf/Paxx double KO in hematopoietic pro-
genitors resulted in a shorter lifespan associated with onset of
thymic lymphomas, revealing a genome caretaking function of
XLF/PAXX.

All living organisms have to face DNA damage, and particu-
larly DNA double-strand breaks (DSBs),3 which are considered
the most toxic DNA lesions for cells and have either exogenous
or endogenous origins (1). Development of the adaptive
immune system early in life is a major source of programmed
DSBs (prDSB), which are introduced by recombination-acti-

vating genes 1 and 2 (RAG1/2) during somatic DNA rearrange-
ment (V(D)J recombination) of variable (V), diversity (D), and
joining (J) elements of the T cell receptor and immunoglobulin
genes in T and B cells in the thymus and bone marrow (BM),
respectively (2, 3). In addition, immunoglobulin class switch
recombination (CSR), which occurs during the terminal matu-
ration of B lymphocytes in the spleen upon antigen triggering
and results in exchange of the IgM constant region C� for a
downstream CH gene (�, �, or �) also proceeds through intro-
duction of prDSBs by the activation-induced cytidine deami-
nase at switch regions (S�, S�, etc.) flanking CH genes (4, 5).

The nonhomologous end joining (NHEJ) machinery is the
DNA repair pathway that copes with these lymphoid-specific
prDSBs. Briefly, the NHEJ machinery is composed of several
factors, including Ku70/80, DNA PKCs, Artemis, DNA ligase
IV, XRCC4, MRI, XLF, and PAXX, allowing recognition, pro-
cessing, and religation of broken DNA ends (6, 7). Loss of func-
tion of many of these core factors leads to severe combined
immunodeficiency in mice and humans because of arrest of B
and T cell maturation as a result of abortive V(D)J recombina-
tion (8, 9). In the case of XRCC4 or ligase IV, it results in late
embryonic lethality caused by massive apoptosis of postmitotic
neurons (10 –13). CSR is also affected to various extents by
defective NHEJ (14, 15). XLF and PAXX appear to be an excep-
tion because their loss of function only marginally affects V(D)J
recombination; Xlf or Paxx KO mice present with a mild immu-
nophenotype characterized by a slightly reduced number of B
and T lymphocytes (16 –21). We and others identified func-
tional relationships between XLF and other actors of V(D)J
recombination that account for this peculiarity, such as ataxia
telangiectasia-mutated (ATM) (22, 23) and the C terminus part
of RAG2 (24). Indeed, Xlf/Atm or Xlf/Rag2cc double-mutant
mice lack B and T lymphocytes because of impaired V(D)J
recombination (22, 24). The synthetic embryonic lethality
between Paxx and Xlf also argues for a functional link between
these two factors (19, 20). Although Paxx�/� mice do not pres-
ent an overwhelming phenotype in general and in the immune
system in particular, the increased sensitivity of Paxx-deficient
cells to ionizing radiations in various settings corroborates
implication of PAXX in DSB repair (19, 21, 25, 26). Moreover,
E18.5 fetuses recovered from Xlf/Paxx double KO (DKO) mice
revealed complete block of B and T cell development (19).

To better understand the role of PAXX in DSB repair during
lymphocyte maturation and function and its interplay with Xlf in
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these processes in an in vivo setting, we developed two models of
Xlf conditional KO in Paxx�/� mice to bypass the embryonic
lethality of the DKO. Cre expression under the iVav and CD21
promoters allowed tissue-specific deletion of Xlf in hematopoietic
precursors or only in splenic mature B cells, respectively.

Results

Generation of conditional Xlf KO in Paxx�/� mice

To analyze the combined role of PAXX and XLF during
V(D)J recombination and CSR, we crossed Paxx�/�/Xlf�/flox

mice with transgenic mice expressing the Cre recombinase
under the iVav and CD21 promoters, respectively. In the iVav
model, Cre recombinase is first expressed in fetal liver and then
in the bone marrow, spleen, thymus, and lymph nodes at post-
natal stages (27), allowing specific deletion of Xlf in all hemato-
poietic lineages. In the �CD21 model, the Cre recombinase is
expressed only in mature B lymphocytes (28), resulting in B
cell–specific deletion of Xlf. For the two models, mice were
born at a Mendelian ratio and did not present any morpholog-
ical defects at birth, confirming bypass of the embryonic lethal-
ity seen in the constitutive Paxx/Xlf DKO. From this point on,
the Paxx�/�Xlf�/fliVav-Cre and Paxx�/�Xlf�/flCD21-Cre
models will be indicated as Xlf�iVav and Xlf�CD21, respec-
tively. PCR analyses confirmed the effective deletion of Xlf in
purified splenic mature B cells from Xlf�CD21 or BM from
Xlf�iVav mice (Fig. 1, A and B). Xlf deletion in Xlf�CD21 B cells
was further confirmed by Western blotting (Fig. 1C).

PAXX and XLF are redundant during VDJ recombination

DNA repair is a key mechanism for development of the immune
system, and previous studies reported that mice with a single Paxx
or Xlf deletion present overall normal B and T cell development
(16–21). However, DKO of these factors leads to total blockage of
the V(D)J recombination process both in vitro and in vivo (E18
recovered embryos), suggesting redundancy in their function (15,
19, 20, 29). Although only a slight but significant decrease in sple-
nic and thymic cellularity was observed in Xlf�/� mice compared
with Paxx�/� and WT mice (Fig. 1D), Xlf�iVav mice were lacking
a visible thymus, and splenic cellularity was strongly diminished
(Fig. 1D). Likewise, although flow cytometry analysis of T (CD4�
and CD8�) and B (IgM�/B220�) cells in either spleen or thymus
revealed an indistinguishable phenotype in Paxx�/� and Xlf�/�

mice compared with the WT (Fig. 1, E and F), Xlf�iVav mice pre-
sented a severe defect in both lymphoid populations. Moreover,
BM from Xlf�iVav mice was also devoid of mature B cells and
revealed arrest at the pre-proB cell stage (Fig. 1E). These results
recapitulate the profound immune deficiency caused by a block in
the V(D)J process noted previously in E18.5 Paxx/Xlf DKO fetuses
(19), reinforcing the absolute requirement of the combined func-
tion of PAXX and XLF for proper development of the adaptive
immune system.

PAXX is dispensable for CSR in vivo

We showed previously that loss of PAXX does not impair B
cell development (19). The functional relationship between
PAXX and XLF during late stages of B cell maturation was
analyzed through CD21-Cre–mediated deletion of Xlf in

Paxx�/� mature B cells (Xlf�CD21 mice). The overall develop-
ment of both T and B cells was not affected in this setting (Fig.
1, D–F). Histological analysis of the spleen performed by hema-
toxylin and eosin staining revealed a conserved splenic archi-
tecture with the presence of germinal centers compared with
WT or Paxx�/� mice, despite slightly decreased cellularity in
Xlf�/� and Xlf�CD21 mice (Fig. 2A). We then analyzed the
consequences of the concomitant Paxx and Xlf inactivation on
CSR. CD43-negative sorted mature B cells from WT, Paxx�/�,
Xlf�/�, and Xlf�CD21 mice were activated during 4 days in
vitro to induce CSR toward the IgG1, IgG2b, or IgG3 isotypes.
The B-cell proliferative capacity, as determined by Cell-Trace
dilution, was not affected under any of the tested conditions
(Fig. 2B). Although CSR to the three tested isotypes was not
impaired in Paxx�/� B cells, as documented previously in
CH12-B cells induced to switch to IgA in vitro (15), a significant
decrease in the rate of switched cells toward all Ig isotypes was
apparent for Xlf�/� B cells (Fig. 2, C and D), as reported previ-
ously (17). Interestingly, a similar CSR defect was observed in
Xlf�CD21 B cells (Fig. 2, C and D). The absence of synthetic
CSR dysfunction in Xlf�CD21 mice argues for the absence of
PAXX contribution during CSR, at least quantitatively, even in
the absence of XLF, as first noted in vitro (17).

PAXX and XLF participate in the maintenance of the lymphoid
progenitor pool in the bone marrow

We then took advantage of Xlf�iVav mice to analyze the
possible cooperation between PAXX and XLF for maintenance
of the hemopoietic potential in these mice. We first measured
the blood parameters in 7- to 10-week-old and 20- to 24-week-
old mice. A shown in Fig. 3A, no differences were noticed in red
blood cell and platelets counts for the various genotypes in the
two age groups, indicating that myelopoiesis is not overtly
affected by combined Paxx and Xlf deficiency. In contrast, a
statistically significant decrease in total white blood cell and
lymphocyte counts was observed in Xlf�/� mice, as described
previously (16, 17), and in Xlf�iVav mice compared with
Paxx�/� mice (Fig. 3A). Consistent with the major V(D)J recom-
bination defect in Xlf�iVav mice described above, the decrease in
lymphocyte numbers was more severe in Xlf�iVav animals than in
Xlf simple KO animals. The rise in lymphocyte numbers in aged
Xlf�iVav probably reflects lymphocyte homeostatic proliferation
to some extent in aged mice. Analysis of bone marrow (Figs. 3, B
and C) revealed that, although the total LSK pool was not altered in
young and aged Paxx�/� and Xlf�iVav mice, the common lymph-
oid progenitor (CLP) pool was significantly decreased in young
Xlf�iVav mice compared with Paxx�/� mice, with a concomitant
increase in the short-term HSC pool (Fig. 3C). The variation of
CLPs/short-term HSCs was further aggravated in aged mice.
These results indicate a functional redundancy between PAXX
and XLF at early stages during hematopoietic development,
beyond the V(D)J recombination process.

The survival of mice is impaired by Xlf deletion in iVav-
expressing cells

During a 1-year follow up, no difference in the survival of
Paxx�/� and Xlf�/� mice was observed, which contrasted with
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the sharply increased mortality of Xlf�iVav mice starting
around 100 days (Fig. 4A). Aged Xlf�iVav mice showed
decreased weight and moderate to severe alopecia (Fig. 4B).
Moreover, three of five analyzed mice developed a thymic mass
(Fig. 4C) whose histology revealed total loss of the thymus cor-
tical and medullar architecture compared with the Paxx�/�

thymus (Fig. 4C, top panels). Higher magnification revealed
neoplastic cells with a large nucleus and dense cytoplasm, sug-
gesting the tumorigenic nature of these cells (Fig. 4C, bottom
panels, arrowheads). Thymic cell suspension analysis (Fig. 4D)
showed a lack of activated T cells, indicated by negative
TCR�� CD69� staining and a shift in proliferative double-
positive CD44� CD62L� cells for Xlf�iVav mice. These results
are consistent with development of thymic lymphomas in aging
Xlf�iVav mice, the possible cause of their accelerated death.

Discussion

We analyzed, for the first time in vivo, the PAXX and XLF
interplay during V(D)J recombination and CSR through design
of two conditional KO models: Xlf�iVav and Xlf�CD21. These
two models circumvent the embryonic lethality resulting from
combined lack of PAXX and XLF, as observed in previous stud-
ies (19, 20). Xlf�CD21 mice recapitulate the synthetic dysfunc-
tion of Paxx and Xlf in V(D)J recombination, manifested by the
T–B–severe combined immunodeficiency phenotype.
Xlf�CD21 mice confirmed the dispensability of PAXX in CSR,
first proposed in vitro using the CH12 model (15), as shown by
the absence of an additive effect of Paxx deficiency over Xlf KO
alone. Overall, these results are in line with previous studies and
suggest the existence of two distinct mechanisms for repair of
programmed DNA breaks induced during V(D)J and CSR. They
suggest that, in contrast to what happens during V(D)J recom-
bination, XLF and PAXX do not complement each other for
DNA end synapsis during CSR, in line with recent findings in
vitro, proposing that Ku and XRCC4/DNA-Lig4 can initiate syn-
apse formation on their own without the combined contribution
of PAXX and XLF, at least on blunt DNA ends (30). Likewise,
PAXX failed to rescue the defect in precise DNA end joining
resulting from Xlf deficiency in a CRISPR/Cas9 model of DNA
repair (31). It is thus proposed that classical NHEJ factors such as
XLF or PAXX are involved in precise (without indels) DNA blunt
end ligation but that their redundancy may vary depending on the
DSB context. In that respect, it is worth mentioning that DSBs that
occur during CSR are very unique, as they occur within large
regions of repetitive sequences (called S for switch regions).

Last, the conditional Xlf�iVav model enabled analysis of the
impact of Paxx/Xlf deficiency on the hematopoietic potential of

aging mice, which was not possible with models used in previ-
ously published studies. For the first time, we could observe a
shortened lifespan and the appearance of spontaneous thymic
lymphomas without the need of a tumor accelerator back-
ground such as TP53 KO in Xlf�iVav aged mice, suggesting an
additional role of PAXX/XLF as a genome caretaker in the con-
text of RAG1/2-induced breaks because those thymic lympho-
mas were not observed in aged Xlf�CD21 mice. Although new
studies are needed for full characterization of these hemopa-
thies, we suggest the possible implication of aberrant oncogenic
rearrangements to explain their appearance, given the previous
demonstration of chromosomal translocations followed by
production of fusion oncogenic genes in mouse cells in the con-
text of classical NHEJ factor deficiencies (24, 32–35).

Materials and methods

Generation of conditional Xlf KO mice on a PAXX KO
background

C57/Bl6 Paxx�/�Xlf�/�-CD21-cre or Paxx�/�Xlf�/�-iVav-
cre mice were intercrossed with Paxx�/�Xlfflox/flox mice to gen-
erate Paxx�/�Xlf�/floxCD21-cre or Paxx�/�Xlf �/floxiVav-cre
mice and to specifically delete the Xlf gene under the expression
of Cre recombinase along with the CD21 or iVav promoters. All
mice used for this work were 7–10 weeks old (considered young
mice) or 20 –24 weeks old (considered old mice), kept under
pathogen-free conditions, and sacrificed humanely. Mouse
experiments were performed with approval from the local ethics
committee and the French Ministry of Education and Research.

Mice were genotyped for Paxx, Xlf, CD21-cre, iVav-cre, and
Xlf-flox by PCR on tail DNA. Exon 4 deletion of Xlf was ana-
lyzed as described previously (16) using the following primers:
i4R (5�-GTCCCCAGCTGTTAAGAGTTTC-3�), i3F (5�-CTA-
TGGAAGCCAGGAGAGAATG-3�), and Ex4F (5�-GGATGA-
AGGACCTTGAGATCC-3�). Under the PCR conditions used,
the i3F/i4R combination of primers allowed detection of the
KO allele (445 bp) but not of the WT or flox alleles because of
the large PCR size (1.2–1.4 kb). The WT and flox alleles were
identified using the Ex4F/i4R (438 bp) combination, which did
not amplify the KO allele. Expression of XLF was analyzed by
Western blotting on splenic protein extracts using a rabbit
polyclonal anti-XLF antibody (A300-730A, Bethyl Laborato-
ries). Paxx genotyping was performed as described previously
(19) using the following primer pair: MuPAXX_F1, 5�-CAAC-
CTTGAGTACCGCCCAT-3; MuPAXX_R1, 5�-CAACCTTG-
AGTACCGCCCAT-3�.

Figure 1. Xlf conditional KO validation and redundancy of PAXX and XLF for V(D)J. A, design of primers for specific detection of the various Xlf alleles. WT
and Flox alleles were identified by PCR using Ex4F/i4R combination. The Xlf KO allele was revealed by shortening of the i3F/i4R PCR products (445 bp) as a
consequence of exon 4 deletion. B, genotyping of the various Xlf alleles. Although both WT/Flox and KO alleles were present in the total spleen of Xlf�CD21
mice (Spl, lane 4), only the KO allele was revealed in purified B lymphocytes (B, lane 5) from these mice, attesting to efficient and restricted Cre-mediated
deletion in B cells. Likewise, only the KO allele was identified (except for a light nonspecific product) in BM from Xlf�iVav mice. Panels are from different gels.
M, molecular wheight marker. C, Western blot analysis of XLF deletion in mature splenic B cells (lane 4) from Xlf�CD21 and total spleen from Xlf�/� mice (lane
5). Asterisk, nonspecific band. Vinculin was included as a loading control. D, spleen and thymus cellularity in WT, Paxx�/�, Xlf�/�, Xlf�CD21, and Xlf�iVav mice.
Results are represented as the mean � S.E. E, quantification of T cells in the spleen and thymus based on CD4/CD8 staining in CD3� populations. Results are
represented as the mean � S.E. SP, single-positive; DP, double-positive; DN, double-negative. F, quantification of B cells in the BM and spleen based on
IgM/B220 staining of total B cells for BM and in the CD3� splenic population. ProB cells in BM are quantified based on CD43 staining within the pre-proB
population. Results are represented as the mean � S.E. MatB, mature B cells. All statistical analyses were performed using one-way ANOVA, and significant
differences are indicated as follows: *, p � 0.05; **, p � 0.01; ***, p � 0.001; ****, p � 0.0001; ns, not significant.

ACCELERATED COMMUNICATION: Combined PAXX and Xlf deficiency

J. Biol. Chem. (2020) 295(8) 2398 –2406 2401



Flow cytometry analysis

For the immunophenotype, the thymus, spleen and bone
marrow were harvested. Thymic populations were identified by
anti-CD8 and anti-CD4, and the double negative population
was stained with anti-CD44 and anti-CD25 mouse antibodies
(all from Sony Biotechnologies). Thymic lymphomas were
additionally stained with anti-CD69, anti-CD62L, and anti-
TCR�. Splenic T cells were stained with anti-CD3, anti-CD4,

and anti-CD8, whereas B cells were identified by anti-B220 and
anti-IgM (all from Sony Biotechnologies). Bone marrow was
obtained from one femur and stained with anti-IgM, anti-B220,
and anti-CD43 (all from Sony Biotechnologies). Flow cytom-
etry was performed on a BD-LSR Fortessa (BD Biosciences).

For the study of hematopoietic stem cells, bone marrow was
stained with Lin� antibody mixture (BD Biosciences), anti-c-
kit, anti-CD34, anti-Sca1, anti-Flt3, and anti-Il7ra (mouse anti-

Figure 2. PAXX is dispensable for CSR in vivo. A, spleen sections of WT, Paxx�/�, Xlf�/�, and Xlf�CD21 mice stained with hematoxylin and eosin.
Germinal centers are indicated by dotted circles and red blood cell areas by arrows. Scale bars � 1 mm. B, representative flow cytometry analysis of WT,
Paxx�/�, Xlf�/�, and Xlf�CD21 B cell proliferation after 4 days of stimulation in specific medium for the switch toward IgG1, IgG3, and IgG2b isotypes,
based on Cell-Trace dilution. C, representative flow cytometry plots of CD43� mature B cells switched toward IgG1, IgG3, or IgG2b isotypes, based on
Cell-Trace dilution and isotype staining in WT, Paxx�/�, Xlf�/�, and Xlf�CD21 mice. D, quantification of IgG1-, IgG3-, and IgG2b-switched mature CD43�
B cells in WT, Paxx�/�, Xlf�/�, and Xlf�CD21 mice after 4 days of stimulation in LPS or LPS/IL-4 –supplemented medium, based on the Cell-Trace dilution
and isotype staining. Results are represented as the mean of four independent experiments � S.E. All statistical analyses were performed using one-way
ANOVA, and significant differences are indicated as follows: *, p � 0.05; **, p � 0.01; ***, p � 0.001; ****, p � 0.0001; ns, not significant.

ACCELERATED COMMUNICATION: Combined PAXX and Xlf deficiency

2402 J. Biol. Chem. (2020) 295(8) 2398 –2406



bodies, all from Sony Biotechnologies). Flow cytometry was
performed on a Sony SP6800 Spectral analyzer. All flow cytom-
etry analyses and quantifications were performed on FlowJo
software

Blood measurement

Blood from mice was collected by intracardiac puncture after
anesthesia by injection of a mixture of ketamine and xylazine.

Figure 3. Paxx/Xlf deletion in bone marrow impairs lymphoid progenitors. A, quantification of red blood cell, platelet, white blood cell, and lymphocyte concen-
trations in the blood of 7- to 10-week-old and 20- to 24-week-old Paxx�/�, Xlf�/�, and Xlf�iVav mice. Results are indicated as mean � S.E. Statistical analyses were
performed by one-way ANOVA. Significant differences are indicated as follows: *, p � 0.05; **, p � 0.01; ns, not significant. B, gating strategy for analysis of hemato-
poietic populations in BM. Analysis were performed in a Lin� population based on staining with c-kit, Sca-1, Flt3, CD34, and IL7RA antibodies for assessment of
Lin�c-kit�Sca�1� cells (LSK), short-term (ST) hematopoietic stem cells HSCs, and CLPs. C, quantification of flow cytometry analyses for the hematopoietic compart-
ment of 7- to 10-week old (young) and 20- to 24-week-old (old) Paxx�/� and Xlf�iVav mice. The percentages of total LSK, short-term HSC, and CLP populations are
represented as mean � S.E., and statistical analyses were performed by Student’s t test. Significant differences are indicated as follows: *, p � 0.05; **, p � 0.01.
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Blood was then analyzed on a Procyte Dx Hematology analyzer
(IDEXX Bioanalytics).

Histological analysis

The thymus and spleen were harvested, fixed overnight in 4%
paraformaldehyde, washed with PBS, paraffin-embedded, and
sectioned at 4-�m thickness. Sections were then stained with
hematoxylin and eosin for morphological analysis.

Purification and activation of splenic mature B cells in vitro

Mature B cells were negatively sorted from the spleen using
CD43� magnetic beads following the manufacturer’s instruc-

tions (Miltenyi). The negative fraction containing CD43�
mature B cells was harvested and labeled with Cell-Trace
(Thermo Fisher). For each condition, 500 000 cells were plated
in triplicate in a 6-well plate in Iscove’s modified Dulbecco’s
medium� Glutamax medium supplemented with 10% fetal
bovine serum, 1% penicillin–streptomycin, 1% sodium pyru-
vate, 1% HEPES, 1% nonessential amino acids, and 0.1% �-mer-
captoethanol (all from Thermo Fisher). Cells were incubated
for 4 days with 25 �g/ml LPS from Escherichia coli (Sigma) � 20
ng/ml IL-4 (R&D Systems) for IgG1 switching or with 25 �g/ml
LPS for IgG3 and IgG2b switching. At the end of incubation,
cells were collected and labeled with anti-mouse B220-PE

Figure 4. Cooperation between PAXX and XLF for mouse survival and prevention of thymic lymphomas. A, survival curve after 1 year of follow-up of
Paxx�/�, Xlf�/�, and Xlf�iVav mice. Statistical analyses were performed by Kaplan–Meyer �2 test, and significant differences are represented as follows: ***, p �
0.0002. B, representative picture of one Paxx�/� and one Xlf�iVav mouse at 20 weeks. The thymus in the Paxx�/� mouse and the thymic mass in the Xlf�iVav
mouse are indicated by arrows. C, representative H&E staining of Paxx�/� thymus and Xlf�iVav thymic lymphoma sections (top panels) and at higher magni-
fication (bottom panels). The cortical structure is indicated by the solid arrow and the medulla by the dotted arrow. Arrowheads indicate neoplastic cells observed
at higher magnification. Scale bars � 2.5 mm (top panels) and 100 �m (bottom panels). D, representative flow cytometry analyses for the thymus of the Paxx�/�

mouse and the thymic lymphoma of the Xlf�iVav mouse. Analyses were performed on viable cells (negative Sytox staining), and the gates were defined by the
indicated antibodies. The percentages for each population are indicated in the quadrants.
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(Sony Biotechnologies) and anti-mouse biotin-coupled IgG1,
IgG2b, and IgG3 (R&D Systems), followed by incubation with
allophycocyanin–streptavidin (Thermo Fisher). Cells were
analyzed on a BD LSR-Fortessa (BD Bioscience).

Statistics

All statistics were determined using Prism (GraphPad Soft-
ware). Groups were analyzed by one-way ANOVA or Student’s
t test as indicated, and the difference was considered statisti-
cally significant at p � 0.05.
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