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Since their discovery, the matrix metalloproteinase (MMP)
family proteases have been considered as therapeutic targets in
numerous diseases and disorders. Unfortunately, clinical trials
with MMP inhibitors have failed to yield any clinical benefits of
these inhibitors. These failures were largely due to a lack of
MMP-selective agents; accordingly, it has become important to
identify a platform with which high selectivity can be achieved.
To this end, we propose using MMP-targeting antibodies that
can achieve high specificity in interactions with their targets.
Using a scaffold of single-domain antibodies, here we raised a
panel of MMP10-selective antibodies through immunization of
llamas, a member of the camelid family, whose members gener-
ate conventional heavy/light-chain antibodies and also smaller
antibodies lacking light-chain and CH1 domains. We report the
generation of a highly selective and tightly binding MMP10
inhibitor (Ki < 2 nM). Using bio-layer interferometry– based
binding assays, we found that this antibody interacts with
the MMP10 active site. Activity assays demonstrated that the
antibody selectively inhibits MMP10 over its closest relative,
MMP3. The ability of a single-domain antibody to discriminate
between the most conserved MMP pair via an active site–
directed mechanism of inhibition reported here supports the
potential of this antibody as a broadly applicable scaffold for the
development of selective, tightly binding MMP inhibitors.

Early in MMP2 research, the general consensus within the
MMP community was that the few known MMPs were all driv-
ing disease, a dogma that led to the development of broad-
spectrum MMP inhibitors within the pipelines of most major
pharmaceutical companies (1–5). Despite promising preclini-
cal data supporting broad-spectrum MMP inhibition in oncol-
ogy, results of over 50 clinical trials were consistently negative
(6). MMP inhibition failed to reach its clinical end point in every
clinical trial, with increased disease burden and musculoskele-

tal side effects observed in some treatment groups (7). Broad-
spectrum MMP inhibition was unsuccessful (8).

As more MMPs were discovered, researchers were uncover-
ing the complexity of MMP activity in normal physiology (9,
10). Some MMPs were being observed to have a protective
effect in certain pathological situations while other MMPs were
driving pathology (8, 11). Accordingly, the consensus in the
field concerning the MMPs as therapeutic targets shifted from
broad-spectrum inhibition to selective inhibition: inhibit the
“bad” MMPs while sparing the catalytic activity of the “good”
MMPs (8).

The design of selective MMP inhibitors continues to be hin-
dered by the pronounced structural homology shared within
the active site of all the MMPs (12). Small molecules can pene-
trate the substrate-binding clefts of the MMPs to achieve active
site– directed (orthosteric) inhibition. However, their small size
also limits the extent of their target interactions, oftentimes
preventing sufficient contacts with regions of an MMP that
differentiate it from other family members. Conversely, pro-
tein-based inhibitors, such as antibodies, possess the structural
bulk that enables them to bind to their targets with multiple
different contacts, conferred by multiple complementarity-de-
termining regions (CDRs). However, conventional antibodies
generally prefer planar epitopes, and as such, they typically tar-
get exosites, or regions of a protease outside of the active site
(13). Whereas success has been achieved with exosite-targeting
antibodies, the most successful protease inhibitors target the
active site, and as such, conventional antibodies offer a limited
platform for selective protease inhibition (14 –16). Other
classes of protein-based inhibitors, including engineered tissue
inhibitor of metalloproteases (TIMPs), have also been explored
as selective MMP inhibitors with varying success; however,
high selectivity using these scaffolds is yet to be achieved
(17–19).

Single-domain antibodies, a more recently discovered class
of antibodies devoid of a light chain and CH1 region, are gaining
momentum as potent inhibitors of enzymes (20 –22). To com-
pensate for the lack of a light chain, single-domain antibodies
have evolved a substantially larger antigen recognition region,
particularly in their CDR3 (23). These longer CDR regions
are thought to form convex antigen-binding surfaces, ideal
for inserting into the active-site clefts of enzymes and to-
ward orthosteric inhibition (24). Furthermore, single-domain
antibodies still possess three complementarity-determining
regions that are capable of making multiple contacts with their
antigens. With single-domain antibodies capable of achieving
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orthosteric targeting and possessing multicontact antigen rec-
ognition, we sought to determine their applicability toward
selective, active site– directed, MMP inhibition. Considering
the 86% sequence identity in their catalytic domains and nearly
identical active sites, MMP10 and MMP3 represent the most
homologous pair of MMPs (25).

Our efforts were focused on MMP10 due to its tumorigenic
potential (26 –28). MMP10 is up-regulated at the RNA level in
multiple different types of cancers, and knockout and knock-
down strategies have highlighted its potential as a therapeutic
target in cancer. However, a lack of selective inhibitors has pre-
vented researchers from understanding whether the benefit
seen with genetic modulation of MMP10 can be recapitulated
with pharmacological intervention. Accordingly, we sought to
generate a robust and highly selective inhibitor of MMP10,
based on a single-domain antibody raised in llamas. A major
goal was to obtain an inhibitor that selectively inhibits MMP10
over its closest homologue, MMP3.

Results

Generation of active MMP10

Zymogen MMP10 harbors a propeptide in the active site,
rendering the active site unavailable to substrates. Upon activa-
tion, the propeptide is removed, leading to a 9-kDa decrease in
the molecular mass of MMP10 (29). We therefore hypothesized
that to direct the immunization toward the active site, our best
chance was to use active MMP10 as our immunogen. To do so,
full-length human MMP10 was cloned into a modified pCEP
vector as a llama Fc fusion protein, making pCEP-hMMP10-
LFc. The llama IgG Fc fragment both increases circulation time
in the host llama due to Fc/FcRn interactions and provides an
efficient purification tag when via protein A–Sepharose (30,
31). pCEP-hMMP10-LFc was subsequently transfected and
expressed in mammalian cells and purified via protein A
chromatography, yielding MMP10-Fc (Fig. 1A), Activation of
MMP10-Fc was achieved by treatment with a small molecule
activator of MMPs, aminophenylmercuric acetate (APMA),
showing both a dose-dependent increase in MMP10 activity
and a corresponding decrease in molecular weight (Fig. 1B).

Immunization

Members of the camelid family, including camels, llamas,
and alpacas, generate conventional heavy/light chain antibod-

ies. They also generate smaller antibodies lacking light chain
and CH1 domains (Fig. 2A) (32). Three llamas were immunized
with MMP10-Fc and monitored for responses against MMP10
over time. All three immunized llamas responded to MMP10,
and the Vhh repertoires of each of the llamas were cloned into
a yeast display platform to allow for enrichment of monoclonal
antibodies targeting MMP10.

Antibody library construction

cDNA to build the yeast libraries was generated as explained
under “Experimental procedures” (33). The PCR output using
this method generates two bands, one corresponding to heavy
chains from conventional antibodies and a smaller band corre-
sponding to heavy chains from heavy chain– only antibodies
(Fig. 3B). The smaller DNA band was used as the template for
the generation of a yeast library. Once separate yeast display
libraries were built for each llama, the libraries were enriched
using a combination of magnetic bead separation and fluores-
cence-activated cell sorting. In total, 23 unique mAb sequences
were isolated. All 23 monoclonal sequences were subcloned
and transfected into a mammalian expression system and
expressed as bivalent hIgG1 Fc fusion proteins. 20 antibodies
expressed at appreciable levels (�100 �g/ml) and were further
evaluated in an MMP10 binding and inhibition assay.

Binding and inhibition of MMP10

All 20 antibodies were subject to a binding assay using bio-
layer interferometry (BLI) to check for specific binding to
MMP10-Fc. 14 of the 20 expressed antibodies showed specific
binding to MMP10-Fc with no association detected against an
irrelevant coated antigen. The MMP10-reactive antibodies dis-
played a range of affinities from subnanomolar to nearly 50 nM

(Fig. 3A).
To measure MMP10 inhibition, each of the 14 binding anti-

bodies were titrated onto a constant concentration of active
MMP10-Fc and subjected to an activity assay. Inhibitors were
characterized as antibodies that decreased the activity of
MMP10. In a parallel screen, the antibodies were titrated onto a
constant concentration of active MMP3-Fc, also generated in-
house, to determine selectivity. Of the 14 binders, four inhib-
ited MMP10-Fc, with two monoclonal antibodies, E5 and H3,
inhibiting MMP10-Fc more strongly than the others. Of the
two strong inhibitors, H3 displayed an inhibition profile similar
to TIMP2, an endogenous inhibitor of MMPs, while showing
only slight reactivity toward MMP3-Fc (Fig. 3B). On the basis of
this screen, we considered H3 as our lead inhibitory antibody of
MMP10.

H3 selectivity

To further probe the selectivity of H3, its inhibitory activity
was tested against a panel of MMPs generated for this study:
MMP1, MMP2, MMP3, MMP9, and MMP13. In this experi-
ment, TIMP1, an endogenous inhibitor of most MMPs, served
as a positive control. Whereas TIMP1 inhibited all of the MMPs
tested, H3 treatment had no effect on MMP1, MMP2, MMP9,
and MMP13 activity; minimal effect on MMP3; and complete
inhibition of MMP10 (Fig. 4).

Figure 1. Active recombinant MMP10. A, schematic representing MMP10
immunogen as a bivalent Fc fusion protein; B, evidence for activation of
proMMP10 by APMA. Top, cleavage of quenched fluorescent substrate by
MMP10; bottom, SDS-PAGE showing generation of active MMP10 evidenced
by loss of the propeptide. RFU, relative fluorescence units.
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In-depth profiling of H3-mediated inhibition of MMP10

In an attempt to attain precise kinetic information, H3 was
assayed for its ability to inhibit the minimum concentration of
MMP10 capable of eliciting reliable activity in the system used.
TIMP1 was titrated as a positive control, as was the negative
control antibody C10, which is a binder, noninhibitor, of
MMP10 also acquired from llama immunization (Fig. 3A). H3
inhibited MMP10 with an IC50 of 657 pM, whereas TIMP1
inhibited MMP10 with an IC50 of 296 pM (Fig. 5). The inhibition
kinetics imply that the interaction is extremely tight and mech-
anistically cannot be distinguished from an irreversible mech-
anism of inhibition. Accordingly, we conclude that H3 is an
extremely tight and selective inhibitor of MMP10.

H3 inhibition of MMP10-mediated cleavage of �1-antitrypsin

H3 potently inhibited MMP10-mediated cleavage of a pep-
tide substrate, but we also wanted to determine whether it

would inhibit cleavage of a protein substrate. The serpin �1-an-
titrypsin (AAT) has been reported as a substrate for numerous
MMPs (34, 35). To determine whether AAT was also an
MMP10 substrate, active MMP10-Fc was titrated and incu-
bated with a constant concentration of AAT overnight at 37 °C,
with cleavage observed by SDS-PAGE. Having demonstrated
that AAT is a substrate for MMP10, we aimed to determine
whether H3 inhibited this activity. H3 was titrated in the pres-
ence of a constant concentration of active MMP10-Fc. Follow-
ing a short incubation, AAT was added, and mixtures were
incubated overnight. Cleavage of AAT was analyzed by SDS-
PAGE, which demonstrated that H3 prevented MMP10-Fc
from cleaving AAT (Fig. 6A). Cleavage of AAT by MMPs abro-
gates the ability of this serpin to inhibit its target enzyme, neu-
trophil elastase (NE) (34, 35). Samples from Fig. 6A were incu-
bated with NE to determine whether H3 was able recover AAT
activity in regard to NE inhibition. Incubation of MMP10 with

Figure 2. Generation of yeast display libraries. A, top, schematic of conventional antibody structure versus heavy chain– only antibodies. Bottom, represen-
tative DNA strands with priming regions highlighted. B, agarose gel showing two bands from the round 1 PCR. The top band (�900 bp) represents Vh from
conventional antibodies, and the bottom (�600 bp) represents the Vh of heavy chain– only antibodies.

Figure 3. Screening of MMP10-Fc binders and inhibitors. A, antibody clones were tested for affinity to MMP10 using biolayer interferometry. B, four of the
binders inhibited MMP10 activity as measured by a decrease in cleavage of a quenched fluorescence substrate of MMP10. Antibodies were also measured for
inhibition of MMP3 to screen for selectivity. RFU, relative fluorescence units.
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H3 prevented MMP10’s ability to inactivate AAT, as indicated
by a decrease in NE activity with increasing levels of H3 (Fig.
6B). Both of these experiments demonstrate that H3 is able to
inhibit the proteolytic activity of MMP10. Moreover, they indi-
cate AAT may be a physiologic substrate of MMP10, much as it
is for MMP9 (34).

Mechanism of H3 inhibition

H3’s strong interaction with MMP10 coupled to a lack of
highly concentrated quenched fluorescent substrates of MMP10
made determining the mechanism of binding, orthosteric
(active site– directed) versus allosteric (exosite-directed),

impossible to determine using traditional competitive enzyme
kinetics. Furthermore, an attempt to co-crystallize MMP10
with H3 failed to produce crystals. Therefore, a series of com-
petition assays were performed to validate the mechanism of
H3 inhibition of MMP10. These assays involved observing the
binding of MMP10 derivatives to H3 by biolayer interferometry
(Fig. 7). H3 bound to active MMP10 but was unable to bind to
proMMP10 or MMP10 inhibited by a small molecule (mari-
mastat). Moreover, MMP10 in complex with H3 did not bind by
either TIMP1 or TIMP2. Consequently, H3 did not tolerate the
presence of a propeptide, small molecule, or protein-based
inhibitor within the MMP10 active site. These characteristics
support a model where H3 binds to MMP10’s active site as its
mode of inhibition.

Discussion

Whereas broad-spectrum MMP inhibitors failed in the
clinic, selectively targeting the MMPs is still considered to be of
clinical value (36). Some MMPs show an mRNA expression bias
toward cancer, and there exists a large body of evidence impli-
cating MMP activity in various diseases (8). Accordingly, it has
become important to generate a panel of selective MMP inhib-
itors to validate individual MMPs as therapeutic targets.

The primary question addressed in this study was whether
single-domain antibodies, in addition to achieving robust MMP
inhibition, could offer an adequate level of selectivity. This
question was addressed by focusing our efforts toward the inhi-
bition of MMP10 over MMP3, the two most closely related
MMPs, sharing 86% identity within their catalytic domains and
nearly identical active sites. Whereas low-level inhibition of
MMP3 was observed with H3, the window of inhibition
between MMP3 and MMP10 was vast, with full inhibition of
MMP3 not observed even with high concentrations of H3. The
ability of a single-domain antibody to differentiate between the
most identical MMPs provides a rationale for single-domain
antibodies as a broadly applicable scaffold for selective MMP
inhibition.

Conventional antibodies targeting proteases generally target
regions outside of the active site. Indeed, the several reported
conventional antibodies targeting the catalytic activity of pro-
teases have invariably failed to target the active site, with inhi-
bition achieved through allosteric targeting (14). Conversely,
heavy chain– only antibodies produced by camelid family
members are hypothesized to prefer concave epitopes, such as
the active site clefts of enzymes (23). To determine whether H3
orthosterically targets MMP10 via traditional kinetics, it would
be necessary to utilize better substrates than commercially
available. Therefore, to define the mechanism of inhibition, we
developed a series of competition assays focusing on the inter-
action of H3 with various forms of MMP10. In this series of
experiments, H3 did not tolerate the presence of a propeptide,
marimastat, or TIMPs within the active site of MMP10, indi-
cating its preference to target a free active site. Whereas further
validation of the mechanism of inhibition of H3 would require a
crystal structure, the data presented in this study strongly sup-
port H3’s status as an orthosteric inhibitor.

In addition to probing the ability of single-domain antibodies
to selectively inhibit MMP10 over its closest homologue,

Figure 4. H3 selectivity toward MMP10. H3 (blue) and TIMP1 (red) were
titrated against the indicated MMPs. Activity was monitored using a fluores-
cence plate reader. Error bars, S.D.; n � 3. RFU, relative fluorescence units.

Figure 5. In-depth kinetics of H3. H3, TIMP1, and C10 were titrated with
MMP10 as described under “Experimental procedures” to determine kinetics
of inhibition. Error bars, S.D.; n � 3. RFU, relative fluorescence units.
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MMP3, we also sought to target MMP10 because it represents a
potential cancer target. Based on mRNA expression data from
the GENT website, MMP10 shows a strong cancer bias with
virtually undetectable mRNA levels in healthy tissue (37).
Furthermore, a large body of research suggesting MMP10’s
role as a cancer driver, both in vitro and in vivo, has been
published (26, 28, 29, 38). Combined, these data provide a
strong rationale for the potential of MMP10 as a therapeutic
target. Developing a selective inhibitor of MMP10 may be
challenging with classical MMP inhibitor scaffolds; however,
we demonstrate that single-domain antibodies are up to this
task. As such, this antibody could be evaluated further as a
therapeutic candidate.

Experimental procedures

MMP10 expression

The nucleotide sequence encoding the ORF of human
MMP10, corresponding to Uniprot limits 1– 476, was cloned
into a modified pCEP vector in frame with a C-terminal llama
IgG Fc, encoding proMMP10-Fc. 293 freestyle cells were trans-
fected with the MMP10-Fc construct using polyethyleneimine.
Following a 7-day incubation in cell culture conditions, super-
natants were harvested, and proMMP10-Fc was purified with
Thermo Scientific Gentle Ag/Ab Elution Buffer (product no.
21013). Expression was measured via absorbance at 280 nm and
visualized by SDS-PAGE. The eluted protein was subjected to
buffer exchange via a PD-10 column (GE Healthcare) into 50
mM Tris, 10 mM CaCl2, 150 mM NaCl, 0.05% (w/v) Brij-35, pH
7.5 (TCNB). Following buffer exchange, hMMP10-FL-LFc was
activated with a titration of 4-aminophenylmercuric acid
(Sigma, catalogue no. A-9563) starting at 1 mM with a 1:4 dilu-
tion in TCNB. Samples were run on SDS-PAGE using an Invit-
rogen 4 –12% bis-tris gel to visualize loss of the MMP10 pro-
peptide. To check for activity, each sample from the APMA
titration was incubated with a 10 �M final concentration of
quenched fluorescent MMP10 substrate, MCA-RPKPVE-
NVal-WRK(DNP)-NH2 (R&D Systems, catalog no. ES002).
Fluorescence was measured on the BMG Labtech Clariostar
plate reader at 320-nm excitation and 405-nm emission. Rates
were defined as the slope of fluorescence generation (y axis)
over time (x axis).

Llama immunization

Three llamas were each immunized (outsourced to Abcore,
Inc., Ramona, CA) with 0.5 mg of hMMP10-LFc in complete
Freund’s adjuvant for the first immunization and were immu-
nized every 2 weeks with 0.5 mg of hMMP10-LFc with incom-
plete Freund’s adjuvant. Test bleeds were received every 2
weeks and were tested by ELISA. For the ELISA, each well was
coated with 50 ng of human MMP10 from R&D Systems (910-
MP-010), received as a zymogen and activated as recom-
mended by R&D Systems and validated in an activity assay
on a 96-well Medisorp plate (Thermo Scientific, catalog no.
467320). Commercial MMP10 was used due to the presence of
a LFc on our immunogen, and an anti-llama IgG antibody was
used for detection in the ELISA. Llama serum from test bleeds
was diluted 1:100 in Dulbecco’s PBS and titrated 1:5 onto
coated MMP10. Plates were then incubated with horseradish
peroxidase– conjugated anti-llama IgG H�L (Bethyl, catalog
no. A160-100P) at the manufacturer’s recommended concen-
tration and developed using the horseradish peroxidase sub-
strate TMB (Seracare KPL SureBlue TMB Microwell Peroxi-
dase Substrate, catalog no. 5120-0077). Plates were read for
absorbance at 650 nm using a Molecular Devices Emax plate
reader. Llama immunizations were performed under their
institutional animal care and use committee–approved proto-
cols and United States Department of Agriculture guidelines
via USDA 93-R-0574.

Library construction

Peripheral blood mononuclear cells enriched from three lla-
mas were acquired by layering 400 ml of fresh blood onto a
Ficoll gradient. Total RNA was isolated using a Qiagen RNeasy
Maxi Kit, which was used as a template to generate cDNA with
an Invitrogen SuperScript IV First-Strand Synthesis System
with random hexamer and oligo(dT) as primers. Primers cor-
responding to llama Vh germ line genes were used in a first-
round PCR as described previously (33). Two bands were visible
on an agarose gel from the first round PCR, with the larger band
corresponding to the Vh from a conventional antibody and a
smaller band corresponding to Vhhs from heavy chain– only
antibodies. The smaller band was excised and used as a tem-
plate in a second round PCR to incorporate NheI/EcoNI restric-
tion sites amenable for cloning into a proprietary yeast display

Figure 6. Inhibition of MMP10 cleavage of endogenous substrates. A, H3 was serially diluted into wells containing a constant concentration of MMP10.
Samples were then incubated with AAT to observe whether H3 prevents MMP10-mediated cleavage of AAT. Samples were analyzed by reducing SDS-PAGE.
Data are representative of three separate experiments. B, NE activity was measured after the addition of H3/MMP10/AAT samples. Error bars. S.D.; n � 3. RFU,
relative fluorescence units.
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plasmid, pAR5, placing the Vhhs N-terminal to the AGA2 pro-
tein classically utilized in yeast display (39). 1.5 �g of Vhh insert
was ligated into 5 �g of pAR5 plasmid and transformed into a
lithium acetate–treated proprietary yeast strain designed for
use in yeast surface display. Libraries were grown in SD�CAA
medium, and transformation efficiency was measured via serial
dilution onto SD�CAA plates. Yeast surface display was
induced using SG-CAA medium and incubated overnight at
room temperature with shaking. Three separate libraries were
generated, representing each immunized llama.

Enrichment of MMP10-binding Vhhs

For magnetic bead enrichments, activated hMMP10-LFc
was biotinylated using Thermo Scientific EZ-LinkTM NHS-Bi-
otin. 200 nM biotinylated hMMP10-LFc was then incubated
with the input library generated above and incubated on ice for
1 h. After washing with TCNB-B buffer (TCNB � 1.5% BSA),
libraries were incubated with 200 �l of New England Biolabs
streptavidin magnetic beads in 3 ml of TCNB-B for 15 min on
ice. Yeast bound to MMP10 were then magnetically separated

Figure 7. Interaction of MMP10 derivatives with H3 as measured by BLI. A biotinylated protein (biotinylated MMP10-Fc in A and B, biotinylated H3 in C and
D) was loaded onto a streptavidin sensor. Once the baseline response (BL) was established, the sensor was introduced into solutions containing the proteins
indicated above the sensorgrams to measure the association phase. A, H3 binding to activated MMP10-Fc or proMMP10-Fc. B, H3 binding to active MMP10 or
marimastat-inhibited MMP10-Fc. C, binding of TIMP1 to the H3/MMP10 complex. D, binding of TIMP2 to the H3/MMP10 complex.
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on an EasySepTM magnetic tube holder from Stemcell Technol-
ogies. The output libraries were then grown up in SD�CAA
and were subsequently induced in SG-CAA for a second
enrichment by FACS. The FACS output libraries were incu-
bated with 100 nM biotinylated hMMP10-LFc for 1 h, washed
with TCNB-B, and labeled with an Alexa Fluor 647 streptavi-
din. The yeast were washed in TCNB-B and sorted on a Sony
SH800 cell sorter for Alexa Fluor 647 positivity, which varied
among the three llamas immunized. Output libraries were then
plated and grown up as colonies, with each colony representing
one Vhh sequence. Colonies were picked into a 96-well culture
plate in SD�CAA medium and were induced in a 96-well for-
mat with SG�CAA. Induced colonies were then labeled with
50 nM biotinylated hMMP10-LFc for 1 h at 4 °C, labeled with
Alexa Fluor 647– conjugated streptavidin as above, and run on
an Accuri C6 flow cytometer. Colonies showing reactivity to
MMP10 were then boiled in 0.1% SDS to lyse the cells, and
lysates were used as a template to amplify their Vhh sequences
using a forward and reverse primer specific to the backbone of
pAR5. PCR products were sequenced using the same forward
primer they were generated with.

Generation of recombinant antibodies

Unique sequences were subcloned into a modified pCEP vec-
tor, placing them in frame with a C-terminal hIgG1-Fc frag-
ment. The antibody-Fc constructs were then transfected into
293 freestyle cells and grown at 37 °C for 3 days at 5% CO2.
Supernatants were harvested, and antibodies were incubated
with protein A (GE Healthcare) and eluted with Thermo Scien-
tific IgG elution buffer (catalog no. 21009). Eluted proteins were
subsequently buffered with the addition of 10% final 1 M Tris,
pH 8. Recombinant proteins were quantified via absorbance at
280 nm and visualized with SDS-PAGE.

Binding of monoclonal antibodies

Recombinant antibodies were buffer-exchanged into TCNB
buffer using a GE Healthcare PD-10 column to eliminate buffer
effects in a BLI assay. Biotinylated MMP10-LFc (as generated
above) was coated onto the surface of a ForteBio streptavidin
dip-and-read sensor (part no. 18-5020). MMP10 was then mea-
sured for its affinity toward each of the antibodies separately
using the ForteBio Octet Red 96 biolayer interferometry device.
Sensorgrams were generated, and Kd values were calculated for
each antibody with MMP10 using ForteBio data analysis soft-
ware. For a negative control, a biotinylated llama IgG1 Fc frag-
ment was coated onto ForteBio streptavidin sensors and mea-
sured for its affinity to each antibody.

Expression of TIMPs

Full-length TIMP1 and TIMP2 (corresponding to Uniprot
limits 1–217 and 1–220, respectively) were cloned into a mod-
ified pCEP-mFc vector, placing them in frame and N-terminal
to a mIgG2a Fc fragment. Ligations, transformations, plasmid
prepping, HEK 293 freestyle transfections, and protein A puri-
fications were the same as highlighted above for the recombi-
nant antibody expressions. Once purified, proteins were quan-
titated by A280 and visualized by SDS-PAGE.

MMP10 inhibition screen

Each antibody was titrated 1:10 across four points starting at
100 �g/ml in the presence of 20 �g/ml MMP10-LFc or 20
�g/ml MMP3-LFc and incubated for 15 min at room tempera-
ture. MMP3-Fc was generated as with MMP10. In short, the
entire sequence of MMP3 as dictated by Uniprot was cloned
into a modified pCEP vector, placing it N-terminal to an IgG
llama Fc fragment. Purification, activation, and validation of
MMP3-Fc was performed as described previously for MMP10.
Samples were then transferred into wells containing a 20 �M

concentration of an MMP10 quenched fluorescent substrate at
a 1:1 volumetric ratio. Plates were then mixed and read for
fluorescence on a BMG Clariostar at wavelengths of excitation
320 nm and emission 405 nm. Rates are calculated as the slope
of fluorescence generation (y axis) over time (x axis). Curves
were generated using GraphPad Prism 7 for Mac OS X.

Expression of MMP1, -2, -9, and -13

MMP1, -2, -9, and -13 were all cloned as MMP10 and MMP3
were. In short, gBlock gene synthesis fragments were ordered
for MMP1, -2, -9, and -13, corresponding to Uniprot limits
1– 469, 1– 660, 1–707, and 1– 471, respectively. Each gene syn-
thesis had flanking sequences that were cut with the restriction
enzymes NheI/AgeI and cloned into pPL1-LFc as with MMP10
and MMP3. All subsequent steps up to the activation of the
protease were the same as for MMP10; however, treatments of
MMPs with APMA varied in terms of length of incubation.
MMP1, -2, and -13 were incubated in 1 mM APMA after being
buffer-exchanged into TCNB for 2 h, whereas MMP9 was acti-
vated in 1 mM APMA for 24 h at 37 °C. Activity was measured
by titrating enzyme in TCNB and transferring to a black 96-well
NUNC plate containing 2 �M MCA-RPKPVE-NvalWRK-dpa-
NH2 for MMP3 and -10 and 2 �M Mca-PLGL-Dpa-AR-NH2 for
MMP1, -2, -9, and -13. Activity was checked on a BMG Clario-
star plate reader with 320-nm excitation/405-nm emission.
Slopes were analyzed in GraphPad Prism software.

Cross-reactivity of H3

TIMP1-mFc and H3-hFc were titrated onto each protease
starting at a concentration of 1 �M and titrated 1:10 with con-
stant MMP concentration (MMP1, 30 nM; MMP2, 30 nM;
MMP3, 30 nM; MMP9, 0.5 nM; MMP13, 5 nM) as determined by
A280, and titrations were left to complex for 15 min at room
temperature. Titrations were then transferred to 96-well black
NUNC plates containing a 2 �M concentration of the respective
substrates for each of the MMPs, and activity was checked by
measurement on the BMG Labtech Clariostar plate reader as
highlighted in the experiments above. Slopes were analyzed in
GraphPad Prism software.

Characterization of H3-mediated MMP10 inhibition

mAb H3, mAb C10, and TIMP1 were titrated 1:2 starting at
400 nM across 23 points in the presence of 2 nM human MMP10
(R&D Systems; see above) and left to complex for 15 min at
room temperature. Titrations were then transferred to a
quenched fluorescent substrate of MMP10 (R&D Systems, cat-
alog no. ES-002) at a 1:1 volumetric ratio and read for fluores-
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cence generation on a BMG Clariostar. Rates are calculated as
the slope of fluorescence generation (y axis) over time (x axis).
Curves representing inhibition with the antibodies or TIMPs
on MMP10 were generated using GraphPad Prism 7 software.

Inhibition of MMP10-mediated cleavage of AAT with H3

To test inhibition of MMP10-mediated cleavage of AAT
(provided as a gift from Inhibrx), a serial dilution of H3 was
placed onto 80 nM MMP10-Fc and complexed for 15 min at
room temperature. The titrations were then transferred to
wells containing 1.5 �M AAT and incubated at 37 °C for 16 h
and analyzed by SDS-PAGE. Titrations were then diluted 1:100
and incubated with 20 nM neutrophil elastase (Athens Bio) for
15 min. H3/MMP10/AAT/NE complexes were then trans-
ferred to wells containing 100 �M AAPV-AMC (Enzo), and fluo-
rescence (NE activity) was monitored on a BMG Clariostar
microplate reader.

H3 binding active versus zymogen MMP10

To test the mechanism of inhibition, a series of binding and
competition assays were performed to determine the binding
region of H3. First, H3 was checked to determine binding
against active and zymogen MMP10 using BLI. H3 was biotiny-
lated using Thermo Scientific EZ-LinkTM NHS-Biotin. H3 was
then coated onto a streptavidin sensor and was introduced to
2.4 �g/ml of either APMA-treated or non-APMA-treated
hMMP10-LFc with the entire assay being performed in TCNB
buffer.

H3 binding marimastat inhibited MMP10

H3 was tested for its ability to bind small-molecule inhibited
MMP10 using BLI. For this assay, 7 �g/ml hMMP10-LFc was
treated with 10 �M marimastat (Sigma, catalog no. M2699-
5MG) and incubated for 30 min. Biotinylated H3 (see above)
was then coated onto a streptavidin sensor and introduced to
noninhibited active hMMP10-LFc or inhibited hMMP10-LFc.

H3 competition with TIMPs for MMP10 binding

TIMP1 and TIMP2 were tested for their ability to bind an
H3/MMP10 complex using BLI. First, biotinylated H3 was
coated onto the surface of a streptavidin sensor and introduced
to active hMMP10-LFc. The sensor was then transferred to a
well containing either TIMP1 or TIMP2 and measured for
binding.
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