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Homeostasis in healthy tissues strongly relies on cell-to-cell
adhesion and cell-to-extracellular matrix interactions. For
instance, normal epithelial cells maintain tissue structure by
adhering to each other and to the extracellular matrix. The pro-
teins that mediate these distinct interactions are collectively
called cell adhesion molecules and are divided into four major
groups: cadherins, integrins, selectins, and immunoglobulins.
They not only physically anchor cells, but also critically inte-
grate signaling between the extracellular microenvironment
and cells. These signals include biochemical cues, as adhesion
proteins can both act as ligand-activated receptors and activate
mechanotransduction triggered by changes in the physical envi-
ronment. Molecular mechanisms related to cell adhesion signal-
ing have been extensively studied, especially because mutations
and changes in expression of these proteins, particularly cad-
herins and integrins, are frequently associated with diseases
ranging from developmental intellectual disability to cancer. In
fact, two major hallmarks of cancer, loss of cell-to-cell adhesion
and anchorage-independent growth, are both dependent on cell
adhesion molecules. Despite many studies elucidating the rela-
tionships between malignant transformation and metastasis
and cellular adhesion processes, several areas still await explo-
ration. Here, we highlight recently discovered roles of adhesion
molecules in collective cancer cell migration and discuss the
utility of three-dimensional models in studying cell-cell adhe-
sion. We also describe recent therapeutic approaches targeting
adhesion molecules.

Cell adhesion molecules are mostly transmembrane receptor
proteins widely expressed through the normal epithelium and
endothelium and by distinct immune cells. These proteins pro-
mote cell-to-cell and cell-to-extracellular matrix adhesion and
are composed of three domains: an intracellular domain, a
transmembrane domain, and an extracellular domain (1, 2).
The intracellular domain interacts with the cytoskeleton,
directly or via scaffolding proteins, and is responsible for sig-
naling, whereas the extracellular domain interacts with other

cell adhesion molecules or the extracellular matrix. Thus, cell
adhesion molecules often integrate the extracellular cues with
cell intrinsic signaling, affecting intracellular responses, cyto-
skeletal organization, intracellular signaling, and gene expres-
sion (3, 4).

Based on their protein sequence and structures, cell adhesion
molecules can be divided into four major groups: cadherins,
integrins, selectins, and immunoglobulins (Igs)3. This division
is strongly linked to the distinct types of cellular junctions built
by these proteins expressed on the cell surface (summarized in
Fig. 1). Even though the primary role of adhesion molecules is to
maintain cell-to-cell contact and attachment to the extracellu-
lar matrix, they also function as signaling effector molecules
involved in cellular functions, such as cell growth, survival, and
transcriptional activity (5–7). In this review, we will focus on
describing the distinct roles that the two major groups of adhe-
sion molecules, cadherins and integrins, play in cancer biology.

Cell adhesion molecules structure and function in
normal tissues

Cadherins and integrins are among the most studied classes
of adhesion receptors. Homotypic cell-cell adhesions are medi-
ated by cadherins, whereas adhesion between the cell and its
extracellular matrix is mediated by integrins. Because cad-
herins and integrins comprise a wide variety of interactions at
different levels, they are considered to be directly related ele-
ments that are part of a large adhesive network (3, 6, 8).

Cadherins are calcium-dependent transmembrane proteins
that play a fundamental role in junctional adhesions, holding
cells within tissues together, maintaining their intracellular
cohesion, and preserving tissue architecture. These proteins
are indispensable for morphogenesis, tissue remodeling, and
maintenance of tissue barriers (4, 9). The structure of cadherins
comprises several domains, typically presenting one signal
sequence, a protein precursor, one single transmembrane
domain, and five ectodomains. Four of the ectodomains corre-
spond to the protein module of the immunoglobulin-like fold
called an extracellular cadherin domain, which binds to cal-
cium ions to facilitate its proper folding. The fifth domain con-
tains four conserved cysteines and an N-terminal extracellular
domain. Typically, any protein containing one or more extra-
cellular cadherin domain is designated as a member of the cad-
herin family. The cadherin superfamily includes a wide variety
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of proteins, and there are many isoforms distributed in a tissue-
specific manner (10, 11).

Some cadherins, termed classical cadherins, have been
shown to mediate homotypic adhesive interactions. The first
classical cadherins identified in vertebrates were E- and N-cad-
herin. Classical cadherins depend on a proteolytic removal of
the pro-domain to exert their adhesive capacity (10, 12). In
addition, these proteins form an adhesive dimer interface
where a swapping of paired extracellular cadherin 1 N-terminal
domains generates a 2-fold symmetric interaction. These

strand-swapped interfaces are preferentially formed between
cadherins from apposed cells, mostly in the presence of cal-
cium. The assembly of cadherins between apposed adherent
cells generates junctional structures that are densely packed
(13, 14).

Integrins are the major class of receptors involved in homo-
typic and heterotypic adhesive events. These proteins transmit
signals via inside-out and outside-in signaling and comprise a
large and complex family of transmembrane glycoproteins.
Structurally, these proteins are heterodimeric transmembrane

Figure 1. Cell adhesion molecules in normal and cancer cells A, schematic representation of the structure of four major classes of cell adhesion molecules. B,
interactions between cell adhesion molecules on the cell surface create different types of cellular adhesions, including adherens junctions, gap junctions,
desmosomes, and hemidesmosomes. C, alterations in cell adhesion molecules in the transition between the normal epithelial cell state (left) and malignancy
(right). The localization of the distinct cell adhesion complex types is shown. EGF, epidermal growth factor; CRP, complement regulatory protein domains.
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receptors formed by noncovalent association of two such trans-
membrane glycoproteins. These two subunits are identified as
� and �, whereby 18 integrin � subunits and eight � subunits
are so far known to heterodimerize into 24 different integrins
(15). The subunits � and � are composed by one transmem-
brane domain, one ectodomain, and a short cytoplasmic tail
domain. Their extracellular domains form elongated stalks and
a globular ligand-binding head region that mostly binds with
other glycoproteins and connective tissue components, such as
collagens, laminins, and fibronectin. Integrin � subunits harbor
a metal ion-dependent adhesion site, which coordinates for
example with magnesium ions. The metal ion– dependent
adhesion site coordination with magnesium ions is altered due
to integrin ligand binding, causing conformational changes that
lead to an open and active integrin conformation (5, 16 –18).
The vast majority of integrins connect with the actin cytoskel-
eton in cell-matrix adhesions via cytoskeletal linker proteins
(e.g. talin, paxillin, and vinculin). These connections between
integrins and the actin cytoskeleton are necessary for activation
of downstream pathways. Thus, integrins provide a link
between the outside environment and cellular responses
related to motility, such as immune cell trafficking, hemostasis,
and migration of cancer cells (18 –20). Many pathways related
to growth factor response depend on integrin-mediated adhe-
sion to the extracellular matrix or integrin-dependent intracel-
lular signaling, linking integrin to cell proliferation and anchor-
age-dependent survival (21–23).

Immunoglobulin-like cell adhesion molecules (Ig-CAMs)
have highly glycosylated extracellular domains consisting of
variable number of immunoglobulin-like loops (24). The extra-
cellular domain of Ig-CAM may be anchored in the membrane
by glycophosphatidylinositol anchors or linked to a transmem-
brane domain. Homotypic interactions between Ig-CAMs can
drive cell-to-cell adhesion, whereas the cytoplasmic tail of these
proteins may interact with cytoskeletal proteins. The most
well-known members of this superfamily are major histocom-
patibility complex class I and II molecules and T-cell receptor
complex. Other members include ICAM, VCAM, MadCAM-1,
and ALCAM, which are all important in leukocyte trafficking
(25).

Selectins are another class of adhesion molecules related to
immune function. Selectins mediate cell-cell adhesions by
binding to carbohydrates in a calcium-dependent manner (26).
These transmembrane proteins are responsible for the initial
steps of leukocyte rolling, which initiates migration of the
immune cell through the blood vessel wall into the surrounding
tissue (27).

All of molecules described above play distinct roles in con-
text-dependent cell-cell and cell-extracellular matrix adhesion.
However, the ability to transduce the signals from the environ-
ment and trigger intracellular responses, as well as outside-
in signaling, provides adhesion molecules with functional
versatility.

Role of adhesion molecules in migration

Whereas integrins play a key role in single-cell migration,
which requires complete loss of adherens junctions that is
mediated by E-cadherin, integrins also sense the environment

and forces that generate movement. Integrins perform these
various functions by their conformational changes that are trig-
gered by their binding either to the extracellular matrix or to
intracellular proteins that alter the binding affinity of integrin,
affect their clustering, and recruit cytoskeletal linker proteins
(18). These changes remodel nascent or focal adhesions and
generate tension, whereas coordinated assembly and disassem-
bly of these adherent structures generate forces of cellular
movement (28 –30).

Single-cell migration and invasion are vital for many physio-
logical processes, including immune cell trafficking. However,
in morphogenesis and wound healing, an alternative process of
collective cell migration has also evolved (reviewed in Ref. 31).
In this process, assemblies of cells move together, as the cell-cell
junctions remain intact, allowing neighboring cells to adhere to
each other during the movement. Adherens junctions in collec-
tive migration are maintained by homotypic cadherin interac-
tions between the cells in a group (32). Other members of the
adhesion molecule family, including Igs L1CAM, NCAM, and
ALCAM, can also support this function (33, 34). Integrins also
play a role in collective adhesion, as they can bind intercellular
deposits of extracellular matrix and in this way support cell
cohesion (35). Variability of adhesion molecules and signaling
contexts results in plasticity of cell-cell junctions and leads to
distinct modes of collective migration, ranging from sheet
migration to movement of cellular strands and clusters (36).
Thus, adhesion molecules are key proteins regulating all
modes of cellular movement in tissue plasticity and
remodeling.

Loss of cell adhesion during malignant transformation

In the classic view of malignant transformation in the epithe-
lium, cells lose their dependence on integrin-mediated interac-
tions with the extracellular matrix and resulting signaling
events (Fig. 1C). During this process, adherens junctions that
are mediated by E-cadherin and that are crucial for cell-cell
adhesion are lost. This can be a result of a direct genetic muta-
tion, which occurs in 4% of all cancers (37, 38), or a decrease in
E-cadherin expression due to its promoter methylation or tran-
scriptional repression (39 –44). Additional alterations are also
observed in the specialized multiprotein complexes present in
stratified epithelia named hemidesmosomes. Integrin �6�4
present in hemidesmosomes interacts with the keratin inter-
mediate filament instead of actin filaments via binding to plec-
tin isoform 1a (P1a), which is a unique characteristic when
compared with other members of this family. In tumor cells, the
lack of polarity is displayed by actin protrusions, which will
disassemble the hemidesmosomes and mediate cell migration
and invasion. After hemidesmosomes disassemble, �6�4 integ-
rin becomes phosphorylated and relocates to an F-actin–rich
protrusion, where integrin interacts with actin filaments (45).
All of these changes are associated with epithelial-mesenchy-
mal transition, which renders cancer cells more motile and
invasive (46).

Further, epithelial-mesenchymal transition (EMT) is a
reversible transcriptional program considered the primary ele-
ment driving tumor progression to metastasis (47). Epithelial-
mesenchymal transition allows epithelial cells to adopt a more
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mesenchymal state, which enhances cellular migration. This
process in normal physiological conditions contributes to
embryogenesis, organ development, and wound healing,
whereas in cancer, it supports several malignant traits, includ-
ing metastatic spread and drug resistance (48). In tumors, the
EMT phenotype was also reported to be associated with a more
inflammatory tumor microenvironment and was thus pro-
posed as a potential biomarker for immune checkpoint block-
ade agents (49, 50). However, the impact of epithelial-mesen-
chymal transition in the efficiency of this blockade is still
unknown.

One of the hallmarks of epithelial-mesenchymal transition is
the “cadherin switching” characterized by loss of E-cadherin
expression and increased expression of N-cadherin, as well as
changes in the integrin repertoire (51). This promotes a shift
from tight cell-to-cell and cell-basement membrane connec-
tions, mediated by E-cadherin and �6�4 integrins, to N-cad-
herin-dependent adhesions, mediated by �1 and �3 integrins.
Thus, EMT allows cells to adhere readily to collagen, a compo-
nent of the extracellular matrix, rather than the basement
membrane. N-cadherin also activates the Rho-family GTPase
signaling pathway, enhances fibroblast growth factor signaling,
and modulates the Wnt signaling pathway (52). All of these
pathways contribute to the aggressive tumor phenotype with
the capacity to escape from the primary tumor location to sec-
ondary sites (52). Moreover, EMT induced by silencing of
E-cadherin has also been shown to protect cells from anoikis,
cell death triggered by disrupted anchorage to basement mem-
brane (53). However, E-cadherin was also recently shown to act
as a survival factor in metastatic invasion of breast cancer by
limiting reactive oxygen species-mediated apoptosis (54). Thus,
context-dependent adhesion molecule switching not only con-
tributes to cancer cell motility, but also promotes their prolif-
eration and survival ability in the bloodstream, thereby increas-
ing the probability of distant metastases forming.

The role of adhesion molecule switching during the epithe-
lial-mesenchymal transition and malignancy has been exten-
sively studied by overexpression of the EMT-driving transcrip-
tion factors in cell line models (55). Down-regulation of
E-cadherin, �6�4 integrins, and epithelial cell adhesion mole-
cules during the transition is orchestrated by twist-related pro-
tein 1, zinc finger E-box– binding homeobox proteins, and the
transcriptional repressors SNAIL and SLUG (44). The same
factors promote overexpression of N-cadherin as well as �1 and
�3 integrins. However, recent studies have shown that com-
plete state transition is rarely observed, and in more physiolog-
ical conditions, cancer cells express a combination of epithelial
and mesenchymal markers, thereby creating a heterogeneous
continuum rather than two binary states (47, 56). In breast can-
cer models, among these hybrid epithelial-mesenchymal cells,
intermediate levels of integrin �4 expression mark a population
of cells with higher tumor-initiating capacity than integrin 4high

and integrin �4low populations (57). Integrin �4 mRNA was
also associated with relapse-free survival in triple-negative
breast cancer (57). It is not clear which molecular mechanisms
mediated through integrin �4 are responsible for the tumor-
initiating properties and maintenance of the intermediate epi-
thelial-mesenchymal state.

These recent findings point to the seemingly opposing traits
related to malignancy-cellular adhesion loss that could lead to
increased motility and pro-tumorigenic downstream signaling
mediated by adhesion molecules. Thus, altering the expression
of certain adhesion molecules may allow cancer cells to increase
their malignant potential in different ways.

Cell adhesion in invasiveness by collective migration

As described above, loss of cell adhesion has been classically
viewed as a pro-tumorigenic feature. However, in many epithe-
lial tumor types, normal cell adhesion through cell junctions is
retained despite the more mesenchymal phenotype of cells
within a tumor. This enables cancer cells to adopt a collective
migration mode (58). Collective migration is defined as two or
more cells moving together across a two-dimensional layer of
extracellular matrix while retaining their cell-cell junctions or
when they move into a three-dimensional interstitial tissue
scaffold. This process is key to normal morphogenesis and epi-
thelial homeostasis as an important strategy for local tissue
infiltration (59).

The invasion by collective migrating carcinomas is charac-
terized by a fine balance between cell-cell and cell-extracellular
matrix adhesions (60). Three hallmarks define collective cell
migration: cells remain physically and functionally connected;
cell-cell junctions are maintained; and, in most cases, the move-
ment of cell groups modifies the tissue along the migration path
(31). Cell-cell junctions play a crucial role in this process by
controlling the collective movement of proteins, in particular
cadherins, the immunoglobulin superfamily members, and
integrin. This process critically depends on the coupling of the
actin cytoskeleton to multiple cells, transmitting forces, and
guiding the signaling that drives the migration of the group of
cells (reviewed in Refs. 42 and 43).

Integrin can control collective migration in several ways, one
of them involving focal adhesion kinase and the tyrosine-pro-
tein kinase Src capacity of up-regulating integrin expression,
which contributes to the processes of integrin-mediated cell
spreading and migration. Their inhibition effects integrin-me-
diated signaling, thereby generating a suppression of E-
cadherin– dependent collective cell movement. Further, it is
known that focal adhesion kinase in complex with the Src pres-
ents a central role in cancer through its ability to promote pro-
liferation and resistance in tumor cells, thereby expanding the
influence of integrin signaling when involved in the inhibition
of this complex (62, 63).

Evidence of collective migration has also been identified in
vivo, as clusters of circulating tumor cells have been found in
the bloodstream of cancer patients (64 –67). In vivo experi-
ments have shown that clusters of circulating tumor cells are
derived from oligoclonal tumors and are not just a mere aggre-
gation of cells in circulation (67). Clusters of circulating tumor
cells are migrating out of the primary tumor as a collective and
are thus more efficient in establishing metastases than individ-
ual cancer cells. Abundance of circulating tumor cell clusters is
clinically relevant, as it correlates with worse patient outcomes
in different tumor types (68 –70). Characterization of circulat-
ing tumor cell clusters revealed that the cell adherens junction
protein plakoglobin is crucial for cluster formation, and its
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knockdown resulted in reduced metastatic spread (67).
Whereas circulating tumor cell clusters express mesenchymal
markers, the presence of cell junctions points again to an inter-
mediate epithelial-mesenchymal state, where aspects of epithe-
lial cell adhesion are maintained (71).

Collective migration requires remodeling of the extracellular
matrix, to facilitate the movement of a group of cells. This
remodeling may also be driven by cancer cells at the leading
front of the invasive group. Recent studies have shown that
cancer-associated fibroblasts (CAFs) can remodel the matrix
and create tracks, which can then be used by migrating cancer
cells (72). Moreover, by generating heterotypic junctions
between N-cadherin on the CAF membranes and E-cadherin
on the cancer cell membrane, CAFs can generate intercellular
physical force and drive collective invasion of cancer cells (73).
A better understanding of the mechanisms behind the collec-
tive migration will be of significant clinical relevance, as this
process is often associated with increased resistance to chemo-
therapy, radiation, and targeted approaches.

Cell-cell interactions and collective migration in three-
dimensional cultures

In vitro studies have shown that mesenchymal cells in pri-
mary tumors adopt collective invasion traits as a result of con-
finement by the increase of the extracellular matrix density
(74). Thus, it is possible that clusters of circulating tumor cells
are generated in an increasingly dense extracellular matrix as a
result of “cell jamming.” This hypothesis could help explain
why breast tissue density is associated with an increased risk of
invasive and metastatic cancer (75). It also underlines the tight
connection between the microenvironment and the control of
cell adhesion. To address the clinically significant switch
between single-cell and collective migration, more studies
focusing on the role of the tumor microenvironment and its
physical properties are needed. However, collective migration
occurs when two or more cells move together across a two-
dimensional layer of extracellular matrix while retaining their
cell-cell junctions or when they move into a three-dimensional
interstitial tissue scaffold (59). Modeling of the collective

migration process in standard two-dimensional cultures has
proven to be challenging, and novel approaches that recapitu-
late the physical environment of cancer cells are now advancing
this field. Three-dimensional cell culture conditions that pro-
mote formation of multicellular spheroids, spherical aggregates
of cancer cells that produce their own extracellular matrix but
do not adhere to the culture dish surface, have been developed
for many tumor types. Cancer cells grown as spheroids can
switch between single-cell epithelial-mesenchymal transition–
driven migration and collective migration in response to extra-
cellular matrix porosity and confinement (74). Switching
toward the collective migration mode depends on pericellular
proteolysis, whereby secretion of matrix metalloproteinases
enables proteolysis and remodeling of the extracellular matrix
and generates space for multicellular assembly movement.
However, the exact mechanisms of remodeling by cellular clus-
ters and their adhesion to remodel extracellular matrix, which
is required for motility, remain largely unknown (31, 76).

Recent advances in organotypic cultures allow for three-di-
mensional reconstruction of spheroids and organoids from
patient samples (Fig. 2). Spheroid cultures allow for in vitro
maintenance of intratumor heterogeneity that exists in patient
samples but is mainly lost in standard two-dimensional cul-
tures. Organoids are multicellular assemblies that contain not
only tumor cells, but also distinct populations of tumor-associ-
ated stroma cells, which contribute to the generation of the
extracellular matrix and remodeling (reviewed in Ref. 77).
Interestingly, both of these in vitro three-dimensional tumor
models are significantly better at reflecting drug responses of
the patients from which they were derived. This would point to
the significance of cell-to-cell contact, adhesion, and extracel-
lular matrix interactions in therapy responses. Further studies
of the properties of organoid cultures are needed to dissect the
molecular mechanisms of cell clustering and interactions.
Whereas most of the current drug discovery efforts focus on
cytotoxic effects, we expect that as the three-dimensional mod-
els become more widely adopted in high-throughput screening
platforms, new compounds that could affect cellular adhesion
will also emerge.

Figure 2. Cancer cell clusters, spheres, and organoids. Shown are aspects of cancer cell biology where cell adhesion is crucial yet not well-understood.
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Integrins, three-dimensional cultures, and cancer
stemlike cells

Organoids and tumor spheroids provide a more faithful
model of human tumors, as they retain a higher frequency of
cancer stemlike cells compared with traditional cultures.
Specifically, the first protocols for cancer stemlike cell cul-
ture were derived from adult stem cell cultures. These rela-
tively rare populations of cancer cells can give rise to
diversely differentiated subpopulations and are more resist-
ant to standard therapies.

The first protocols for cancer stemlike cell culture were
derived from adult stem cell cultures. Just like normal stem
cells, cancer stemlike cells rely on asymmetric cell division to
retain the pool of undifferentiated cancer stemlike cells, a prop-
erty often controlled by contact of cancer stemlike cells with the
stem cell niche. These interactions, both in normal and cancer
tissues, are driven by integrins. Depending on the tumor type
and genetic background, integrins �6�1, �6�4, and �V�3 have
all been implicated in stem cell self-renewal, by supporting the
interactions between cancer stem cells and their niches (78, 79).
Integrins were also shown to provide the anchorage-dependent
context that allows for asymmetric cell division of different pro-
genitor and stem cells (80 –82) and could play similar functions
in cancer stem cells.

By activation of focal adhesion kinase, integrin complexes
affect the Wnt and hedgehog signaling pathways, which are key
to self-renewal and expansion of the stem cell pool and are
considered essential regulators of oncogenesis (83). It is thus
plausible that adhesion molecules expressed in cancer cells in
three-dimensional organoid cultures provide signaling that
mimics the supportive environment of the stem cell niches.
This is another unexplored area where studies of cellular adhe-
sion could lead to the identification of novel therapeutic
approaches.

Role of growth factors in adhesion molecule signaling

Cell-to-cell contact maintenance is not the only biological
function of adherent molecules related to cancer progression or
inhibition. Ample evidence shows that these molecules can also
activate signaling pathways independently of adhesion (84).
One such function, relevant to cancer progression, is the ability
of cell adhesion molecules to modulate growth factor receptor
signaling, which is of great relevance because growth factor
stimulation is one of the most important hallmarks of cancer
(recently reviewed in Ref. 60). For example, the fibroblast
growth factor receptor (FGFR) tyrosine kinase can be bound by
several adhesion molecules, including N-cadherin, NCAM, and
L1CAM (85). N-cadherin can trigger cis-dimerization of FGFR,
which leads to autophosphorylation of the receptor and recruit-
ment and phosphorylation of downstream factors (86). This
growth-promoting signaling is independent of the ligand. The
extracellular domain of N-cadherin can also interact with FGFR
and inhibit its internalization, which leads to increased signal-
ing in a ligand-independent fashion (87). Additionally, N-cad-
herin was also shown to prevent FGFR ubiqitination and
degradation (88). Both FGFR and N-cadherin are often overex-
pressed in metastatic cells, which results in up-regulation of the

mitogen-activated protein kinase pathway and increased motil-
ity and invasion of cancer cells (86). These interactions occur
independently of the adhesive properties of cadherin and were
shown to drive stemlike properties and epithelial-mesenchy-
mal transition (89). Because the fibroblast growth factor recep-
tor is frequently amplified in genomes of distinct cancer sub-
types, targeting this mechanism could be of high clinical
relevance.

Another receptor tyrosine kinase also frequently ampli-
fied in cancer is the epidermal growth factor receptor, which
is a crucial factor of breast cancer metastasis (90, 91). Inter-
estingly, downstream pathways of the epidermal growth fac-
tor receptor can also be affected by adhesion-independent
interactions with the adhesion molecule desmoglein 1 (92).
Because desmoglein 1 is a desomosome protein, which is
usually down-regulated in malignant progression, restora-
tion of its expression levels leads to attenuation of epidermal
growth factor receptor signaling. This is due to the seques-
tration of the receptor within the membrane, preventing
receptor internalization and activation of Erk1/2, ultimately
leading to a decrease in the formation of cellular protrusions,
such as invapodia, that are needed for invasion. Interactions
between oncogenic receptor tyrosine kinases could thus be
attractive targets for therapeutics.

Role of cell adhesion molecules in the tumor
microenvironment

Expression of distinct adhesion molecules in malignancy is
not limited to cancer cells, and it can be significantly altered in
noncancerous cells of the tumor microenvironment. Cancer
cell secretion of pro-angiogenic factors results in increased
blood vessel generation (93). However, the endothelial cells that
line these new vessels have lower than normal expression of
endothelial adhesion molecules, such as intercellular adhesion
molecules 1 and 2, vascular cell adhesion molecule 1, E-selectin,
and CD34 (94). This endothelial anergy, characterized as unre-
sponsiveness to inflammatory signaling, results in decreased
adhesion of immune cells to the wall of the vessel, leading to
reduced effector T-cell infiltration into the tumor, which is a
key mechanism of immune evasion of solid malignancies (95).

Adhesion molecules are also key in leukocyte-cancer cell
interactions. For example, dendritic cells responsible for phag-
ocytosis and cancer-derived antigen presentation interact with
dying cancer cells via integrins, such as integrin �V�4 (96, 97).
On the other hand, dendritic cells can also express �2 integrin,
which promotes anti-inflammatory interactions. Integrin �E,
which is expressed by dendritic cells, but also by myeloid-de-
rived suppressor cells and regulatory T cells, promotes pro- or
anti-tumorigenic action of immune cells, depending on its cel-
lular context (94). The exact role of distinct classes of adhesion
molecules expressed by dendritic cells in the anti-tumor
immune response remains to be determined.

Cadherins and integrins as targets for cancer therapy

Cadherin as well as integrin expression and activation
directly influence human malignancies. Due to their broad im-
pact in malignant transformations, they are considered poten-
tial targets for cancer therapy (94). Cadherin-mediated cell-cell
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adhesion disruption is frequently observed in solid and hema-
tological tumors. By analyzing CD34� cell populations from
patients with myelodysplastic syndrome, it was shown that the
promoter of E-cadherin often hypermethylated, which results
in decreased protein expression (98). Further, comparison of
bone marrow and blood revealed that in normal control sam-
ples, the E-cadherin promoter was essentially unmethylated,
and 78% of the leukemia samples presented abnormal hy-
permethylation of this region, thus reinforcing the E-cad-
herin gene as a common target for hypermethylation in
hematologic malignancies (99).

Leukemic stem cell self-renewal is largely dependent on
N-cadherin, which causes future evasion of chemotherapy
effects. The overexpression of N-cadherin in hematopoietic
stem and progenitor cells was shown to promote and pre-
serve hematopoietic stem and progenitor cells during serial
bone marrow transplantations. Further, inhibition of N-
cadherin resulted in a significant reduction in long-term
engraftment. These findings suggest that N-cadherin–
mediated cell adhesion is functionally essential for the regu-
lation of hematopoietic stem and progenitor cell activity in
the bone marrow and thus an interesting target for the treat-
ment of leukemia (100).

Integrins are considered prime promising anti-cancer
drug targets, and their antagonists have been shown to
achieve success by impeding integrin trafficking that in-
volves invasion and migration of cells in tumors, which are
crucial in promoting cancer metastasis (4). Some �V integrin
antibodies have been evaluated in late-stage clinical trials,
such as abituzumab (Merck KGaA, Darmstadt, Germany)
and intetumumab (Centocor, Malvern, PA). Both bind the
integrin �V subunit and inhibit all five �V integrins. They
were both shown to inhibit ligand binding and tumor growth
in xenograft models. Abituzumab showed a favorable safety
profile for progressive castration-resistant prostate cancer
patients with bone metastases after chemotherapy. Intetu-
mumab showed the potential to be efficacious as a single
agent for the treatment of metastatic melanoma and dis-
played a manageable safety profile. The results presented
support further larger clinical studies (101–104).

Integrin �2 inhibitors function by inhibiting cell adhesion
and trapping of white blood cells. Antibodies and small mole-
cules have been generated, but in most cases, issues were
encountered during the trials (105). Here, the shortage of ani-
mal models, including knockout mouse models, is one of the big
difficulties because proper in vivo models are required to vali-
date the target. Further roadblocks are encountered due to the
low therapeutic effect, the lack of selectivity, and the presence
of side effects, in particular hepatotoxicity. In addition to the
compounds that have already reached clinical trials, there are a
wide variety of recent studies on integrin inhibition as a target
for cancer therapy strategy (106).

Another study using the integrin-targeted approach was
undertaken for drug-resistant ovarian carcinoma. Conju-
gates presenting a selective binder for the extracellular por-
tion of integrin �V�3 covalently linked to sunitinib, a tyro-
sine kinase inhibitor, were screened for their anti-tumor
potential. This strategy resulted in one active compound

(Fig. 3A) that inhibits the growth of drug-sensitive and -re-
sistant cells in the micromolar range, reduces cell migration
and invasive abilities, and presents an increased potency
compared with sunitinib (107).

From a genome-wide study of taxol resistance, the miR-29c
miRNA was identified, which is directly related to the resis-
tance observed in therapy against nasopharyngeal carci-
noma. Regulation of taxol resistance by miR-29c was dem-
onstrated to occur due the inhibition of integrin �1. When
silencing miR-29c, a marked increase in growth of taxol-
resistant nasopharyngeal carcinoma tumor occurred, whereas
the knockdown of integrin �1 reversed the tumor growth.
These results indicate that miR-29c has the potential to be
used in taxol-resistant nasopharyngeal carcinoma therapy by
inhibiting integrin �1 (108) and support the interest in
designing compounds targeting integrin for the treatment of
drug-resistant tumors.

Further, siRNA is a novel emerging therapy approach for
treating various diseases, such as cancer. In this approach,
the specific delivery to the desired target cells is necessary to
achieve high therapeutic efficacy. Drug delivery systems
such as dendrimers have been used as promising strategies to
siRNA delivery. One example of this approach was the
design of an amphiphilic dendrimer (Fig. 3B) composed with
a dual-targeting peptide bearing an RGDK lipopeptide (Fig.
3C) warhead designed to interact with integrin. This tar-
geted system enhanced siRNA delivery, increasing gene
silencing, and anticancer activity, reducing proliferation of
cells (106).

Integrin has also been studied as a cancer target by employing
a drug-repurposing approach. It is known that integrin �3
could potentially overcome chemoresistance due to its abun-
dant expression in drug-resistant cells that have a mesenchymal
phenotype. Thus, an in silico screening approach was used to
search for drugs that mimic the changes of the transcriptome
level caused by the knockdown of integrin �3. By this approach,
atorvastatin (Fig. 3D) was identified as a novel candidate for
drug repurposing, which represents an alternative path to drug
discovery for undruggable integrins. It was shown that atorvas-
tatin sensitized cancer cells to conventional chemotherapeutic
drugs, such as doxorubicin (109).

The examples discussed above represent a minor fraction of
the broad diversity of approaches that have been studied in past
years involving cadherins and integrins as drug targets for can-
cer. They clearly show the promising nature of these strategies
and the plurality of paths that can be applied to achieve their
goals.

Outlook

Cell adhesion molecules could constitute an attractive
therapeutic target group, as their extracellular domains
could be easily accessed by antibodies or small-molecule
inhibitors. Multiple clinical trials have been initiated based
on successful reduction of tumor growth by integrin target-
ing, especially �V and �1 (101–105). Thus far, most of the
clinical trials have not significantly affected the disease-free
or overall survival in patients (67). This may be due to the
redundancy in signaling mediated by integrins, but also due
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to adverse effects caused by disruption of integrin-depen-
dent functions in normal tissues. New studies targeting cell
adhesion in combination with other drugs are under way. A
bispecific antibody targeting �2 integrin LFA-1 and Id was
recently developed (61). In preclinical trials for B cell lym-
phoma, this antibody targeted cancer cells exclusively,
despite expression of �2 integrin on several normal cell
types. Thus, this or similar approaches that use cell adhesion
proteins as targeted therapy delivery systems are of great
interest. Future studies of the mechanisms of cellular adhe-
sion and interactions between tumor cells and the cells of the

microenvironment are also warranted to open new avenues
for more effective cancer treatment.
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