(A) Diagram of conditional Kat2a floxed (WT) and Kat2a-excised (KO) alleles, including excision detection strategy and diagrams of the transcript and protein generated upon Kat2a locus excision. Kat2a IN (In11, within excised region) and Kat2a OUT primers (Out18, downstream of excised region) used in qPCR analysis of genomic DNA. Amplicons generated by primer pairs Ex1−2/Ex2 (red), Ex2/Ex18(2) (blue) and Ex18 (green) distinguish WT from KO transcript. (B) Excision efficiency quantified by qPCR in mouse BM samples, mean ± SEM, n = 4, **p<0.01. (C) Quantitative RT-(q)PCR analysis of Kat2a transcript levels in BM LMPP and GMP; mean ± SEM, n = 4, **p<0.001. (D) RT-qPCR analysis of red, blue and green amplicons in A for diagnosis of Kat2a WT and KO AML samples, mean ± SEM, n = 4. (E) Flow cytometry analysis of stem and progenitor BM composition in Kat2a WT and KO young mice (6 weeks after pIpC treatment), mean ± SEM, n = 3’ *p<0.05. (F) Colony-forming assays of progenitor populations (left to right: HSC, MPP, GMP and MEP) isolated from Kat2a WT and KO BM 4–6 weeks after excision, mean ± SEM, n = 4–5, *p<0.05. (G) Flow cytometry analysis of stem and progenitor BM composition in Kat2a WT and KO old mice (>4 months after pIpC treatment), mean ± SEM, n > 5. (H) Flow cytometry analysis of donor-derived BM stem and progenitor cells in a long-term hematopoietic reconstitution assay. Irradiated recipients were transplanted with Kat2a WT or KO cells and analyzed 16–20 weeks later; mean ± SEM, n = 4–5. Two-tailed t-test was performed in (B), (C), (E) and (F).
Figure 1—figure supplement 1—source data 1. Colony-forming assays of Kat2a WT and KO stem and progenitor cells.