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SUMMARY

Transcriptional programming of the innate immune response is pivotal for host protection. 

However, the transcriptional mechanisms that link pathogen sensing with innate activation remain 

poorly under-stood. During HIV-1 infection, human dendritic cells (DCs) can detect the virus 

through an innate sensing pathway, leading to antiviral interferon and DC maturation. Here, we 

develop an iterative experimental and computational approach to map the HIV-1 innate response 

circuitry in monocyte-derived DCs (MDDCs). By integrating genome-wide chromatin 

accessibility with expression kinetics, we infer a gene regulatory network that links 542 

transcription factors with 21,862 target genes. We observe that an interferon response is required, 

yet insufficient, to drive MDDC maturation and identify PRDM1 and RARA as essential 

regulators of the interferon response and MDDC maturation, respectively. Our work provides a 

resource for interrogation of regulators of HIV replication and innate immunity, highlighting 

complexity and cooperativity in the regulatory circuit controlling the response to infection.

Graphical Abstract

In Brief

Pathogen sensing leads to host transcriptional reprogramming to protect against infection. 

However, it is unclear how transcription factor activity is coordinated across the genome. Johnson 

et al. integrate chromatin accessibility and gene expression data to infer and validate a gene 

regulatory network that directs the innate immune response to HIV.
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INTRODUCTION

The host’s ability to rapidly alter gene expression to defend against infection is a central 

element of the innate immune response. Host-encoded pattern recognition receptors (PRRs) 

detect components of foreign microorganisms and self-derived immunostimulatory products 

(Cao, 2016; Ivashkiv and Donlin, 2014; Iwasaki and Medzhitov, 2015). When a pathogen is 

sensed, PRRs initiate signal transduction cascades that lead to activation of multiple 

transcription factors (TFs), which subsequently rewire gene expression to protect the host. 

Considering that aberrations in innate immunity are hallmarks of many disorders, including 

chronic viral diseases, neurodegeneration, diabetes, and cancer (Corrales et al., 2017; 

Heneka et al., 2014; Wada and Makino, 2016), it is not surprising that transcriptional 

activation of innate immune signaling is under tight control, with the goal of maintaining a 

sensitive response to infectious threats while avoiding unwanted inflammation and auto-

immunity. In the case of HIV-1 infection, however, innate immune responses are insufficient 

for host protection and become dysregulated during progression to AIDS (Fernandez et al., 

2011; Sandler et al., 2014; Schoggins et al., 2011).

Dendritic cells (DCs) serve key functions in host defense and are among the first cells 

thought to contact HIV-1 during transmission (Iijima et al., 2008). Myeloid DCs express an 

arsenal of PRRs and link innate detection of microbes to activation of pathogen-specific 

adaptive immune responses (Banchereau et al., 2000; Théry and Amigorena, 2001). These 

cells express cell surface receptors for HIV-1 entry, but because of the presence of restriction 

factors, the virus undergoes limited productive infection in primary DCs and monocyte-

derived DCs (MDDCs) and does not trigger robust immune responses (Granelli-Piperno et 

al., 2004; Manel et al., 2010; Silvin et al., 2017; Smed-Sörensen et al., 2005). The major 

restriction factor in myeloid DCs is SAMHD1, an enzyme that exhibits phosphohydrolase 

activity and depletes the cellular pool of deoxyribonucleotide triphosphates (dNTPs) 

required for HIV reverse transcription (Hrecka et al., 2011; Laguette et al., 2011). This 

restriction can be overcome if DCs are first exposed to virus-like particles that deliver the 

lentiviral accessory protein Vpx (absent from HIV-1 but encoded by simian 

immunodeficiency virus [SIV] and HIV-2) (Goujon et al., 2006; Mangeot et al., 2000). Vpx 

targets SAMHD1 for degradation, enabling productive HIV-1 infection, sensing of viral 

components, and activation of innate immune responses (Manel et al., 2010).

Innate immune responses against HIV-1 are triggered in primary DCs and in MDDCs by the 

sensor cyclic guanosine monophosphate (GMP)-AMP synthase (cGAS), which detects 

reverse-transcribed HIV cDNA, in a process that requires concomitant HIV capsid protein 

interaction with the cellular protein NONO, and is facilitated by other proximal factors (Gao 

et al., 2013; Jønsson et al., 2017; Lahaye et al., 2013, 2018; Yoh et al., 2015). Downstream 

of innate sensing initiated by cGAS, several TFs are activated, including IRF and nuclear 

factor κB (NF-κB) family members, which drive induction of interferons (IFNs), IFN-

stimulated genes (ISGs), and inflammatory cytokines, and promote DCs to transition from 

an inactive immature state to a mature, activated state. In addition to upregulating innate 

antiviral factors, mature DCs express at their cell surface the costimulatory factors CD80 and 

CD86, which are critical for programming adaptive responses (Goubau et al., 2013; Iwasaki, 

2012). The DC transcriptional response circuitry involves feedback loops that engage 
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multiple activator and repressor TFs that collectively influence thousands of gene targets 

during IFN signaling and DC maturation (Ivashkiv and Donlin, 2014). Therefore, it is 

difficult to understand the constellation of TF-target gene connections that operates during 

innate immune responses using traditional approaches.

Work from our groups and others has demonstrated that gene regulatory network inference, 

when applied to study dynamic systems such as macrophage activation, T helper 17 (Th17) 

lymphocyte polarization, and innate immune response to cytosolic DNA, has predicted the 

functions of key transcriptional regulators whose involvement was previously unknown 

(Ciofani et al., 2012; Gilchrist et al., 2006; Lee et al., 2013; Ramsey et al., 2008). Our earlier 

computational methods pioneered the use of time series perturbations and the incorporation 

of structured prior information into gene regulatory network inference (Bonneau et al., 2006; 

Greenfield et al., 2010, 2013; Madar et al., 2010). In this report, we demonstrate that 

network inference is improved by ensemble learning across hundreds of individual 

computational runs, with each run predicated on subsampled information in the "Prior" 

network. We have integrated chromatin accessibility data, together with genome-wide 

measurements of gene expression, to infer and experimentally validate a network describing 

the human DC transcriptional circuitry that is engaged upon HIV sensing.

RESULTS

Perturbation of Human DCs in the Face of Diverse Innate Immune and Viral Stimuli

With the goal of better understanding how myeloid cells respond to innate immune stimuli, 

we exposed immature MDDCs to a battery of innate immune agonists and viral challenges, 

generating datasets composed of RNA sequencing (RNA-seq) and assays for transposase-

accessible chromatin sequencing (ATAC-seq) (Figure 1A; Table S1). We tracked the kinetics 

of gene expression and MDDC maturation during HIV-1 infection compared with classic 

innate agonists by infecting MDDCs with a single-cycle HIV-1 reporter virus (HIV-1-GFP 

+Vpx), transducing with a non-replicating lentivirus (LKO-GFP +Vpx), or stimulating in 

parallel with the Toll-like receptor (TLR) 4 agonist lipopolysaccharide (LPS) or the double-

stranded RNA mimetic polyinosinic:polycytidylic acid (poly(I:C)) for 2, 8, 24, and 48 h. 

LPS and poly(I:C) triggered rapid changes in gene expression in human MDDCs across 

several gene clusters (Figure 1B; Table S2). Similarly, infection with HIV-1-GFP led to 

induction of innate immune genes (Figure 1B, clusters 5 and 8) but did so with delayed 

kinetics compared with LPS and poly(I:C), likely because of time-dependent accumulation 

of reverse transcription products, integration, and virus replication progressing over the first 

24 h (Gao et al., 2013; Johnson et al., 2018). Gene expression profiles were consistent with 

the timing of MDDC maturation as scored by flow cytometry (Figure S1A), with LPS and 

poly(I:C) stimulation leading to early and robust induction of CD86. MDDCs infected with 

HIV-1-GFP did not mature until 48 h and only minimally responded to LKO-GFP (Figure 

S1A), as we previously described (Johnson et al., 2018; Manel et al., 2010).

In agreement with the earlier analyses, we observed that RNA-seq samples from infected 

and uninfected MDDCs could be clearly distinguished when visualized by principal-

component analysis (PCA) (Figure S1B). Samples at 24 and 48 h time points could be 

further separated when grouped specifically by time or cell sorting condition: GFP negative 
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(HIV exposed, but not expressing GFP), GFP positive (HIV infected), HIV-CD86-low (HIV-

infected, immature MDDC), and HIV-CD86-high (HIV-infected, mature MDDC) (Figure 

S1C). We also used gene set enrichment analysis (GSEA) (Subramanian et al., 2005) to 

evaluate the qualitative nature of the innate response and uncovered strong associations 

between HIV-infected samples and gene sets for IFN alpha/beta signaling, inflammatory 

signaling, and DC maturation (full GSEA results available in Supplemental Information). 

The most significant enrichment was found with the hallmark IFN response (Figure 1C), 

which peaked at 24 h post-infection. Canonical ISGs were highly upregulated during HIV-1-

GFP infection (Figure 1D) and their induction correlated with activation of IFNB1 and 

IFNL1 (Figure S1D). Having characterized the MDDC transcriptional response to HIV-1 

infection, which included known maturation and IFN response signatures, we next sought to 

identify regions of open chromatin that may be accessible to TF binding to define possible 

TF-to-gene target relationships that regulate the innate response.

ATAC-Seq Reveals Time-Dependent Chromatin Opening at Innate Immune Gene Promoters

Analyzing genome-wide chromatin accessibility represents a powerful way to assess the 

presence of regulatory elements such as promoters and enhancers in mammalian cells 

(Buenrostro et al., 2013; Johnson et al., 2018). To match the experimental conditions used 

for RNA-seq, we profiled changes in open chromatin by performing ATAC-seq on MDDCs 

that were mock treated (Vpx only) or infected with HIV-1-GFP +Vpx for 2, 8, 24, and 48 h 

and sorted by flow cytometry (Figures 2A and 2B). We identified 88,000 high-confidence 

peaks across all ATAC-seq conditions (Table S3). Similar to the RNA-seq samples, the 

ATAC-seq samples for mock and HIV-1-GFP could be separated by PCA through time and 

status of infection with minimal variation between donors (Figures S2A and S2B). By 

plotting genome-wide changes in gene expression, together with changes in chromatin 

accessibility at transcription start sites, we observed that global changes in chromatin 

accessibility are temporally linked with stages of HIV-1 single-round infection and MDDC 

maturation (Figure 2C). At 24 h post-infection, we found that the induction of IFNB1, 

IFNL1, and most hallmark IFN response genes in GFP-negative and GFP-positive 

populations was linked with increases in chromatin accessibility. By 48 h, expression 

intensity and chromatin accessibility of these genes began to subside, with particularly 

noticeable reductions in chromatin accessibility for IFNB1 and IFNL1 to levels below 

baseline.

To investigate changes in chromatin accessibility in more detail, we plotted promoter-

associated ATAC-seq peak height across the time series for two housekeeping control genes 

(PGK1 and TBP), the IFN genes IFNB1 and IFNL1, well-defined ISGs, and IRF and NF-κB 

family members. Maximum chromatin accessibility for IFNB1, IFNL1, and several ISGs 

was detected at 24 h post-infection in cells expressing the GFP reporter (Figures 2D, S2C, 

and S2D). For IFN-related genes; the NF-κB family members RELA, RELB, and REL; and 

the related TF HIVEP1, chromatin accessibility was higher in HIV-infected, CD86-low 

MDDCs that were not fully mature compared with CD86-high, mature MDDCs (Figure 2D), 

suggesting that chromatin state is linked to MDDC maturation status.
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To determine whether mapping open chromatin using ATAC-seq in HIV-infected MDDCs 

offered specific advantages over publicly available datasets, we compared our ATAC-seq 

peaks to steady-state open chromatin data from CD14+ monocytes (Figures S2C and S2D). 

Several ISGs displayed high chromatin accessibility at baseline (STAT1, STAT2, IRF1, 

IRF7, IRF9, OASL, HLA-C, and ISG20), with peaks detected in both MDDC ATAC-seq 

samples and CD14+ monocyte data available from ENCODE (Figure S2C). HIV-1-GFP 

infection led to a transient increase in chromatin accessibility at ISG promoters that 

corresponded with known binding sites for IRF3, STAT1, and NF-κB (RELA). In contrast, 

IFNB1, IFNL1, and other ISGs (CXCL10, CXCL11, ISG15, LY6E, USP18, and IFIT1) 

displayed open chromatin in MDDCs infected with HIV-1-GFP, but not in mock-treated 

cells or in CD14+ monocytes (Figure S2D), supporting the use of cell- and condition-

specific ATAC-seq data as a basis for network inference.

Inferred Network of DC Transcriptomic Changes following Innate Immune Responses

To infer a predictive gene regulatory network, we adapted our previously published 

algorithm (the Inferelator), which was designed to learn from mixes of steady-state and 

dynamic data (Bonneau et al., 2006). The method can incorporate multiple data types to 

influence network model selection, including TF occupancy, cooperativity, and 

transcriptional profiling in response to innate immune stimuli (Figures 1 and 2). High-

throughput methods like ATAC-seq and chromatin immunoprecipitation sequencing (ChIP-

seq) can be used to guide network inference by defining prior information on network 

architecture, dramatically improving network model selection and predictive power (Arrieta-

Ortiz et al., 2015; Miraldi et al., 2019; Siahpirani and Roy, 2017). Key to this study, we 

extended our previously published computational methods for learning the regulation of 

gene networks through the Inferelator (Arrieta-Ortiz et al., 2015; Bonneau et al., 2006; 

Ciofani et al., 2012; Greenfield et al., 2010; Madar et al., 2010) by integrating results 

obtained from RNA-seq and ATAC-seq experiments performed at the bulk level in a time 

course fashion (Figure 3A).

Here, prior information on network architecture is derived from the 88,000 peaks of 

chromatin accessibility data generated by our ATAC-seq experiments that tracked MDDC 

responses to HIV infection (Figures 2A and 3A). Using curated TF binding motif databases, 

we established possible TF-gene target relationships by searching ATAC-seq peaks for TF 

motifs that we located within or up to 1 kb upstream of gene bodies (Figure 3B). This 

information was used to build a "Prior" matrix that connected each gene with its possible TF 

regulators (Table S4). We then estimated TF activity over the course of stimulation based on 

the combined expression of a TF’s predicted gene targets (Figure 3C). This step 

approximates the effect of unmeasured parameters, such as post-translational regulation and 

protein-protein interactions, on TF activity in a condition-dependent manner. We were thus 

able to model changes in TF activity that are semi-independent of changes in TF expression, 

as observed for IRF3 (Figures S3A and S3B). IRF3 activity was predicted to increase in 

response to LPS, poly(I:C), and HIV sensing, which are all known to drive IFN production 

through IRF3 phosphorylation. Our inference model also predicted that activity and 

expression for STAT2, IRF7, and RELA correlated with innate stimulation, as expected, 

given their well-defined roles in the innate response (Cao, 2016).
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Once TF activity was estimated, the network structure Prior was used to bias model selection 

of TF-to-gene target regulatory interactions toward edges with Prior information during 

network inference (Figure 3D). To improve the overall performance and stability of network 

inference, several aspects of the method (and key inputs) were tested, such as different 

sources of Priors (publicly available ENCODE data versus our ATAC-seq data), different TF 

binding motif databases (HOCOMOCO [Kulakovskiy et al., 2013] versus CisBp 2.0 

[Weirauch et al., 2014]), and different model selection methods (Bayesian best subset 

regression [BBSR] versus elastic net [EN]). In addition, because every computational run is 

subject to stochasticity in the inference procedure, we evaluated whether network 

performance could be improved by combining hundreds of individual computation runs 

(selecting model components such as TF activity estimates that were stable across random 

subsamples of the structure Prior; see STAR Methods). To evaluate the performance of 

networks inferred using the parameters described earlier, we used area under precision-recall 

curves (Madar et al., 2010) to compare the prediction and ranking of our TF-to-gene target 

regulatory edges against TRRUST v.2, a gold-standard reference database of human 

transcriptional regulatory events (Han et al., 2018), and well-known lists of ISGs (Kane et 

al., 2016; Schoggins et al., 2011; Shaw et al., 2017). We found that the EN regression model 

outperformed BBSR when ATAC-seq-based networks were benchmarked against TRRUST 

v.2 (Figures 3E and 3F). We improved precision-recall on TRRUST and known ISGs by 

bootstrapping 400 individual EN-ATAC inference runs into a converged network (EN-ATAC 

x400) (Figures 3E-3H, S3C, and S3D). This final EN-ATAC network correctly predicted 90 

of 97 core mammalian ISGs (Shaw et al., 2017) to be downstream of IRF and NF-κB family 

members (Figure S3E) and emphasized a role for IRF3 (Figure S3F). Thus, we were able to 

integrate gene expression and chromatin accessibility data to estimate a network with 542 

TFs and 21,862 target genes, explaining >2/3 of the variance in our expression dataset (Table 

S5).

Network Clustering, Differential Gene Expression Analysis, and TF Enrichment Tests 
Define Key Subregulatory Groups

We used this MDDC transcriptional response network to group the expression changes 

observed into sets of coregulated genes with high-confidence regulatory subnetworks. We 

first applied a cutoff to visualize the top 75,000 regulatory edges that displayed the highest-

confidence beta scores (Figure 4A) and then partitioned the network using Louvain 

modularity clustering into 10 major neighborhoods of TF and target gene communities, with 

each cluster encompassing at least 1% of the total number of genes in the network (MDDC 

network topology can be freely explored using Gephi software by downloading the Gephi-

formatted supplemental file, available in the STAR Methods section). We were able to assign 

putative biological functions to 7 of 10 clusters based on pathway enrichment scores (see 

STAR Methods). The most striking enrichment scores were observed in the upper-right 

shoulder of the network, demarcating clusters that are predicted to function in the IFN 

response (cluster 5, IRFs & Interferon), inflammation and cytokine production (cluster 8, 

NF-κB & Inflammation), and in response to xenobiotic stress (cluster 2, Regulation of Cell 

Activation) (Figures 4B-4D).
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Activation of IRF, STAT, and NF-κB family members is centrally linked to IFN signaling 

during the innate immune response (Cao, 2016; Ivashkiv and Donlin, 2014). Fittingly, we 

found that several IRF (IRFs 1, 2, 3, 5, 7, 8, and 9), STAT1 and STAT2, and all five NF-κB 

(RELA, RELB, REL, NFKB1, and NFKB2) populated the upper-right shoulder of the 

network (Figure S4A), consistent with their overlap in motif preferences (Figure S4B). 

Interestingly, IRF4 and IRF5, which also have GAA- and GAAA-rich motif features similar 

to those of other IRFs (Figure S4C), are positioned in different areas of the network. In 

particular, IRF4 is localized to the extreme lower left (Figure S4A, cluster 1, Chromatin 

Modifiers), close to pioneer factors and repressors that target large numbers of genes 

(Jankowski et al., 2016).

We next sought to establish the relative impact of each TF in the network during an innate 

response. Toward this end, we performed hypergeometric tests to assess TF enrichment and 

found high enrichment for IRF, STAT, and NF-κB family members during stimulation with 

HIV-1-GFP, LPS, and poly(I:C) (Figure S4D; Table S6), with kinetics closely matching what 

was observed for IFN production and MDDC maturation (Figures S1A and S1D). We also 

found mild enrichment of these TFs during LKO-GFP infection, supporting the concept that 

non-replicating lentiviral vectors are partially, if inefficiently, sensed by the innate immune 

system (Figure S4D) (Johnson et al., 2018). By highlighting network topology in which 

genes are differentially expressed during treatment with HIV-1-GFP, LKO-GFP, LPS, and 

poly(I:C), we determined that most of the transcriptional response is concentrated in clusters 

2, 5, and 8 (Regulation of Cell Activation, IRFs & Interferon, and NF-κB & Inflammation, 

respectively) (Figure S4E).

Exploration and Validation of Modulators of the IFN Response

The first wave of the antiviral response is driven by production of type I and type III IFNs 

(Levy et al., 2011). In MDDCs, the major expressed type I and type III IFNs are IFNB1 and 

IFNL1, respectively (Figure S1D). To visualize all high-confidence edges for IFNB1, 

IFNL1, and their regulators that were predicted by the network, we generated a subnetwork 

visualization tool (Figure 5A; see STAR Methods for instructions on how to access the 

Jupyter subnetwork widget). Upstream of both IFNB1 and IFNL1, we identified IRF3 and 

additional IRFs that have been reported to contribute to their induction under various 

conditions (such as IRF1, IRF5, IRF7, and IRF8) (Ivashkiv and Donlin, 2014). Several 

unexpected factors were also predicted to be upstream regulators of IFNB1 and IFNL1 
(Figure 5A), and of these TFs, HIVEP1, CBFB, STAT2, PRDM1, and KLF13 were 

expressed at relatively high levels in MDDCs and in some cases exhibited dynamic 

expression changes during the innate response (Figure 5B).

We next sought to empirically test the function of several of these TFs in MDDCs, noting 

that PRDM1 and HIVEP1 were among the highest-ranking TFs according to hypergeometric 

tests (Figure S4D). Using short hairpin RNA (shRNA) vectors, we targeted these TFs for 

knockdown in MDDCs alongside key sensors of HIV (cGAS and NONO) and the essential 

TF IRF3. Among other potential TF candidates, we additionally tested KLF13, based on its 

relatively high expression and known role in recruiting coactivators p300/CBP and PCAF to 

drive expression of CCL5 (Ahn et al., 2007). We confirmed knockdown of these targets 
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either by immunoblot ((Figure 5C) or qPCR (Figure S5A), and as expected, knockdown of 

cGAS and NONO potently inhibited innate immune activation in MDDCs during HIV-1-

GFP infection (Johnson et al., 2018; Lahaye et al., 2013, 2018; Figures 5D-5I and S5B-

S5E). The most effective shRNA clones for HIVEP1, KLF13, and PRDM1 had no effect on 

viral infection. Under these conditions, we could not conclude whether HIVEP1 knockdown 

affected MDDC maturation (Figure S5D). Knockdown of KLF13 partially inhibited CD86 

induction, which was significant for two shRNAs at high HIV-1-GFP MOI (Figure S5E). 

Moreover, we found that greater KLF13 knockdown correlated with lower levels of CD86 

and inhibition of IFNL1 expression during HIV-1-GFP infection (Figure S5F). In a more 

dramatic way, knockdown of PRDM1 significantly inhibited innate immune activation of 

MDDCs, as scored by induction of CD86, SIGLEC1, IFNL1, and IP-10 (Figures 5D-5I), 

and these effects were observed with three independent shRNAs. Altogether, these data 

suggest that although cellular factors such as cGAS, NONO, and IRF3 function as critical 

toggle switches during the innate response, additional TFs such as KLF13 and, to a greater 

extent, PRDM1 may operate to fine-tune the magnitude of the innate response. Other TFs 

with high enrichment scores identified from experiments with wild-type HIV-1, HIV-2, 

recombinant IFN, and discrete innate immune stimuli (Figure S5G; Table S6) warrant 

further exploration.

Mature and Immature MDDC Populations Cannot Be Distinguished Based on IRF/STAT 
Enrichment Alone

IRF and STAT activation is critical for inducing an IFN gene signature, but neutralization of 

IFN signaling does not block upregulation of inflammatory cell markers during HIV 

infection (Lahaye et al., 2013; Manel et al., 2010), suggesting that factors in addition to 

these TFs contribute to MDDC maturation. Gene set enrichment analysis on CD86-low- and 

CD86-high-sorted MDDCs (Figures S1A and S2B) identified DC maturation genes as 

significantly enriched in CD86-high compared with CD86-low populations (Figures 6A-6C). 

However, we found no statistically significant difference in hallmark IFN response genes, 

with ISG expression levels and chromatin accessibility elevated in both conditions (Figures 

6B, S6A, and S6B). Thus, an IFN response is not sufficient to explain the differences in 

MDDC maturation status following HIV infection.

Consistent with our DC maturation gene set results, the NF-κB family members (RELB, 

REL, NFKB1, RELA, and NFKB2) showed stronger enrichment in CD86-high than in 

CD86-low populations (Figures 6D-6F), as did additional, unexpected TFs (CLOCK, 

THRB, SRF, and HIVEP1) found in cluster 2 (Regulation of Cell Activation) and cluster 8 

(NF-κB & Inflammation). Interestingly, pathway analysis of differentially accessible 

chromatin in CD86-high versus CD86-low conditions suggested that the retinoic acid 

receptor (RAR) RAR alpha (RARA), PPARD, NCOR1, and the canonical NF-κB family 

member RELA (among other TFs) influenced the transition between immature and mature 

MDDCs (Figures S6C-S6E). When differentially expressed genes were assessed in CD86-

high versus CD86-low conditions in a similar fashion, pathway analysis predicted strong 

enrichment of protein-protein interactions with the RARA partner molecule RXRA, 

pathways associated with nuclear receptor transcription, MyD88 signaling, and gene 

expression changes resembling published datasets from RARA perturbation (highest among 
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other inflammatory activators) (Figures 6G-6I). These analyses implicated RARA/RXRA 

nuclear hormone receptor signaling to be involved in regulating MDDC maturation.

Identification of RARA as a Critical TF for Controlling MDDC Maturation

At steady state, RARs bind retinoic acid response elements (RAREs), together with retinoid 

X receptors (RXRs) in a complex with nuclear corepressors (NCOR1/2) and suppress 

transcription of RARE-dependent genes (Cunningham and Duester, 2015). Ligand binding 

leads to the dissociation of NCOR1/2 from RARs and the recruitment of coactivators, which 

then drive gene expression. Given that RARA occupies a central region of cluster 2 

(Regulation of Cell Activation) (Figures 4D and 6J) and was predicted to influence MDDC 

maturation, we sought to assess its network connections and function compared with STAT2 

and cGAS. Subnetwork visualization of RARA and close network edges displayed many 

connections between cluster 2 (Regulation of Cell Activation) and Clusters 5 and 8 (IRF & 

Interferon and NF-κB & Inflammation, respectively) (Figure 7A). Many of these 

connections were detected using the Search Tool for the Retrieval of Interacting Genes 

(STRING) database (Szklarczyk et al., 2015), highlighting the position of RARA close to 

TFs involved in controlling cell fate, lipid and sterol metabolism, IFN signaling, and 

inflammation (Figure 7B).

Knockdown of cGAS or STAT2 led to a pronounced loss of innate immune activation in 

MDDC during infection with HIV-1-GFP (Figures 7C and 7D). In contrast, knockdown of 

RARA upregulated CD86 at baseline and potentiated MDDC maturation during infection, 

suggesting RARA acts as a negative regulator of inflammation. Consistent with this notion, 

expression levels of many predicted targets of RARA increased in response to LPS and 

poly(I:C) treatment and to a lesser degree in response to HIV-1-GFP (Figure S7A). 

Moreover, we found an inverse relationship between gene expression of RARA and 

costimulatory molecules CD80 and CD86 (Figure S7B), supported by the negative 

correlation between the estimated transcriptional activity of RARA and its measured gene 

expression (Figure S7C). Knockdown of RARA was associated with a slight but statistically 

significant decrease in production of IFN and ISGs ISG15 and CXCL10 (Figures 7E and 

S7E-S7H), leading us to consider that loss of RARA might affect the balance between 

antiviral IFN responses and inflammatory responses that benefit virus replication. In 

agreement with this idea, we observed heightened virus transcription in RARA knockdown 

conditions (measured by GFP reporter expression) (Figures 7C and 7E), because increased 

inflammation is a correlate of increased HIV replication (Deeks et al., 2013).

Direct modulation of RARA using the pharmacological agonist Am80 (Delescluse et al., 

1991) triggered increased CD86 surface expression both at baseline and following HIV-1-

GFP infection (Figures 7F and 7G). We also observed that treatment with Am80 or the 

classic RARA ligand all-trans retinoic acid (ATRA), increased gene expression of CD86 
(Figure S7D). Conversely, use of the RARA antagonist BMS 195614 reduced upregulation 

of CD86 during virus infection (Figures 7H and 7I). Although our findings from RARA 

agonists and antagonists may appear inconsistent with those of RARA knockdown, they are 

in line with the dual functions of nuclear receptors in recruiting either coactivators or 

corepressors of transcription, which will be discussed later. Altogether, these data support 
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our network predictions that spotlight a role for RARA in the regulation of MDDC 

maturation.

DISCUSSION

Multiple TFs are known to drive the innate response downstream of pathogen sensing in 

myeloid DCs (Ivashkiv and Donlin, 2014), but it remains unclear how production of IFN, 

differential expression of thousands of host genes, and DC maturation are coordinately 

regulated across the genome in response to HIV detection. To address this issue, we 

employed a systems biology approach to understand how MDDCs respond to stimulation, 

generating steady-state and time series RNA-seq under a battery of viral and innate immune 

perturbations combined with ATAC-seq measurements of chromatin accessibility (Figure 

1A). In this study, we inferred a transcriptomic network linking 542 TFs to 21,862 gene 

targets, revealed unexpected roles for TFs in the innate response through validation 

experiments (PRDM1 and RARA), and provided tools for further network exploration that 

accompany this manuscript (see STAR Methods).

Computational strategies that combine ATAC-seq and gene expression data have recently 

been employed to identify key regulators of tissue-resident memory CD8+ T cells (Milner et 

al., 2017), define TF specificity across cell types (Cusanovich et al., 2018), and chart the 

landscape of human cancers (Corces et al., 2018). Here, we improved the stability of 

network inference by performing ensembles of analyses, with each run subsampling 

information from a structured network Prior that was generated from our ATAC-seq data. By 

modeling changes in gene expression to be a function of combined TF activities, we reduced 

the complexity of multiple factors known to influence gene expression into a single 

parameter (such as changes in TF expression, post-translational modifications, and 

epigenetic marks on target genes). In doing so, our network revealed strong enrichment of 

TFs known to regulate the innate response, notably including IRF3, a key factor that is 

activated by phosphorylation and, because it is constitutively expressed, is rarely identified 

in pathway analyses that emphasize changes in TF expression (Amit et al., 2009). Our 

network Prior only considered chromatin accessibility from 1 kb upstream through target 

gene bodies, which may have biased the network toward proximal factors, and it did not 

cleanly distinguish between TFs with overlapping motif preferences. Future network 

inference models will likely incorporate distal enhancer elements and improved TF motif 

databases.

To date, this study reports one of the largest gene regulatory networks that has been charted 

in mammalian cells. Because our full reported network (500,000 edges) is potentially 

promiscuous, we have provided beta values (Table S5) that can be used to truncate edges at 

any specified cutoff to yield smaller networks composed of high-confidence connections. 

We anticipate further refinements to our network rendered possible through the use of the 

tools we have included as companion applications to this manuscript (i.e., network 

visualization and exploration via Gephi and our Jupyter widget; see STAR Methods) and 

through subsequent experimental validation. The final gene regulatory network reported here 

(75,000 edges) exhibited a high level of precision-recall against TFs targeting known ISGs 

and correctly predicted prominent roles for IRF, STAT, and NF-κB family members in the 
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IFN response. We recovered 90 of 97 core mammalian ISGs as targets of IRFs; the 

remaining 7 core ISGs were predicted to be downstream of STAT and AP-1 family TFs 

(Table S5). Of the 22 IFN species measured by RNA-seq, we found IFNL1 to be upregulated 

more than any type I IFN, including IFNB1, during stimulation with LPS, poly(I:C), or 

HIV-1. We know IFN signaling can provide both beneficial and detrimental effects during 

progression to AIDS (Sandler et al., 2014); the contribution of type I versus type III IFN in 

an in vivo response to HIV remains to be determined.

Among several TFs predicted to be upstream of IFN genes in our network, we found that 

PRDM1 (also known as positive regulatory domain-I, PR/SET domain-1, and BLIMP1) is 

an essential positive regulator of innate immune activation in response to HIV-1 infection in 

MDDCs. For almost 30 years, PRDM1 has been known to bind IFN promoter sequences 

(Keller and Maniatis, 1991). Since then, reports have suggested that PRDM1 is important for 

differentiation of plasma cells, is a risk factor for autoimmune disease, and can act to either 

positively or negatively regulate cell-specific cytokine production (Bönelt et al., 2019; Kim 

et al., 2013; Ko et al., 2018; Nutt et al., 2007). PRDM1 is known to be rapidly induced by 

aryl hydrocarbon receptor (AHR) ligands, and its expression is required for AHR-induced 

differentiation of MDDCs (Goudot et al., 2017). Here, we revealed that PRDM1 promotes 

innate immune activation during HIV infection, in accordance with its high hypergeometric 

enrichment and cluster association with key IRFs in the network. In our system, expression 

levels of PRDM1 are not dramatically affected by innate stimulation, but nonetheless, it 

plays an important role in regulating the IFN response during HIV infection. Further 

exploration of our network could help uncover whether factors associated with PRDM1 

determine how PRDM1 operates to promote or inhibit IFN production in a cell-specific 

manner.

By analyzing RNA-seq data from sorted cell populations, we determined that induction of a 

robust ISG signature is insufficient for MDDC maturation, suggesting that factors in 

addition to PRDM1, IRF, and STAT family TF members influence the transition from 

immature to mature MDDCs (Figure 6). In support of this notion, we demonstrated that 

RARA acts as a negative regulator of this notion, we demonstrated that RARA acts as a 

negative regulator of MDDC maturation at basal state (Figures 7 and S7). Based on our 

network analysis predicting that RARA and NF-κB activities govern the transition from 

immature to mature MDDC, together with our data indicating that RARA modulates innate 

immune responses, we propose a model in which, at basal state, RXR/RARA heterodimers 

bind to RAREs and inhibit MDDC maturation driven by NF-κB family members (Figure 

S7I). Perturbation of RARA expression, either by shRNA or by unknown factors during the 

innate response, relieves this inhibition and permits MDDC maturation (Figure S7J). 

Binding of ligands/retinoids to RARA results in the exchange of bound nuclear corepressors 

with nuclear coactivators that will also permit MDDC maturation. Thus, RARA knockdown 

and administration of RARA agonists can achieve a similar biological end, albeit through 

different means (Figure S7K). In agreement with this model, using an RARA antagonist to 

block the release of nuclear corepressors inhibits MDDC maturation in response to HIV 

infection (Figure S7L). These results reinforce the reported involvement of retinoids in DC 

maturation (Geissmann et al., 2003; Szatmari and Nagy, 2008). Given that retinoic acid is 

known to activate mitogen-activated protein kinase (MAPK) phosphorylation and abrogate 
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tolerance in a stressed intestinal environment (DePaolo et al., 2011), it is not unreasonable to 

envision that RARA activation might influence derepression of inflammatory gene 

expression during HIV infection.

Our model thus suggests that RARA function could provide another layer of control to 

govern DC maturation through sensing changes in metabolism. It is known that DCs derived 

from monocytes in vitro resemble inflammatory DCs in vivo, with the derivation process 

requiring NCOR2, an established regulator of RAR/RXR signaling (Cunningham and 

Duester, 2015; Sander et al., 2017). In a similar vein, differentiation of DCs in vitro and in 
vivo is known to depend on fatty acid synthesis (Rehman et al., 2013). In addition, in 

plasmacytoid DCs, lipid metabolism, RXR, and PPAR-related pathways can modulate type I 

IFN responses, suggesting that environmental cues such as retinoids help shape immune 

responses (Wu et al., 2016). It is tempting to draw parallels with how changes in fatty acid 

oxidation and cholesterol biosynthesis influence innate responses and determine cell fate 

(tolerogenic versus immunogenic DC) (Maldonado and von Andrian, 2010; York et al., 

2015). Retinoic acid is an established modulator of DC differentiation and intestinal immune 

cell trafficking (Czarnewski et al., 2017), and we speculate that metabolism and RAR/RXR 

signaling in gut-associated tissues can affect innate responses during HIV infection.

In addition to profiling how human MDDCs respond to HIV, we profiled responses to a 

battery of classic innate immune stimuli, including LPS, poly(I:C), cGAMP, R848, and 

recombinant IFN. The transcriptomic responses to TLR stimulation we observed in human 

MDDCs resembles what has been reported for mouse bone marrow-derived DCs (Amit et 

al., 2009; Chevrier et al., 2011). This work represents a source of information that one can 

explore to compare similarities and differences among transcriptomic pathways bridging 

innate immune detection and production of inflammatory cytokines. Much of the 

transcriptomic activity observed for HIV infection in our network overlaps with that in 

response to LPS and poly(I:C) exposure; however, we found that HIV drives unique changes 

in fatty acid oxidation pathways (Johnson et al., 2018). These findings support the existence 

of an interplay among HIV infection, lipid metabolism, and retinoids that control IFN 

production and DC maturation, which will require further investigation.

In addition, HIV-1 infection drives transient changes in chromatin accessibility that likely 

precede or perhaps coincide with the induction and resolution phases of the innate response. 

Interestingly, we observed global changes in chromatin accessibility that were not always 

associated with changes in host gene expression. We speculate that this could either reflect 

the nature of the innate response or correspond with events in the virus life cycle, such as 

opening of gene-dense regions known to be hotspots for virus integration (Table S3) (Wang 

et al., 2007).

Collective analyses of these data will help to further decipher the mechanisms of innate 

immune regulation that span initiation, feedforward amplification, and resolution of aberrant 

hyperactivation. Understanding the transcriptional networks that underpin IFN production 

and innate immune activation in MDDCs could also shed light on regulatory mechanisms in 

primary DCs. We know that several aspects of HIV infection and innate immune responses 

are conserved between MDDCs and select primary DC subsets (e.g., SAMHD1-mediated 
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restriction of reverse transcription, the enhancement of virus infection and innate sensing by 

Vpx, and the requirement for cGAS and NONO in HIV-driven IFN responses are all shared 

between MDDCs and CD1c+ cDC2s) (Lahaye et al., 2018; Silvin et al., 2017). However, 

caution should be exercised when extrapolating from our network to primary DCs. 

Monocyte-derived cells are not always appropriate models of primary DC behavior (Sander 

et al., 2017), and considering the recent identification of numerous specialized DC subtypes 

(Alcántara-Hernández et al., 2017; Villani et al., 2017), perhaps this is not too unexpected, 

because each DC subtype has a unique lineage ontogeny and largely distinct functionality 

(Eisenbarth, 2019).

Nevertheless, our network may inform future antiviral strategies, because the robust 

activation of T cells, which is facilitated by mature, activated DCs, is crucial for 

immunological control of HIV (Walker and McMichael, 2012). We anticipate that the 

quality of network inference will further improve as motif databases are refined and large-

scale genetic perturbations become tractable in primary human DCs. The network presented 

herein highlights how the innate response depends on the coordinated action of multiple TFs 

and serves as a resource for further exploration of pathways that govern HIV replication and 

innate immunity.

STAR★METHODS

LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Mickaël M. Ménager (mickael.menager@institutimagine.org). 

All unique/stable reagents generated in this study are available from the Lead Contact with a 

completed Materials Transfer Agreement.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

To generate MDDCs, we acquired leukocytes from de-identified normal human donors from 

a variety of sources (Bloodworks Northwest, Renton, WA, USA; New York Blood Center, 

New York, NY, USA; ARUP Blood Services, Sandy, UT, USA; and from venipunctures 

(approved by the Institut National de la Santé et de la Recherche Médicale ethics committee, 

Paris, France). The authors cannot report on the sex, gender, or age of the donors since the 

samples were de-identified and donors remain anonymous. Peripheral blood mononuclear 

cells (PBMCs) were layered over Ficoll-Paque Plus (GE Healthcare). CD14+ monocytes 

from PBMC buffy coats were isolated with anti-human CD14 magnetic beads (Miltenyi) and 

cultured in RPMI (Thermo Fisher) containing 10% heat-inactivated fetal bovine serum 

(FBS, Peak Serum, Inc), 50 U/ml penicillin, 50 μg/ml streptomycin (P/S, Thermo Fisher), 

10mM HEPES (Sigma), 2-Mercaptoethanol (Thermo Fisher), and 2 mM L-glutamine 

(Thermo Fisher), in the presence of recombinant human GM-CSF at 10 ng/ml and IL-4 at 50 

ng/ml (Peprotech). Multiple lots of FBS were tested to identify batches leading to minimal 

baseline induction of CD86 over the course of MDDC differentiation. Fresh media and 

cytokines were added to cells (40% by volume) one day after CD14+ cell isolation. On day 

4, cells were collected, resuspended in fresh media with cytokines used for infection or 

stimulation. Immature MDDCs on day 6 were routinely assessed by flow cytometry surface 
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marker staining to be CD11c+ (Thermo Fisher Cat# 17-0116-42, RRID:AB_1659668), 

HLA-DR+ (BioLegend Cat# 307607, RRID:AB_314685), DC-SIGN+ (R and D Systems 

Cat# FAB161P, RRID:AB_357064), and CD86- (eBioscience Cat# 15-0869-42 

RRID:AB_11042003). MDDC experiments were performed using biological replicates from 

blood-derived cells from multiple individual donors as indicated in the figure legends.

293FT female cells (Life Technologies Cat# R70007, RRID:CVCL_6911) were cultured in 

Dulbecco’s modified Eagle’s medium (DMEM, Thermo Fisher) that was supplemented with 

10% FBS, P/S, 10mM HEPES, and supplemented with 0.1 mM MEM non-essential amino 

acids (Thermo Fisher), 6 mM glutamine, and 1 mM sodium pyruvate (Thermo Fisher).

HL116 male cells were cultured in DMEM supplemented with 10% FBS, P/S, 10mM 

HEPES, 0.1 mM MEM non-essential amino acids, 6 mM glutamine, 1 mM sodium pyruvate, 

and HAT supplement (Thermo Fisher; hypoxanthine (5 mM), aminopterin (20 μM) and 

thymidine (0.8 mM)) diluted 1:50 as recommended.

All cell lines were thawed from early passages, kept in culture no longer than 4 weeks, and 

were regularly tested for mycoplasma contamination (every 6 months). All cells were 

maintained at 37°C and 5% CO2.

METHOD DETAILS

Plasmids—HIV-1-GFP has been used previously to study immune responses in human 

DCs (Manel et al., 2010) and is env- vpu- vpr- vif- nef-, with the GFP open reading frame in 

place of nef. We generated virus like particles packaging Vpx from the plasmid pSIV3+ 

(based on SIVmac251, GenBank acc. no. M19499), which has been described elsewhere 

(Mangeot et al., 2000). Target sequences for shRNA vectors are listed in Table S7. All 

lentiviral constructs were transformed into Stbl3 bacteria (ThermoFisher) for propagation of 

plasmid DNA. All plasmids were prepped and purified using Nucleobond Xtra Maxi Kit 

(Takara) or similar maxi prep reagents.

Virus and virus-like particle production—To produce recombinant lentiviral vectors, 

reporter viruses, and Vpx-containing virus-like particles, we transfected plasmids into 

293FT cells as previously described (Johnson et al., 2018). Briefly, the day before 

transfection, cells were seeded onto poly-L-lysine (MP Biomedicals) -coated 15 cm plates to 

be 70%–80% at the time of transfection. Cells were transfected with a total of 22.5 μg DNA 

using PEImax (Polysciences, Inc.) at a ratio of 1:2 (DNA:PEI). For lentiviral vectors, 

plasmid amounts were 3.4 μg CMV-VSV-G (Addgene plasmid #8454), 9 μg psPax2 

(Addgene plasmid #12260), and 10.1 μg transgene (LKO.1 controls or shRNA construct). 

For HIV reporter viruses plasmid amounts were 3.4 μg CMV-VSV-G and 19.1 μg HIV 

cassette. Virus-like particles containing Vpx were produced using 3.4 μg CMV-VSV-G and 

19.1 μg pSIV3+ (Mangeot et al., 2000). The morning after transfection, cells were washed 

once and replenished with 30 mL of fresh media. Supernatants were harvested 32-36 h after 

feeding 293FTs and then passed through 0.45 μm syringe filters (Corning) to remove debris. 

Supernatants of reporter virus and lentiviral vectors were either used fresh for transduction 

or concentrated by ultracentrifugation by spinning in conical tubes (Beckman) at 25 K rpm 

for 2 h at 4°C in an SW32 swing-bucket rotor (Beckman). Lentiviral pellets were thoroughly 
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resuspended (~30-fold concentrated) in MDDC media without cytokines. Before transducing 

cells, insoluble material was clarified from lentivirus stocks by centrifuging at 300 rcf. for 3 

min at 4C. Viral stocks were frozen at −80°C and used as indicated below.

Perturbation of DCs—To genetically modify MDDCs, we isolated CD14+ monocytes 

from buffy coats as described above and transduced them with lentiviral vectors in the 

presence of virus-like particles packaging Vpx similar to previously described protocols 

(Johnson et al., 2018; Manel et al., 2010). Briefly, monocytes were resuspended in complete 

MDDC media containing GM-CSF (10 ng/ml), IL-4 (50 ng/ml), polybrene (Sigma, 1 μg/

ml), and supernatants containing Vpx particles (1 mL supernatant for 1 × 10^7 cells) and 

then were plated in either 10 cm dishes (6 × 10^6 cells in 9 mL media) or 96 well plates 

(160,000 cells in 150 μL media). Roughly 30 min after plating, clarified concentrated 

lentiviral stocks were added to transduce cells. We routinely observed that 95%–99% of 

cells could be transduced using 150 μL concentrated vector in 10 cm plates or 5 μL 

concentrated vector per well in 96 well plates.

Infections and stimulations—MDDCs were infected or stimulated with innate agonists 

between day 4 and day 6 after differentiation. For infections with HIV-1 and related 

lentiviruses, except where noted otherwise, Vpx+ virus-like particles were used to overcome 

virus restriction (1 mL supernatant for 1 × 10^7 cells) (Johnson et al., 2018; Manel et al., 

2010). MDDCs were counted on day 4 and resuspended at 800,000 cell per ml in fresh 

medium with GM-CSF, IL-4, and polybrene (1 μg/ml) and then reseeded into appropriate 

culture vessels. For most assays, MDDCs were infected at a density of 800,000 cells per ml 

by diluting virus in MDDC media (without cytokines or polybrene) to a final volume 

normalized to controls. Innate and inflammatory stimuli were used at the indicated 

concentrations: poly(I:C) (InvivoGen, 10 μg/ml); LPS (List Biological Laboratories, INC, 1 

ng/ml).

Flow cytometry—Infected or stimulated MDDCs were washed with phosphate buffered 

saline (PBS, Corning) and then exposed to LIVE/DEAD violet (ThermoFisher) in PBS for 

15 min at 4°C in the dark. Cells were either simultaneously stained for surface markers or 

first washed with PBS and then stained in FACS buffer containing 1% Bovine Serum 

Albumin (BSA, Roche) and 1mM EDTA in PBS for 15-30 min in the dark at 4°C. Cells 

were then washed with PBS and fixed with 0.5% paraformaldehyde (Electron Microscopy 

Sciences) diluted in PBS. Cells were either sorted on a FACSAria II or data was acquired on 

an LSR II flow cytometer (BD Biosciences). Data were then analyzed using FlowJo software 

(FlowJo LLC).

RNA-seq—MDDCs from multiple donors were infected or stimulated as indicated above, 

stained with anti-human CD86 and a live-dead viability dye and then sorted into serum on a 

FACSAria II (BD Biosciences). Cells were lysed in TRIzol reagent (Thermo Fisher), RNA 

was isolated according the manufacturer’s instructions, and then samples were submitted to 

HudsonAlpha Institute for Biotechnology (https://hudsonalpha.org/) for library preparation 

and RNA-sequencing.
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50bp-length single-end sequences were aligned to the human genome (hg38) using STAR 

version 2.4.2a. Samtools 0.1.19 was used to filter alignments to a MAPQ score threshold of 

30. Counts per gene were called using featureCounts version 1.4.6 and gencode v24 genome 

annotation. Samtools 0.1.19 was used to filter alignments to a MAPQ score threshold of 30. 

We confirmed the presence of HIV-1 or HIV-2 sequences in infected samples yet these 

sequences were not taken into account during differential expression analysis. Differential 

expression analysis was performed separately for each RNA-seq experiment using DESeq2 

version 1.10.1 and R version 3.2.3, using time and treatment together as the design 

parameter. Genes were considered differentially expressed in a given comparison if the 

FDR-adjusted p value was below 0.1.

ATAC-seq—MDDCs from three unique donors were infected in the presence of Vpx to 

match infection conditions as performed for RNA-seq at 2, 8, 24, and 48 h after infection. 

Cells were stained for LIVE/DEAD violet and CD86 to assess activation status and sorted 

on a FACSAria II (BD Biosciences) according to the gating strategy established for RNA-

seq. 50,000 sorted MDDCs from each condition were immediately prepped for ATAC-seq 

(Buenrostro et al., 2013). Cells were pelleted by spinning at 500 g for 5 min at 4°C, 

resuspended in cold PBS, and then centrifuged again at 500 g for 5 min at 4°C. Cell pellets 

were lysed in cold lysis buffer (10 mM Tris-HCl, pH 7.4, 10 mM NaCl, 3 mM MgCl2 and 

0.1% IGEPAL CA-630) and immediately spun at 500 g for 10 min at 4°C. The nuclear pellet 

was used directly for the transposition reaction by resuspending in a reaction mix (20 μL 2 × 

TD buffer, 2 μL Tn5 transposase (Nextera DNA Library Prep Kit, Illumina) and 18 μL 

nuclease-free water). Transposition was performed at 37°C for 30 min and then samples 

were immediately processed using a MinElute kit (QIAGEN) to isolate DNA.

To generate ATAC-seq libraries for sequencing, DNA fragments from MinElute samples 

were amplified by PCR using NEBNext PCR master mix (New England Biolabs) and 

custom Nextera primers (Buenrostro et al., 2013) (Table S7) using the following conditions: 

72°C for 5 min; 98°C for 30 s; and then cycling at 98°C for 10 s, 63°C for 30 s and 72°C for 

1 min. To stop amplification before saturation in order to reduce bias, we monitored the PCR 

reaction using SYBR Green (Thermo Fisher) during qPCR. Samples were cycled a total of 

12-15 times. Libraries were sequenced on a NextSeq 500 (Illumina) using a 150 cycle high 

output kit. Unique sequence read pairs were aligned to the human genome (hg38) using 

bowtie2 (2.2.3), filtered based on mapping score (MAPQ > 30, Samtools (0.1.19)), and 

duplicates removed (Picard version 1.120). Only pairs that aligned uniquely and 

concordantly to non-mitochondrial human chromosomes were retained.

For establishing the network Prior, a merged ATAC-seq Sam file was generated by 

combining all ATAC-seq conditions. Peak calling was performed with Peakdeck version 1.1 

(parameters -bin 160, -STEP 25, -back 5000, -npBack 10000) using the start and end 

locations of the pairs to define fragment lengths, with a p value of 1e-4 as the cutoff, 

outputting 87,681 unique, non-overlapping, high-confidence peaks. Putative binding events 

were discovered by finding motif occurrences using HOCOMOCO version 10 (Kulakovskiy 

et al., 2013) as the motif database, with position weight matrices for 601 of 640 human TFs 

discovered using FIMO (Memesuite version 4.10.1) with a p value cutoff of 1e-4. When 

scored against our gold standards (see below) HOCOMOCO performed better than the 
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curated CisBP 2.0 motif database (Weirauch et al., 2014) composed of JASPAR (Mathelier 

et al., 2016), TRANSFAC (Matys et al., 2006), and other motif collections, possibly due to 

low redundancy in motif position weight matrices. Bedtools (version 2.25) was used to 

generate a Markov model of order 1 from all peak intervals to use as a background peak file 

(parameter “–bgfile”). For each TF, the target set was further refined by filtering out binding 

sites below the top quartile, ranked by the FIMO p value. TF binding sites were linked to a 

target gene if the peak fell within a 1kb window of the gene body, creating a Prior matrix 

with 601 columns and 24909 rows (Table S4). Entries at row “I” column “J” were set to 1 to 

denote a putative regulatory event between TF “i” and target gene “j.” All other entries were 

set to 0, which penalizes, but does not completely prevent a regulatory edge connecting “i” 

and “j.”

Expression Normalization—Expression data was normalized using DESeq2 to remove 

the dependence of the variance on the mean. We explored linear models for batch correction 

such as ComBat and limma, but these models were ruled out as they superimpose each 

experiment’s center of mass - essentially placing different experiments on top of one another 

in PCA space—experiments which should have unique, nonoverlapping centers of mass (due 

to having different ratios of stimulus conditions as compared to mock conditions). Thus, we 

used DESeq2 rlog- transformed expression data to normalized gene expression values 

relative to mock conditions for each time point and for each donor by doing a vector 

subtraction. In our time series RNA-seq experiment, 3 samples were identified as outliers in 

gene expression biclusters from DESeq2 analysis (noted in Metadata, Table S1), consistently 

clustering away from the rest of the 93 samples across nearly all condition contrasts in PCA 

plots. Since network inference is sensitive to outliers due to a z-scoring step, and because 

follow-up RNA-seq experiments under the same conditions supported the idea that these 

samples were outliers, these 3 samples were removed from the network inference procedure.

Estimation of TF activities—The network inference methodology used here builds 

directly upon our previous platform, the Inferelator, in which the log gene expression is 

modeled as the linear combination of TF predictor variables (Bonneau et al., 2006). Earlier 

versions of the inferelator model used the TF expression as the predictor, but current 

methods use a latent variable, the estimated TF activity, as the predictor (Greenfield et al., 

2013). The activity of a TF is inferred from the changes of the TF’s putative target genes and 

has been shown to be able to uncover more known relationships between TFs and target 

genes than using TF expression as the predictor (Arrieta-Ortiz et al., 2015).

In the Inferelator, we define the equation for inferring a network as X = BA. “X” is the gene 

expression matrix, “A” is the transcription factor activity matrix, and “B” is the betas matrix, 

which can also be thought as the connectivity network. If beta is found to be nonzero, then 

we have inferred an association between the gene and the TF. This linear equation appears 

straightforward, but it cannot be immediately solved because there are two unknowns, both 

“B,” the network beta value, and “A,” the TF activity. We therefore used a two-step process. 

First, we solved for “A,” using the Prior network, with the equation X = PA. In this equation, 

the Prior network “P” is known. However, because the confidence in any one of its 

chromatin accessibility derived entries is low, we randomly left out half of the entries of P, 

Johnson et al. Page 18

Cell Rep. Author manuscript; available in PMC 2020 February 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and solved the linear equation in 400 iterations, deriving 400 estimates for the activities, 

“A.” We solved the inverse problem X = PA by multiplying “X” by the pseudoinverse of the 

Prior matrix, “P.” The second step of the process is to solve the linear regression problem X 

= BA, with “B” as the unknown, which was done as described below using stability 

selection with elastic net regularization.

Network inference with subsampled Priors—Since the Prior matrix was built with 

thresholding at fixed p values, both at the level of peak finding and the level of motif 

binding, any single entry in the Prior matrix cannot be considered accurate. In order to 

improve computational reproducibility, we use a subsampling strategy, which was recently 

pioneered in a different context to increase prediction accuracy when assessing whether 

pathway perturbations hold true across different animal species (Hafemeister et al., 2015). 

This subsampling strategy decreases the density of the Prior matrix, which is a desideratum 

when the number of targets per TF in the Prior is more than 2000 on average. Therefore, for 

each of the 400 computational estimations of the transcription factor activity, we sampled 

50% of the nonzero entries in the Prior without replacement. This enabled TFs with similar 

motif preferences and subtle differences in target sets to be teased apart over the course of 

many Inferelator runs. For example, in a single Inferelator run, a number of different IRF 

family members could be assigned at random to have undue emphasis on IFN and ISG 

expression, since many IRFs overlap in motif preference. In some extreme single run cases, 

due to inherent randomness in the inference procedure, no IRFs were assigned to IFNB1 or 

IFNL1. In contrast, after multiple runs where estimated TF activities were subsampled, the 

ATAC-seq-based network correctly predicted a strong influence of IRF3 on IFNB1, IFNL1, 

and core ISGs target sets.

Ensemble Model and AUPR curves—The 400 individual models that were generated 

by the inferelator were combined by ranking each interaction by summed beta values to 

generate an ensemble network (EN-ATAC x400). While this ensemble model predicted over 

2 million interactions, we have provided a table to accompany this manuscript that lists the 

top 500,000 edges, selected based on absolute value of the beta sign (Table S5). Networks of 

this size cannot be reasonably visualized or efficiently analyzed by current computational 

resources, so for this work we chose to display the top 75,000 edges in the ensemble 

network. At this choice of a cutoff in ranked interactions, there are 542 TFs assigned as 

regulators for 21862 targets. This ranking was used to compute an area under the precision-

recall curve (AUPR) by validating the predicted interactions against “gold standard” TF-to-

gene-target connections that have been reported in the literature.

Proportional Venn Diagrams—Venn diagrams were generated using BioVenn (Hulsen 

et al., 2008). IRFs 1, 3, 5, 7, 8, and 9 and the NF-κB family members RELA, RELB, REL, 

NFKB1, and NFKB2 are known to be important for primary and secondary IFN responses 

and influence ISG expression, so we determined whether the targets of these IRFs and the 

NF-κB family members (Figure S3E), or specific targets of IRF3 that were predicted by the 

EN-ATAC x400 network (75k edges) or the BBSR network (~125k edges) (Figure S3F) 

overlapped with a set of “core” mammalian ISGs (Shaw et al., 2017).
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Hypergeometric tests for TF enrichment—With the network model established, we 

can then ask whether any given Transcription Factor is associated with differential gene 

expression through its network targets. For every contrast, we used the hypergeometric test 

for enrichment to query whether the set of differentially expressed genes for a given contrast 

was enriched for the targets of any of the transcription factors. We used a Bonferroni 

correction, dividing by the number of transcription factors, when estimating these p values. 

For finding a global ranking of enrichment across multiple differential gene expression 

contrasts, the weighted z-method for combining probabilities was used with equal weights 

following a previously defined method (Whitlock, 2005).

Modularity and similarity K-means clustering—In order to interpret the results of the 

network inference, which yielded a network with 75,000 edges, we asked whether there 

existed large-scale clusters in the networks. To this end we used the python-louvain 

clustering module, which implements the modularity clustering algorithm, maximizing an 

objective function that sums edges within communities while subtracting edges between 

communities (Blondel et al., 2008). Due to the stochasticity of this algorithm, where the 

modularity score and even the number of clusters varies with each run, we repeated the run 

until convergence, which occurred on the order of a thousand runs. This computational 

approach allowed us not only to create clusters for large-scale communities, but also build a 

dendogram of pairwise similarities between every gene in the network, where the pairwise 

entry corresponds to the number of times in the thousand runs that the two genes were 

clustered together. This dendogram allowed us to identify “unclustered” nodes in the 

network: genes that do not consistently cluster with any of the main groups. The dendogram 

was split into 500, which resulted in 10 major clusters, defined as a cluster with more than 

1% of the total gene set. These clusters were then labeled with identifiers from Enrichr 

pathway analysis. For complete pathway analysis results for the top 10 clusters, please see:

Cluster 1 https://amp.pharm.mssm.edu/Enrichr/enrich?

dataset=63e7351cf48039d06d31d38ef57d6820

Cluster 2 https://amp.pharm.mssm.edu/Enrichr/enrich?

dataset=f1f6b5d0849162056eceda2ad94ccf2c

Cluster 3 https://amp.pharm.mssm.edu/Enrichr/enrich?

dataset=cf8ef3f0a7b3dcc1fe955143dfd64c57

Cluster 4 https://amp.pharm.mssm.edu/Enrichr/enrich?

dataset=6e7b1a6ad9531df258d054af8a0fa52b

Cluster 5 https://amp.pharm.mssm.edu/Enrichr/enrich?

dataset=d145ebd559a7567ab49efc93d82f178c

Cluster 6 https://amp.pharm.mssm.edu/Enrichr/enrich?

dataset=0667b6ade824cdb73caba77d360ce8cb

Cluster 7 https://amp.pharm.mssm.edu/Enrichr/enrich?

dataset=71b1b78f3d963438cb893c008c5bdd46
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Cluster 8 https://amp.pharm.mssm.edu/Enrichr/enrich?

dataset=59396b1d18359cc4aa6fecffc4044fd6

Cluster 9 https://amp.pharm.mssm.edu/Enrichr/enrich?

dataset=e41b8f52efcf611c64467d84dfdf207c

Cluster 10 https://amp.pharm.mssm.edu/Enrichr/enrich?

dataset=6181b245abf99ba27c0b8c822688b424

Network Visualization—Network visualization software Gephi Version 0.9.1 (Bastian et 

al., 2009) was used to visualize the network using the Force Atlas2 layout algorithm 

(Jacomy et al., 2014). For visualizing smaller network components with louvain clustering, 

we used a jp_gene_viz visualization tool developed at the Simons Foundation. This tool is 

publicly accessible online using Binder as a resource to complement this publication (https://

mybinder.org/v2/gh/flatironinstitute/dc_network/master).

Instructions for Visualizing the Gephi-formatted MDDC HIV-Response Network
—Download the Gephi open graph visualization platform from the following web address: 

https://gephi.org/. Download the EN-ATAC x400 final network from the following link: 

https://www.dropbox.com/s/4pzwdnn340ary49/EN_ATAC_400_network_final.gephi?dl=0. 

Once the Gephi software has been installed, start the program and open the downloaded 

EN_ATAC network file. The graph window will show the top 75,000 edges in the ensemble 

network, with clusters color-coded as indicated in the manuscript. Zoom in or out by 

scrolling up or down while the cursor is positioned in the graph window. The graph can be 

re-centered by clicking and holding the control button and then moving the cursor. To view a 

specific gene and its connections predicted in the top 75k edges, in the “Filters” window, 

click on the folder, “Topology,” and then double-click on “Ego Network.” In the bottom box 

that appears, labeled “Node ID,” enter your gene of interest, then click “OK” and click 

“Filter.” Differentially expressed genes for a given contrast can be highlighted by clicking 

the folder, “Partition,” in the same “Filters” window. Double-click on the contrast of interest 

and then in the bottom Partition Settings box, select the box for 1.0 to show those genes that 

are differentially expressed under the given condition. A number of different layouts and 

exploratory tools are also available. For more information, see https://gephi.org/users/.

Instructions for Launching the Jupyter Subnetworks Widget—Navigate to https://

mybinder.org/v2/gh/flatironinstitute/dc_network/master and click “launch binder.” Once the 

binder has loaded, click on “notebooks.” First, unlock functionality of the notebooks by 

selecting “Decrypt data.ipynb.” Click the “Run” button on the browser tab that opens until 

the cell, “encrypt_files.decrypt_widget()” is reached. Enter “nick” into the key box and then 

click “decrypt.” When the decrypt script has finished running, navigate back to the Home 

tab to select the binder file “Visualize network.ipynb” or a network browswer with appended 

heatmaps, “Network and Heatmap.ipynb.” These binder files will open additional browser 

tabs. Click the “Run” button to run each step of the widget down to the cell that contains 

“L.gene_click().” The subnetwork browser will load after several seconds, which can then 

be explored by entering a gene or multiple genes into the “match” box and selecting a 

variety of layouts and regulatory connections.
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Gene Set Enrichment Analysis (GSEA)—GSEA was performed by comparing each 

condition in the time series RNA-seq data to the corresponding mock time point. 36883 gene 

features for each condition were ranked by the signal to noise metric of GSEA and the 

analysis was performed using the standard weighted enrichment statistic against 3815 

human gene sets contained in the Molecular Signatures Database that included all (H) 

Hallmark gene sets, (C2) curated gene sets, and (C3) motif gene sets. In a first pass analysis, 

the normalized enrichment score (NES) was calculated using 500 gene set permutations and 

once relevant gene sets were identified a more stringent statistical analysis was performed 

using 1000 phenotype permutations. Full GSEA results can be accessed through the 

following link: https://www.dropbox.com/sh/2u4psikt2tyz4r0/

AAB4Re3YKtOA5lqPEEAwfR7Aa?dl=0

Immunoblotting—1 million cells were lysed in 100 μL of RIPA buffer (50mM Tris HCl, 

150mM NaCl, 0.1% SDS, 0.5% DOC, 1% NP-40, Protease inhibitor (Roche; 1187358001)). 

Lysis was performed on ice for 30 minutes. Lysates were cleared by centrifugation at 8000 g 

for 8 minutes at 4°C, and 20 μl of Laemmli 6X (12% SDS, 30% Glycerol, 0.375M Tris-HCl 

pH6.8, 30% 2-mercaptoehtanol, 1% bromophenol blue) was added and samples were boiled 

at 95°C for 15min. Lysates were resolved on Criterion or 4%–20% Biorad precast SDS-

PAGE gels and transferred on PVDF membrane. Membranes were saturated and proteins 

were blotted with antibodies (listed in Key Resources Table) in 5% non-fat dry milk, PBS, 

0.1% Tween buffer. ECL signal was recorded on the ChemiDoc-XRS or ChemiDoc Touch 

Biorad Imager. Data was analyzed and quantified with the Image Lab software (Biorad).

Quantitative PCR—50,000 to 200,000 MDDCs were lysed in TRIzol reagent (Thermo 

Fisher) and then RNA was isolated following the manufacturer’s instructions with minor 

modifications. In brief, we performed two sequential chloroform extractions and added 

Glycoblue (Thermo Fisher) as a carrier prior to precipitation with isopropanol. RNA pellets 

were washed in 75% ethanol and resuspended in 20 μL of DNase- and RNase-free water. 

500 μg of RNA was converted into cDNA using Superscript III (ThermoFisher). Quantitative 

PCR reactions were carried out using TaqMan primer probes (ABI) and TaqMan Fast 

Universal PCR Master Mix (ThermoFisher) in either a Lightcycler (Roche) or a CFX96 

thermocycler (BioRad) in a volume of 10 μL according to the following cycling conditions: 

50°C for 2 min, 95°C for 2 min, then 55 cycles each of 95°C for 3 s, to 60°C for 30 s, 

followed by 95°C for 5 s. A melting curve analysis was then performed going from 65°C to 

95°C in 0.5°C intervals every 5 s. Data were plotted as expression relative to GAPDH x 

1000.

IFNL1 Protein Quantification—IFNL1 protein concentrations were measured on 

supernatants from infected or treated MDDCs using a LEGENDplex Human Anti-Virus 

Response assay (BioLegend) according to the manufacturer’s protocol. Data were acquired 

on a BD FACSVerse (BD) and analyzed with LEGENDplex Software (BioLegend).

Bioassays for type I IFN—To quantify IFN activity from infected or stimulated cells we 

assayed supernatants with HL116 reported cells that contain firefly luciferase gene under 

control of the IFN-inducible 6-16 promoter (Uzé et al., 1994). Supernatants from treated or 
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untreated MDDCs were transferred to 20,000 HL116 cells in 96 well plates. After 7 h, 

HL116 cells were lysed in passive lysis buffer and subsequently scored for luciferase activity 

using a luciferin-based method (Promega). Relative light units were converted to units per 

ml of IFN using a standard curve that was generated from serial dilutions of recombinant 

human IFNa2a, with HL116 cells responding in a linear range between 2 and 200 U/ml of 

IFN.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analyses incorporated into the computational implementation of network 

inference were performed as stated above in the STAR Methods section. Otherwise, 

statistical tests were performed as indicated in the figure legends or using Prism 6.0 

(GraphPad) to calculate either a two-way ANOVA with Sidak’s multiple comparisons test or 

a two-tailed t test using paired samples. The number of unique donors for MDDC 

experiments is also listed in the figure legends, representing the number of biological 

replicates performed for a given experiment. Data reflects pooled data from multiple 

experiments where indicated.

DATA AND CODE AVAILABILITY

The RNA-seq data have been deposited in the Gene Expression Omnibus (GEO) database 

under ID code GEO: GSE125817. The ATAC-seq data have been deposited under ID code 

GEO: GSE125918. Both can be accessed from the series code GEO: GSE125919.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Network inference reveals a transcriptional map of the innate immune 

response to HIV

• Integrating cell-specific chromatin accessibility data improves network 

inference

• Immune responses coincide with network enrichment of IRF, STAT, and NF-

κB factors

• RARA and PRDM1 are validated as additional regulators of the innate 

response to HIV
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Figure 1. HIV-1 Infection Triggers a Type I IFN Response in MDDCs
(A) Schematic of the human DC network project depicting derivation of MDDCs, time 

series stimulation with HIV-1-GFP (+Vpx), LKO-GFP (+Vpx), LPS, and poly(I:C), 

followed by network inference, network visualization, in silico quality control, and 

experimental validation.

(B) Heatmap of differentially expressed genes in MDDCs across time (2, 8, 24, and 48 h), 

selected with false discovery rate (FDR) < 0.1 and sorted by Louvain modularity cluster (see 

STAR Methods).

(C) GSEA plots for the hallmark IFN response in MDDCs for all described HIV-1-GFP time 

points compared with mock, indicating normalized enrichment score (NES) and FDR. 

Enrichment is considered significant with FDR < 0.25.

(D) Leading edge genes from GSEA for HIV-1-GFP infections at 24 h.

See also Figure S1 and Tables S1 and S2.
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Figure 2. Transient Changes in Chromatin Accessibility Correspond to Activation of the Innate 
Response during HIV Infection
(A) Illustration depicting ATAC-seq sample processing.

(B) Flow cytometry plots of MDDCs sorted (red boxes) for ATAC-seq after infection with 

HIV-1-GFP (+Vpx) at 2, 8, 24, and 48 h (MOI = 5). Plots show CD86 versus GFP 

expression and are representative data from 1 of 3 donors.

(C) Smooth scatter density plots of HIV-1-GFP-infected MDDCs from sorted populations as 

in (B), showing the genome-wide relationship between transcript levels (RNA-seq average 

log2 fold change) TSS chromatin accessibility (ATAC-seq average log2 fold change). Blue, 

density of points across the entire genome; red, hallmark IFN response genes as in Figure 

1C. The positions of IFNB1, IFNL1, and select ISGs are labeled for each condition.

(D) ATAC-seq gene-associated peak values shown as counts per million (CPM) reads for the 

indicated time points and conditions. Lines connect samples from independent donors. 

Statistics were calculated on log2-transformed data using a 2-way ANOVA with multiple 

comparisons. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.

See also Figure S2 and Table S3.
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Figure 3. Repeated Subsampling of Prior Information Improves Network Inference
(A) Pipeline for network inference. Prior information (TF accessibility) and gene expression 

time series data were used as inputs for the Inferelator. Output networks underwent 

performance evaluation and quality control as indicated.

(B) Prior matrix denotes a possible connection between TF and gene X if that TF’s binding 

motif is found in accessible chromatin upstream of (−1 kb) or within gene X.

(C) Schematic illustrating how TF activity is estimated by summing predicted target 

expression over time (red, increase; blue, decrease).

(D) TF and gene target connections in the Prior network are pruned using an EN regression 

to yield the final inferred network.

(E and F) Precision-recall plots (E) and area under precision-recall (AUPR) curves (F) for 

the indicated networks scored against the TRRUST database (see STAR Methods).

(G and H) Precision-recall plots (G) and AUPR curves (H) for the indicated networks scored 

against known ISGs (Schoggins et al., 2011).

See also Figure S3 and Table S4.
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Figure 4. Modularity Clustering of the Network Defines TF and Gene Target Clusters Predicted 
to Control Distinct Biological Functions
(A) EN-ATAC network topology in MDDCs visualized through Gephi software. Clusters 

were named according to pathway and motif enrichment (see STAR Methods). Arrows 

indicate transcriptional regulatory events between TFs and targets and do not specify 

positive or negative effects on target expression. Node size denotes the relative number of 

edges. Clusters are color coded based on Louvain clustering and ranked based on their 

decreasing size (from 1 to 10) (based on the percentage of genes in each cluster versus total 

number of genes).

(B–E) Enrichment of pathways from Reactome (B), Genome Browser TF position weight 

matrices (PWMs) (C), TF perturbations (D), and JASPAR and TRANSFAC PWMs (E) for 

clusters 2, 5, and 8 (color coded as in A). Ranking is by Enrichr combined score (−log (p) × 

Z score).

See also Figure S4 and Tables S5 and S6.
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Figure 5. Subnetwork Exploration Uncovers Positive and Negative Regulators of IFN and ISGs
(A) Jupyter widget subnetwork view (see STAR Methods) of predicted upstream regulators 

of IFNB1 and IFNL1. Arrows indicate transcriptional regulatory events between TFs and 

targets and do not specify positive or negative effects on target expression. Node size 

denotes the relative number of edges. Nodes are color coded by network cluster (see Figure 

4).

(B) Heatmap of gene expression for the indicated TFs during treatment with LPS, poly(I:C), 

HIV-1-GFP (+Vpx), and LKO-GFP (+Vpx) at 2, 8, 24, and 48 h.

(C) Immunoblots of MDDC lysates after treatment with the indicated shRNAs.

(D) Flow cytometry of CD86 versus GFP expression in shRNA-modified MDDCs 48 h after 

mock treatment (+Vpx) or infection with HIV-1-GFP (+Vpx).

(E–G) Plots showing %GFP+ (E), %CD86+ (F), and %SIGLEC1+ (G) from MDDCs treated 

as in (D).

(H–I) ELISA of IFNL1 (H) and IP-10 (I) expression in supernatants from shRNA-modified 

MDDCs that were mock treated or infected with HIV-1-GFP for 48 h.

For (E)–(I), plots represent pooled data from 5–8 donors. **p < 0.01, ***p < 0.001, ****p < 

0.0001.

See also Figure S5.
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Figure 6. Mature MDDCs Cannot Be Identified Based on an IFN Signature Alone
(A) GSEA plots comparing gene expression data for CD86-high (mature) versus CD86-low 

(immature) MDDCs. Enrichment is considered significant with FDR < 0.25.

(B) Smooth scatter density plots of transcript levels (RNA-seq) versus TSS chromatin 

accessibility (ATAC-seq) in HIV-1-GFP-infected MDDCs for CD86-low and CD86-high 

populations. Blue density marks the entire genome. Genes in the DC maturation gene set 

(pink) and the hallmark IFN response gene set (orange) are highlighted in the top and 

bottom plots, respectively.

(C) log2 normalized gene expression plotted for the CD86-low population (y axis) and 

CD86-high population sorted at 48 h. DC maturation genes (pink) and hallmark IFN 

response genes (orange) are shown as in (B).

(D) Heatmap of hypergeometric scores for TF enrichment displaying HIV-1-GFP compared 

with mock at 2, 8, and 24 h (GFP−); 24 h (GFP+); 48 h (CD86-low); and 48 h (CD86-high). 

TFs were ranked in descending order according to the 24 h GFP+ condition. Heatmap is 

color coded according to the −log p value of TF enrichment.

Johnson et al. Page 35

Cell Rep. Author manuscript; available in PMC 2020 February 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(E) Differential gene expression contrast between CD86-high and CD86-low populations as 

visualized by Gephi software, highlighting edges in clusters 2 and 8. Ranking is by Enrichr 

combined score (−log (p) * Z score).

(F) Enrichment of differentially expressed genes separated by network cluster for the CD86-

high versus CD86-low contrast as in (E).

(G–I) Potential protein-protein interactions (G), Reactome pathway enrichment (H), and 

single gene perturbations (I) predicted from differentially expressed genes in the CD86-high 

versus CD86-low contrast.

(J) Network connections for RARA and STAT2 visualized by Gephi software, color coded 

by contrast, and superimposed onto a gray network backdrop.

See also Figure S6.
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Figure 7. RARA Is a Negative Regulator of MDDC Maturation
(A) Jupyter widget subnetwork view (see STAR Methods) showing edges between RARA, 

its predicted targets, STAT2, and the remaining top 30 TFs ranked by hypergeometric p 

value. Arrows point from TFs to targets but do not suggest positive or negative activity.

(B) STRING database connections for nodes shown in (A), including NCOR1 and NCOR2. 

Brackets indicate groups and biological pathways. Nodes connected in the EN-ATAC 

network with no direct STRING connections are shown to the left. In (A) and (B), nodes are 

color coded by network cluster.

(C) Flow cytometry plots of MDDCs modified by shRNA that were mock infected (+Vpx) 

or challenged with HIV-GFP (+Vpx) at day 4 for 48 h. Plots show CD86 versus GFP 

expression and represent 1 of 4 donors (MOI = 0.5, 1.5, and 5).

(D) qPCR validation of target knockdown in MDDCs modified by the indicated shRNAs.

(E) qPCR of ISG15, CXCL10, and GFP expression in shRNA-modified MDDCs that were 

either mock treated or infected with HIV-1-GFP (MOI = 5) for 24 h.

(F) Flow cytometry of MDDCs treated with vehicle or the RARA agonist Am80 (10 μM) ± 

infection with HIV-1-GFP for 48 h.

(G) Pooled data of CD86 MFI in MDDCs from 4 donors treated as in (F). Am80 

concentrations = 10 nM, 100 nM, 1 μM, and 10 μM.
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(H) Flow cytometry of MDDCs treated with vehicle or the RARA antagonist BMS 195614 

(10 μM) ± infection with HIV-1-GFP for 48 h.

(I) Pooled data of CD86 MFI in MDDCs from 4 donors treated as in (H). BMS 195614 

concentrations = 1 nM, 100 nM, and 10 μM.

For (D), (E), (G), and (I), n = 4 donors. *p < 0.05, **p < 0.01, ***p < 0.001. Data represent 

mean ± SEM. See also Figure S7.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-Human CD86 (B7-2) PE-Cyanine5 eBioscience Cat# 15-0869-42; RRID:AB_11042003

Anti-Human CD86 (B7-2) PE Thermo Fisher Cat#12-0869-42; RRID: AB_10732345

Anti-Human CD11c-APC Thermo Fisher Cat# 17-0116-42; RRID:AB_1659668

Anti-Human HLA-DR PE-Cyanine5 BioLegend Cat# 307607; RRID:AB_314685

Anti-Human DC-SIGN PE R&D Systems Cat# FAB161P; RRID:AB_357064

Anti-Human Actin Millipore Cat# MAB1501; RRID: AB_2223041

Anti-Human Vinculin (Clone hVIN-1) Sigma Cat# V9264; RRID: AB_10603627

Anti-Human PRDM1 Blimp-1 (Clone C14A4) Cell Signaling Technology Cat# 9115; RRID: AB_2169699

Anti-Human NONO Sigma Cat# N8664; RRID: AB_10601034

True Blot anti-mouse Ig HRP Thermo Fisher Cat# 18-8817-33; RRID: AB_10126892

True Blot anti-rabbit Ig HRP Thermo Fisher Cat# 18-8816-31; RRID: AB_469528

Bacterial and Virus Strains

Stbl3 competent E. coli Thermo Fisher Cat# C737303

Biological Samples

Human leukocytes from normal donors Bloodworks Northwest Product code: 2490-03 http://
www.bloodworksnw.org/

Human leukocytes from normal donors New York Blood Center N/A

Human leukocytes from normal donors ARUP Blood Services N/A

Human leukocytes from normal donors venipunctures approved by the 
Institut National de la Santé et de 
la Recherche Médicale ethics 
committee, Paris, France

N/A

Chemicals, Peptides, and Recombinant Proteins

Ficoll-Paque Plus GE Healthcare Cat# 17-1440-02

Fetal Bovine Serum Peak Serum Inc (Lot#125N16)

Fetal Bovine Serum GIBCO (Lot #1982147)

Bovine Serum Albumin Roche Cat# 03116956001

Recombinant Human IL-4 Preprotech Cat# 200-04

Recombinant Human IL-4 Miltenyi Biotech Cat# 130-093-922

Recombinant Human GM-CSF Preprotech Cat# 300-03

Recombinant Human GM-CSF Miltenyi Biotech Cat# 130-093-867

HEPES Sigma Cat# H3537

Phosphate Buffer Saline (PBS) Corning Cat# 45000-446

EDTA 0.5M Sigma Cat# E7889

Penicillin-Streptomycin Thermo Fisher Cat# 15140-122

2-Mercaptoethanol Thermo Fisher Cat# 21985023

L-glutamine Thermo Fisher Cat# 25030081

MEM non-essential amino acids Thermo Fisher Cat# 11140050

Sodium Pyruvate Thermo Fisher Cat# 11360070

RPMI 1640 medium Thermo Fisher Cat# 11875-119
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REAGENT or RESOURCE SOURCE IDENTIFIER

DMEM Thermo Fisher Cat# 11965-118

HAT supplement Thermo Fisher Cat# 21060-017

poly-L-lysine hydrobromide MP Biomedicals Cat# 0219454405

Polyinosinic-polycytidylic acid (poly(I:C)) high 
molecular weight

InvivoGen Cat# tlrl-pic

2′3′-cGAMP (cyclic [G(2′,5′)pA(3′,5′)p] InvivoGen Cat# tlrl-cga23 s

Recombinant Human Interferon-alpha 2 alpha Thermo Fisher Cat# 111001

Recombinant Human Interferon-alpha 2 alpha ImmunoTools Cat# 11343506, (No CAS)

LPS – ultra pure from Salmonella minnesota R595 List Biological Laboratories, INC. Cat# 434

R848 Invivogen Cat# tlrl-r848, CAS: 144875-48-9

Poly(dG:dC) Invivogen Cat# tlrl-pgcn, CAS: 90385-88-9

Cyclosporine A Euromedex Cat# S2286; CAS: 59865-13-3

Am80 Tocris Cat# 3507

BMS 195614 Tocris Cat# 3660

all-trans retinoic acid (ATRA) Tocris Cat# 0695

TRIzol reagent Thermo Fisher Cat# 15596026

GlycoBlue Coprecipitate Thermo Fisher Cat# AM9516

Polyethylenimine “Max,” (Mw 40,000) - High 
Potency Linear PEI

Polysciences, Inc. Cat# 24765-1

Paraformaldehyde Electron Microscopy Sciences Cat# 15713-S

Polybrene Sigma Cat# TR-1003-G

Puromycin Invivogen Cat# ant-pr-1

TaqMan Fast Universal PCR Master Mix Thermo Fisher Cat# 4352402

NEBNext® High-Fidelity 2X PCR Master Mix New England Biolabs Cat# M0541S

SYBR Green I Nucleic Acid Stain Thermo Fisher Cat# S-7563

cOmplete, EDTA-free, Protease inhibitor cocktails 
tablets

Roche Cat# 11873580001

Critical Commercial Assays

LIVE/DEAD® Fixable Violet Dead Cell Stain Kit Molecular Probes Cat# L34955

Complete kit (Universal) KAPA Library 
Quantification Kits for Next-Generation Sequencing

Kappa Biosystems Cat# KK4824

Nextera DNA Library Prep Kit Illumina Inc. Cat# FC-121-1030

Plasmid DNA Purification Nucleobond Xtra Maxi 
Kit

Takara Cat# 740414.100

DNeasy Blood & Tissue Kit QIAGEN Cat# 69504

Minelute Kit QIAGEN Cat# 28004

Luciferase assay system Promega Cat# E4530

LEGENDplex Human Type 1/2/3 Interferon Panel 
(5-plex)

Ozyme Cat# BLE740396B

Deposited Data

RNA-seq on stimulated DCs This paper GEO: GSE125817

ATAC-seq on stimulated DCs This paper GEO: GSE125918

Experimental Models: Cell Lines

HEK293FT cells Thermo Fisher Cat# R70007, RRID:CVCL_6911
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REAGENT or RESOURCE SOURCE IDENTIFIER

HL116 reporter cells (Uzé et al., 1994) Gift from Sandra Pellegrini

Oligonucleotides

ATAC-seq sequencing primers (Buenrostro et al., 2013) (see Table S7)

TaqMan GAPDH assay ThermoFisher Cat# Hs02758991_g1

TaqMan ISG15 assay ThermoFisher Cat# Hs01921425_s1

TaqMan CXCL10 assay ThermoFisher Cat# Hs01124251_g1

TaqMan cGAS/MB21D1 assay ThermoFisher Cat# Hs00403553_m1

TaqMan eGFP assay ThermoFisher Cat# Mr04329676_mr

TaqMan IRF3 assay ThermoFisher Cat# Hs01547283_m1

TaqMan HIVEP1 assay ThermoFisher Cat# Hs00172428_m1

TaqMan KLF13 assay ThermoFisher Cat# Hs00429818_m1

TaqMan RARA assay ThermoFisher Cat# Hs00940446_m1

TaqMan STAT2 assay ThermoFisher Cat# Hs01013123_m1

TaqMan IFNB1 assay ThermoFisher Cat# Hs01077958_s1

TaqMan IFNL1 assay ThermoFisher Cat# Hs00601677_g1

Recombinant DNA

HIV-1-GFP (Manel et al., 2010) HIV-1 GFP-reporter virus

HIV-2-GFP (Manel et al., 2010) HIV-2 GFP-reporter virus

LKO-GFP (Manel et al., 2010) Non-replicating lentivector

P86-HA (Lahaye et al., 2013) Mutagenized virus HIVac-2

NL(AD8) (Manel et al., 2010) wild type HIV-1 molecular clone

JK7312AS Gift from Beatrice Hahn (Lahaye 
et al., 2018)

wild type HIV-2 molecular clone

pSIV3+ (for production of virus-like particles 
containing Vpx)

(Mangeot et al., 2000) SIVmac251 GenBank acc. no. M19499

pLKO.1 – TRC cloning vector Gift from David Root (Moffat et 
al., 2006)

Addgene plasmid #10878

psPAX2 Gift from Didier Trono Addgene plasmid #12260

pCMV-VSV-G Gift from Bob Weinberg (Stewart 
et al., 2003)

Addgene plasmid #8454

control shRNA Sigma SHC002

LacZ shRNA Sigma TRCN0000072229

NONO shRNA Sigma TRCN0000074562

cGas shRNA Sigma TRCN0000149984

IRF3 sh (Johnson et al., 2018) N/A

HIVEP1 sh1 Sigma TRCN0000235474

HIVEP1 sh3 Sigma TRCN0000235476

KLF13 sh1 Sigma TRCN0000016923

KLF13 sh2 Sigma TRCN0000016925

STAT2 sh1 Sigma TRCN0000364399

STAT2 sh2 Sigma TRCN0000364400

RARA sh1 Sigma TRCN0000275554

RARA sh2 Sigma TRCN0000020370

PRDM1 sh2 Sigma TRCN0000013609
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REAGENT or RESOURCE SOURCE IDENTIFIER

PRDM1 sh3 Sigma TRCN0000013610

PRDM1 sh5 Sigma TRCN0000013612

Software and Algorithms

R N/A https://www.r-project.org/

Integrative Genomics Viewer (IGV) N/A http://software.broadinstitute.org/software/igv/

FlowJo Version 8.7 FlowJo LLC https://www.flowjo.com/

FlowJo Version 9.9.4 FlowJo LLC https://www.flowjo.com/

LEGENDplex Software – Version 8.0 LEGENDplex http://www.vigenetech.com/LEGENDplex7.htm

Image Lab software – Version 5.2.1 BioRad http://www.bio-rad.com/fr-fr/product/image-lab-
software?ID=KRE6P5E8Z

GraphPad Prism 6.0 GraphPad https://www.graphpad.com/scientific-software/
prism/

Enrichr (Chen et al., 2013; Kuleshov etal., 
2016)

http://amp.pharm.mssm.edu/Enrichr/

Inferelator (Bonneau et al., 2006) N/A

Gephi (Bastian et al., 2009) https://gephi.org/

BioVenn (Hulsen et al., 2008) http://www.biovenn.nl/

Other

LS Columns Miltenyi Biotec, Inc 130-042-401

SW 28 Ti Rotor, Swinging Bucket Beckman Cat# 342204

Thinwall Polyallomer, Conical Tubes; Size:25 × 89 Beckman Cat# 358126

0.45 μm syringe filters Corning Cat# 28200-026

QuadroMACS Separator Miltenyi Biotec, Inc 130-090-976

CD14 MicroBeads, human Miltenyi Biotec, Inc 130-050-201

LSR II Flow Cytometer BD Biosciences N/A

FACSAria II Cell Sorter BD Biosciences N/A

CFX96 thermal cycler Biorad Model T100

Lightcycler 480 System Roche Product# 05015278001
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