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Abstract

Differential scanning fluorimetry (DSF) is an accessible, rapid, and economical biophysical technique that has seen many
applications over the years, ranging from protein folding state detection to the identification of ligands that bind to the target
protein. In this review, we discuss the theory, applications, and limitations of DSF, including the latest applications of DSF by
ourselves and other researchers. We show that DSF is a powerful high-throughput tool in early drug discovery efforts. We place
DSF in the context of other biophysical methods frequently used in drug discovery and highlight their benefits and downsides.
We illustrate the uses of DSF in protein buffer optimization for stability, refolding, and crystallization purposes and provide
several examples of each. We also show the use of DSF in a more downstream application, where it is used as an in vivo
validation tool of ligand-target interaction in cell assays. Although DSF is a potent tool in buffer optimization and large chemical
library screens when it comes to ligand-binding validation and optimization, orthogonal techniques are recommended as DSF is
prone to false positives and negatives.
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Introduction

Biophysics drives modern drug discovery efforts, allowing
rapid and high-throughput data acquisition to screen through
large compound libraries in an effort to identify new bioactive
molecules. An important component of this biophysics ar-
mory is the thermal shift assay, also commonly known as
differential scanning fluorimetry (DSF) (Semisotnov et al.
1991). DSF is a cost-effective, parallelizable, practical, and
accessible biophysical technique widely used as a method to
track both protein folding state and thermal stability. It pro-
vides a reliable tool to examine protein unfolding by slowly
heating it up in a controlled environment. By measuring the
corresponding changes in fluorescence emission upon temper-
ature increase, the process of protein denaturation can be mon-
itored. Since changes in sample behavior through complex
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formation with even weakly binding ligands affect protein
thermal stability, the technique has seen many successful ap-
plications and has been used in different ways over recent
years. It has been utilized primarily as a drug discovery meth-
od to identify promising lead compounds for a number of
target proteins for decades (Pantoliano et al. 2001). Another
major application for DSF is in protein buffer optimization,
identifying optimal conditions for storage, assay screening,
and crystallization. By screening sparse matrix conditions,
encompassing different buffer systems that cover a wide range
of pH, additives, and salt concentrations, optimal buffer com-
ponents can be identified for each individual protein. This has
been shown to increase the success rates of protein crystalli-
zation in past decades (Huynh and Partch 2015). More recent-
ly, DSF has also been applied to the challenge of sample
preparation, with two publications demonstrating that suitable
screening approaches can be used to identify and optimize
sample refolding buffers—allowing significantly cheaper ac-
cess to the amounts of protein sample required to support
high-throughput screening campaigns (Biter et al. 2016;
Wang et al. 2017). Finally, a very recent development has
shown that DSF is able to provide reliable data in complex
solutions, such as unpurified chemical reactions. This is an
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exciting development, as the production and purification of
chemical entities are a major bottleneck in any screening
campaign.

While the robustness of the DSF method and its broad
applicability in both sample preparation and screening has
led it to become an important biophysical tool in drug discov-
ery, it is important to bear its limitations in mind. This is
particularly true when designing a screening campaign, as
such a campaign should contain orthogonal screening options
that are not susceptible to similar limitations—in order to
minimize both false positives and false negatives.

In this review, we will provide a theoretical background of
DSF as well as examples of its use in the various aspects of
drug discovery introduced above—including the latest appli-
cations of DSF by ourselves and other researchers. We will
also attempt to place DSF within the variety of biophysical
methods currently used in screening campaigns and highlight
areas of overlap or mutual limitations.

Theory of differential scanning fluorimetry

In 1997, Pantoliano et al. (1997) introduced a new thermal
shift assay system used in the screening of combinatorial li-
braries against different receptor proteins. Compared with
conventional methods of the time, such as those based on
calorimetry and spectral technologies (Bouvier and Wiley
1994; Weber et al. 1994), the newly developed system could
implement high-throughput screening instead of assaying a
single condition at a time. The custom-designed 96- or 384-
well plates and fluorescence readout apparatus could easily
monitor protein unfolding in multiple conditions, with differ-
ent ligands and/or at different ligand concentrations in a single
experiment. This helped researchers overcome a lot of cum-
bersome, slow, and labor-intensive work required by tradition-
al methods. Rather than the need for a dedicated device, many
labs already possess (or have access to) real-time polymerase
chain reaction (RT-PCR) equipment that allows for fluores-
cence measurements over a controlled temperature range.
Access to such equipment, the development of more sensitive
dyes, and improved protocol design drove the use of DSF
(Niesen et al. 2007).

Proteins are in a thermodynamic equilibrium between
folded and unfolded states (Bowling et al. 2016). An in-
crease in energy of the environment (i.e., increase in tem-
perature) pushes a protein toward the unfolded state which,
when quantified, allows for the determination of the melt-
ing temperature (7,,), defined as the temperature at which
50% of a protein sample is in folded and 50% is in an
unfolded state (Lo et al. 2004) (Fig. 1a). A change in the
protein environment (including pH, ionic strength, or the
presence of specific anions or cations) and/or complex for-
mation with other molecules can stabilize a protein through
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Fig. 1 a Typical thermal denaturation profile of a protein sample. P>
Fluorescence emission changes with the temperature. The sigmoidal
curve indicates the cooperative unfolding status of the protein from
trace amounts of SYPRO Orange (yellow) bound to the native protein
(green). The peak indicates that all proteins are unfolded to linear peptides
or that the hydrophobic core is exposed to SYPRO Orange. Multiple
mechanisms exist for the reduction in fluorescence after the peak, includ-
ing temperature-driven decrease in the binding constant of the dye (so less
dye is bound to the protein), the pocket binding the dye being more
mobile (allowing for more quenching by solvent); the dye itself is more
mobile such that the degree of planarity required for electron conjugation/
aromatic character is lessened and protein aggregation and dye dissocia-
tion through the exclusion of the dye from hydrophobic cores. The mid-
point of the transition curve is the melting temperature (7). b DSF curve
showing the unfolding status of a target protein in the absence (blue) and
presence (orange) of a ligand. The difference in the melting temperature
indicated as ATy, ¢ Sample with high background fluorescence at the
beginning at lower temperature (red) compared with a typical well-folded
sample (blue) in the DSF assay. Improperly folded, aggregated, denatured
protein or hydrophobic area such as a lipid bilayer exposed to the dye will
cause high background at low temperatures. d Multiple transitions
appearing during the heating process can be caused by different domains,
aggregation increasing with temperature, or ligands that stabilize a por-
tion of the protein sample (orange); typically one 7, similar to the native
protein is accompanied by one or more 77, at a higher temperature during
the denaturation. e-g Overview of NanoDSF. e Intrinsic fluorescence of
tryptophan is measured at both 330- and 350-nm wavelengths and plotted
versus temperature from 20 to 60 °C during unfolding. f F330/350 fluo-
rescence ratio intensity of tryptophan plotted against temperature. g The
melting temperature is calculated by the first derivative of the F330/350
plots, with the sample given here showing a 7;,, of 48 °C. All the figures
above represent thermal unfolding curves of the menin protein and are
obtained from DSF experiments conducted in our lab. The experiments
were performed by using either the Bio-Rad CFX96 Real-Time PCR
system or the NanoTemper Prometheus NT.48 system. Curves were plot-
ted from the fluorescence data using Excel

a reduction of the Gibbs free energy of the complex,
resulting from the creation of new molecular interactions
(hydrogen bonds, van der Waals interactions, etc.) or con-
formational reordering of the target protein. This increase
in the Gibbs free energy results in an increase in thermal
stability and thereby an increase in the melting temperature
(T}n). Measurements of the 7,,, of a protein in the presence
and absence of environment changes or ligands result in an
estimate of the thermal shift (AT7,,) deriving from these
differences (Scott et al. 2016) (Fig. 1b). This shift is typi-
cally an indicator of complex formation and/or thermal
stabilization. However, it should be borne in mind that
while the resulting temperature shift is directly related to
the change in the Gibbs free energy, it is a measurement
deriving from both binding interactions and any resulting
conformational changes in the target protein, and as the
thermal stability profile is generated over a temperature
range, it is difficult to generate a reliable room temperature
dissociation constant (kq=exp —AG/kT;, k=Boltzmann’s
constant and 7 =thermodynamic temperature) directly
from AT,,. However, solely concentrating on T}, may
mean that other systemic and thermodynamic information
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about protein stability can be lost. The propensity of the
protein to aggregate in certain conditions is one such factor. An
environmental change could result in a difference in aggregation
behavior but leaves the 7},, unchanged. For an in-depth review on
this topic, please see Wakayama et al. (2019).

20 25 30 35 40 45 50 55 60
Temperature /°C

In order to monitor the thermal unfolding transition of target
protein in a suitably sensitive but precise way, fluorescence has
been used as the response signal. There are two main sources of
this fluorescence in use today that may be broadly classed as (i)
extrinsic fluorescence and (ii) intrinsic fluorescence.
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Extrinsic fluorescence

The fluorescence of extrinsic fluorescent dyes is sensitive to their
environment. Typically such dyes are quenched in aqueous so-
lutions with proteins in their native folded state and provide a
fluorescence signal only when the target protein begins to unfold.
This unfolding allows the freely diffusing dye to interact with the
exposed residues of the hydrophobic core (Fig. 1a). This ap-
proach relies on the following assumptions (in rough order of
frequency as experienced by the authors):

a. The target proteins do not possess significant hydrophobic
patches on their exposed surfaces, the presence of which
would lead to increased background in fluorescence (Fig.
Ic).

b. The protein is in a stable state at the beginning of the
experiment, and DSF experiments using extrinsic dyes
are typically performed at concentrations of 0.1—
0.5 mg/ml (0.01-0.1 uM). Aggregation and/or sample
instability may lead to the presence of multiple species
of target protein within the experiment, both leading to
increased fluorescence background from any conforma-
tional variability and resulting in variable thermal stability
profiles of the different order oligomers (Fig. 1c).

c. The target protein shows no significant binding interac-
tion(s) with the dye in use—resulting in the shielding of
the dye from the aqueous environment prior to protein
unfolding and a resulting increase in fluorescence
background.

d. The target protein is composed of a single domain, as the
unfolding of distinct domains is likely to occur with dif-
ferent T}, values resulting in a complex thermal stability
profile (Fig. 1d). However, while the profile might be
more complex, it is often easier to differentiate between
the signals from multiple domains and this can provide
valuable information as seeing a T}, shift more strongly in
a specific domain can provide information about a poten-
tial binding site.

e. No major structural rearrangements of the target protein
are provoked by an increased temperature prior to its
unfolding, although in such cases, deconvolution of the
thermal stability profile may still be possible.

f. The sample and dye do not chemically react with other
components present in the experiment over the tempera-
ture range used.

Dyes in common usage
There are many commercial dyes available (Hawe et al. 2008).

Dyes such as bis-ANS and Nile Red have been used for de-
cades; the extrinsic dyes are summarized in Table 1. However,
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these dyes all possess a significant background in the presence
of folded proteins. To date, the most favored dye for DSF is
SYPRO Orange, mainly owing to its high signal-to-noise ratio
(Niesen et al. 2007), as well as its relatively long excitation
wavelength (near 500 nm). This minimizes the interference of
most small molecules as these typically have absorption max-
ima at shorter wavelengths.

Intrinsic fluorescence

Another source of fluorescence is from the protein sample
itself. In 2010, Schaeffer’s team reported a new method, using
green fluorescent protein (GFP) to quantify the stability of a
target protein (Moreau et al. 2010). In these experiments, a
GFP tag was fused to a protein of interest through a peptide
linker and used as a reporter system for protein unfolding and
aggregation. The fluorescence signal from the GFP changes
based on its proximal environment, meaning its signal can be
used to monitor the unfolding of the protein it was linked to.
Since GFP only starts losing fluorescence around 75 °C, this
approach suits a large number of proteins which are signifi-
cantly less stable than GFP (Moreau et al. 2010). While this is
potentially an elegant solution to remove reliance on a fluo-
rescent dye reporter, there do remain a number of limitations:

a. The potential for interaction between GFP and the target
of interest influencing the target protein conformation,
thereby introducing a bias into the measured interactions
with ligands.

b. The potential for a GFP-linked domain to influence the
oligomeric state of the target protein—either promoting or
inhibiting assembly—with a similar effect on the target
protein conformation.

c. This approach is unsuitable for protein targets that have a
similar 7}, to that of GFP—in which case the unfolding
signal of the target protein will be masked by that of GFP

d. Ligands that may result in a significant elevation of the
target-to-ligand complex 7, will not be clearly observed
due to a similar masking effect.

e. This approach is unable to directly distinguish between
compounds that interact with GFP and those that interact
with the target protein, although this can be addressed
through the use of a GFP only control.

In 2014, a label-free DSF technique marketed as nanoDSF
was developed (Alexander et al. 2014). This approach
removes the requirement for an extrinsic dye or fusion tag,
instead of relying on the change of intrinsic tryptophan fluo-
rescence at 330 nm and 350 nm (Fig. le). Unfolding/
denaturation results in a change in the microenvironment po-
larity around tryptophan residues, leading to a redshift of fluo-
rescence (Ghisaidoobe and Chung 2014). In this approach, the
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Table 1 Overview of extrinsic fluorescence dyes applied in protein characterization

Dye Molecular formula  Application Excitation (nm) Emission (nm) Reference

bis-ANS C32H22K2N206S2 Hydrophobicity unfolding/folding aggregation 395 470-530 Grillo et al. (2001)

Nile Red C20H18N202 Hydrophobicity unfolding/folding aggregation 450 590-665 Greenspan et al. (1985)

SYPRO Orange C28H42N203S Hydrophobicity unfolding/folding aggregation 488 500-610 Lo et al. (2004)

DCVJ C16H15N3 Viscosity of protein environment rigidity 433 480-530 Menzen and Friess (2013)

CCVJ CI16H16N202 Viscosity of protein environment rigidity 435 480-505 Rumble et al. (2012)

ThT C17H19CIN2S Fibrillation 450 460-600 Nielsen et al. (2001)
Aggregation

ProteoStat C45H6212N4* Protein aggregation 488 600 McClure et al. (2018)

CPM C16H14N204 Hydrophobicity 387 463 Alexandrov et al. (2008)

Cysteine related

# Abstracted from patent (Patton et al. 2013)

T, can be determined by measuring the ratio of the fluores-
cence at 330 nm and 350 nm against temperature (Fig. 1f, g).
The commercial instrument Prometheus NT.48 (NanoTemper
Technologies, Munich) allows a rapid analysis for both ligand
screening and buffer composition optimization and, unlike the
previous approaches, allows for measurements to be made in
detergent-containing solutions—a prerequisite for DSF appli-
cation to membrane proteins. Due to the nature of extrinsic
dyes, which can bind (and fluoresce) in the presence of lipid
bilayers and detergent micelles, conventional DSF cannot
handle the detergent selection for membrane protein solubili-
zation. The dye-free nanoDSF avoids this problem by using
intrinsic fluorescence. Another benefit to intrinsic fluores-
cence is the ability to observe the transition both from folded
to unfolded states and from unfolded to folded states. This
allows for the detection of hysteresis (Andrews et al. 2013).
The presence of hysteresis can provide information about pro-
tein stability (Mizuno et al. 2010). Due to the presence of dye,
this is not possible when using an extrinsic fluorescence ap-
proach. However, the intrinsic fluorescence method also has
several key limitations:

a. The number of tryptophan residues in the target protein
amino acid sequence needs to be considered before
adopting this approach, since at least one tryptophan has
to be present and the ratio of tryptophan present in the
target protein sequence is the limiting factor to detect an
unfolding signal.

b. Experiments that result in complex populations in the
thermal profile (e.g., presence of both bound and unbound
states—see below) may not be successfully identified due
to signal sensitivity.

c. This approach requires a significantly larger investment
for the associated equipment.

Finally, it should be clearly borne in mind that all DSF
approaches are sensitive to the intrinsic fluorescence

properties of the molecules present in the screen under exam-
ination, which can result in a wide variation in the background
ofthermal profiles—resulting in false negatives. While the use
of extrinsic dyes alleviates this to some extent, as the role of
the dyes in use is to significantly amplify the unfolding signal,
there still remains the potential for screening components to
interact with the reporting dye.

Recent applications of DSF
Ligand screening in drug discovery

Determining the interaction between receptors and members
of a small molecule library is addressed by detecting and mea-
suring changes in the physicochemical properties of any
ligand-to-target complexes that are formed. Quantitative infor-
mation arising from receptor-ligand complex formation can
then drive the development process through structure-
activity relationships (SAR). In the last few years, great efforts
have been expended to find a general and universally applica-
ble approach to detect binding (and ideally estimate binding
affinity, K4) between biomolecule receptors and small mole-
cule ligands. As a result, many new biophysical technologies
have emerge, briefly:

a. Differential scanning calorimetry (DSC), which monitors
the change in heat capacity of protein samples undergoing
temperature-induced melting transitions in the presence
and absence of small molecule ligands (Pantoliano et al.
1989).

b. Isothermal titration calorimetry (ITC), which compares
the temperature differences between a reference and re-
ceptor solution to quantify the kinetic parameters of bind-
ing (Herrera and Winnik 2016).

c. Surface plasmon resonance (SPR), which records the an-
gular shift of polarized light reflected from a metal film,
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containing a surface-immobilized target leading to chang-
es in refractive indices upon association and dissociation
of ligand (Navratilova and Hopkins 2010).

Mass spectrometry—based approaches, protein samples,
and bound ligands are ionized preserving non-covalent
interactions. Subsequently, the mass of protein and li-

d. Microscale thermophoresis (MST), which detects the gands can be acquired with high accuracy (multiple in-
thermophoretic behaviors of receptors in the presence of stances are provided in the table below).
ligands under heating in capillaries (Wienken et al. 2010). Biolayer interferometry (Wartchow et al. 2011) provides
e. NMR-based chemical shift screening, ligand-based or similar binding information to that obtained by SPR, with
protein-based NMR monitors chemical shift perturbation advantages in signal stability arising from the use of in-
induced by ligands; thereby, both Ky and the structural terferometry patterns.
conformation of complexes can be determined.
f. X-ray crystallography—driven fragment optimization
based on the electron density of ligands, providing inter-
action details at atomic resolution.
Method Principle Advantages Limitations Ref
Ligand-observed Shift change in magnetic state Many fragments can be tested Uses a lot of protein. Limited to Krimm (2017)
NMR of ligand due to binding simultaneously fragments with fast exchange
with target
Protein-observed Protein NMR peak shift Able to determine binding site. Requires large amounts of protein. ~ Krimm (2017)
NMR induced by binding Titration possible to determine Limited throughput
Kp
X-ray X-ray diffraction of Provides structural information of ~ Needs good-quality crystals. Not all Badger (2012);
crystallography cocrystallized protein-ligand ~ ligand-binding mode and inter- the ligands can acquire cocrystal Patel et al.
complex or soaked apo-- actions with the target. Enables structures with protein target. (2014)
crystal use of computational methods of ~ Needs synchrotrons to obtain
hit optimization x-ray diffraction data. Requires
large amounts of ligand
SPR Refractive index change due to Able to easily obtain K and other Protein needs to be able to be Neumann et al.
ligand binding to kinetic data. Uses very little immobilized (2007);
immobilized target on sensor  protein Chavanieu and
Pugnicre
(2016); Huber
etal. (2017)
DSF Thermal stability of protein is ~ High throughput, cheap materials, Many false positives and negatives. Lo et al. (2004);

increased due to fragment
binding

equipment easy to use and
widely available

Isothermal titration
calorimetry (ITC)

Differential scanning
calorimetry (DSC)

Native mass

spectroscopy (MS)

Size exclusion
chromatography
(SEC) MS

Weak affinity
chromatography
(WAC) MS

@ Springer

Heat of the system changes
upon binding event

Amount of heat required to
increase temperature of
sample changes upon
binding

Mass detection of
protein-ligand complex in
gas phase

Incubation of protein in
fragment mixture then
separation of bound from
unbound molecules by SEC,
followed by MS detection

Separation of molecules by
affinity to immobilized
receptor on the WAC

Thermodynamic and binding
properties of protein—fragment
interaction can directly be ob-
tained. Label-free

Highly sensitive method.
Label-free

Highly sensitive method. Uses very
little protein. Label-free.
Provides large amount of
information, binding affinity,
stoichiometry

Very high throughput. Easy to
perform technique requiring
simple LC-MS

Easy method to use. High
throughput possible by using
fragment mixtures

Uses a lot of protein. Low

throughput

Protein has to be stable in ESI buffer

Potential for false negatives for low

affinity binders; these can easily
get lost during the SEC step

Protein needs to be immobilized on

the column

Typically only provides a yes/no Douse et al.
answer. Requires a dye orintrinsic ~ (2015); Bai
fluorescence etal. (2019)
Uses large amount of protein; low  Chaires (2008);
throughput Ladbury et al.

(2010); Renaud
etal. (2016)

Cooper (2003);
Bruylants et al.
(2005);
Erlanson et al.
(2016)

Qin et al. (2015);
Pedro and
Quinn (2016);
Ren et al.
(2019)

Qin et al. (2015);
Chan et al.
(2017); Ren
etal. (2019)

(Duong-Thi et al.
2011; Chan
etal. 2017,



Biophys Rev (2020) 12:85-104

91

(continued)
Method Principle Advantages Limitations Ref
column followed by MS Ohlson and
detection Duong-Thi
2018)
Hydrogen-deuterium Ligand binding affects Binding site can directly be Low throughput and expensive Chan et al.
exchange (HDX) deuteration rate of protein elucidated and gives information (2017);
MS residues. Which is detectable ~ about protein conformational Marciano et al.
by mass changes (2014)
Microscale Change in the molecular Measurements can be performed in Target needs to be labeled or have  Linke et al.
thermophoresis motion of the target in a native buffers. Allows for Kp sufficient intrinsic fluorescence. (2016); Rainard
(MST) temperature gradient due to determination Relatively low throughput et al. (2018)
ligand binding
Affinity capillary Change in electrophoretic High throughput. Sensitive method. Requires detectable probe molecule Xu et al. (2016);
electrophoresis mobility of the ligand due to ~ Uses small amounts of protein or detectable fragments Austin et al.
(ACE) binding to target (in and ligand. Both target and (2012); Farcas
solution) ligand are free in solution etal. (2017)
Biolayer Interference pattern change due Can obtain K and other kinetic Immobilization of protein is required Wartchow et al.
interferometry to ligand binding to parameters. Uses a small amount (2011)
(BLI) immobilized target on of protein

biolayer

With the advent of modern advances in bioinformatics and
proteomics, many new disease targets have been identified
(Lippolis and Angelis 2016). In parallel chemical synthesis,
methods are more advanced and refined, being capable of rap-
idly producing large libraries of diverse compounds. A particu-
larly important subgroup of these methods is those that are com-
patible with multicomponent reaction (MCR) chemistry (e.g.,
the UGI reaction) which can generate large libraries of highly
specific compounds in a short amount of time. However, the
pace at which chemical libraries could be screened using con-
ventional techniques such as NMR and ITC often could not
keep up with the speed that the libraries were being created, or
the numbers of discrete molecules contained in these libraries.

Modern DSF is well placed to address these large and di-
verse libraries, as it utilizes a real-time PCR machine to rap-
idly screen multiple molecules at once against the target pro-
tein, meaning it can handle the high throughput of compounds
much better than many other technologies. With relatively low
consumption of protein sample, 96, 384, or 1536 ligands can
be analyzed in a single screen that takes ~ 1 h and provides
qualitative binding information; it is well-suited for high-
throughput library screening. This efficient workflow makes
it possible to judge and rank potential binding affinity.

In 2001, Pantoliano introduced a DSF-based high-through-
put methodology for a variety of therapeutic target proteins
(human o-estrogen receptor (ESR), bacteriorhodopsin, human
a-thrombin, bovine liver dihydrofolate (DHFR), the extracel-
lular domains of the fibroblast growth factor receptor-1 (D(II)-
D(II)FGFR), and the enzyme PilD; Pantoliano et al. 2001).
These targets were screened against various small molecules
from combinatorial libraries, including known binding

ligands. Experiments showed that the K calculated from Eq.
(1) based on the T, values obtained experimentally gives very
similar values to those previously acquired by other tech-
niques. For example, tamoxifen inhibits the ESR antagonist
with an ICs, value reported as 0.42 uM (Bolger et al. 1998),
whereas the miniaturized thermal shift assay provided an af-
finity of 1.1 uM. The known ligand pentosane polysulfate is
reported to have a K4 of 11 uM with FGFR-1, as measured by
ITC titration (Pantoliano et al. 1994), while the thermal shift
assay, i.e., DSF, shows a similar binding ability of 5.5 uM.
Thus, the reported thermal shift assay supports a reliable al-
ternative for determining the interactions between proteins
and small molecules.

exp{*AHZO/R[I/T,,,fl/TOH + ACL) /R[In(T,/To + TO/T,,;I)]}

KTm —
t [LTm]
(1)

where

Ko ligand association constant at 7y,

T midpoint for the protein unfolding transition in the
presence of ligand

Ty midpoint for the unfolding transition in the absence
of ligand

AHT O enthalpy of protein unfolding in the absence of
ligand at T}

AC!)  change in heat capacity on protein unfolding in the
absence of ligand

[Lrm] free ligand concentration at 7y, ([L1m]= [L]iota When

[L]total >>[Pr0tein]total)
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R universal gas constant

DSF has a direct application in fragment-based ligand de-
sign (FBLD) due to the ease of use in high-throughput screen-
ing. In this approach, small molecule building blocks (100—
150 Da) are potentially pooled (3—5 molecules per pool) and
screened (Elkin et al. 2015; Valenti et al. 2019). Although
these small molecular mass compounds are unlikely to pos-
sess high affinity by themselves, this pooled approach allows
for a significant reduction in the number of experiments that
need to be performed to screen a large library. Successful “hit”
pools identified on the basis of a shift in 7, can then be
examined in more detail to uniquely identify fragments of
interest and hits can be grouped to provide a primary metric
for lead compound optimization. This strategy also provides a
high probability of adding blocks to the final scaffold of lead
compounds (Mashalidis et al. 2013), and two recent examples
of the use of DSF in lead discovery are provided below.

DSF as a simple and robust mechanism to probe
fragment-binding modes and suggests linking
strategies

Tuberculosis (TB), caused by Mycobacterium tuberculosis
(Mtb), remains one of the top 10 causes of death, and Mtb is
the leading infectious agent (above HIV/AIDS) worldwide. In
2017, 10 million people developed TB resulting in 1.6 million
deaths (World Health Organization 2018). Drug-resistant TB
continues to be a public health crisis, and we still lack robust
therapies to combat this burden. Consequently, new antituber-
cular agents that target TB with novel mechanisms are urgent-
ly needed. Biotin, also known as vitamin B, is an essential
cofactor for Mtb (Hayakawa and Oizumi, 1987). As Mtb pro-
duces biotin in order to support growth and proliferation, but
this vitamin is present at very low concentration in human
blood (Sassetti and Rubin 2003), therefore, targeting the biotin
biosynthesis route intermediate by PLP-dependent transami-
nase (BioA) turns out to be a promising strategy (Mann and
Ploux 2006). Dai and colleagues screened a Maybridge Ro3
fragment library with approximately 1000 compounds against
BioA using DSF and discovered 21 “hit” compounds—
identified as those that increased the 7},, more than 2° (Dai
et al. 2015). Subsequent X-ray diffraction data of cocrystals
confirmed 6 fragment hits binding within the active site. The
binding affinity and ligand efficiencies were cross-validated
by ITC, giving a range between 7 and 42 puM in affinity and
between 0.43 and 0.55 in ligand efficiencies, respectively.
Comparison of all the available hits provided the basis for
understanding the interaction mode of residues involved in
the active pocket, leaving sufficient guidance for a lead sketch
optimization consistent with the active site conformational
states. Moreover, the scaffold of the small fragments found
by DSF and crystallography also matched existing potent
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inhibitors previously reported (Park et al. 2015), further dem-
onstrating that this strategy can be a reliable method for ligand
screening.

The same strategy was implemented by Hung’s team,
targeting pantothenate synthetase (PS) of TB (Hung
et al. 2009). Pantothenic acid (vitamin Bs) plays an im-
portant role in fatty acid metabolism. It is formed
through condensation of pantoate with {3-alanine by pan-
tothenate synthetase (PS), and blocking this pathway
will likely impact the growth of Mtb (Sambandamurthy
et al. 2002). In fragment screening via DSF, ligand 2
was identified from 1300 fragments with a AT, of
1.6 °C (Fig. 2). This was further confirmed by
WaterLOGSY NMR spectroscopy and ITC (K4=
1 mM). The associated X-ray structure showed that 2
binds across the pantoate-binding pocket P1, extending
further along the surface of PS, to a point 3.1 A away
from another binding site of ligand 1 in the same pock-
et. A test with both ligands soaked into crystals showed
the presence of both fragments in the active site without
clashes, in conformations similar to their individual
binding modes (Fig. 2). Therefore, fragment linking
and optimization were recruited to enhance binding
properties, with different linkers based on the adjacent
structures inside the pocket. Subsequently, lead com-
pound 3, which links fragments 1 and 2 by an acyl
sulfonamide, showed a 500-fold stronger binding affinity
than the individual fragments (Fig. 2).

DSF combined with limited proteolysis
in the identification of tankyrase inhibitors

A fragment-based study performed by Larsson in 2013 gives a
clear example of how DSF can be used to identify high-quality
fragments followed by guiding the construction of a lead com-
pound (Larsson et al. 2013). In this assay, the poly-ADP-
ribosylating enzyme tankyrase was screened against a 500-
compound fragment library (each present at I mM). To avoid
oddly behaving compounds and minimize false-positive rates
(i.e., pan-assay interfering compounds, PAINS) (Baell and
Nissink 2018), identified hits are further validated to genuine
“hits” by checking for a dose-dependent DSF response over a
range of concentration (from 5 to 4000 uM). In the DSF
screening of tankyrase 2, a “hit” melting profile was
interpreted as those showing a two/multiple-state transition,
which significantly complicated the fitting of 7}, for weakly
binding fragments (Fig. 3a). After adding chymotrypsin to
perform an in situ digestion and remove less-ordered contam-
inants, they succeeded in simplifying the sigmoidal melting
cure (Fig. 3b). Dose-response experiments then validated ini-
tial “hits” through an apparent increase in 7}, upon elevated
concentrations of an initial “hit” (Fig. 3c). Based on the
cocrystal structure of TNKS2 with validated hits, various
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Fig. 2 Fragments 1 and 2 soaked
as a cocktail into the crystal of
pantothenate synthetase. The two
fragments are found to bind in
distinct positions. Overlay of the
linked lead compound 3 with
fragments 1 and 2 in the active
site of P1 of pantothenate
synthetase. Fragments 1 and 2
shown as sticks in green. The
benzofuran group is slightly
rotated relative to fragment 2,
indicating that the stereochemical
constraints of the linker do not
allow this moiety to adopt its
optimum conformation.

Figures created by using PyMol,
based on PDB entry 3IMG and
3IVX (Hung et al. 2009)

modifications of the hit fragment were proposed and evaluat-
ed. The 4-position methyl group was maintained as it pro-
trudes down toward the catalytic glutamate, whereas changes
in the 7-position group, which points toward the extended

Kd= 1.8 uM

pocket responsible for adenosine binding, showed distinct dif-
ferences when ligated to different functional groups. Starting
with an initial fragment of 12-uM affinity, multiple rounds of
modification and validation by DSF, SPR, enzymatic activity
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Fig. 3 a Tankyrase 2 melting curves without chymotrypsination in the
absence (black) and presence (red) of a stabilizing fragment. b Tankyrase
2 melting curves treated with chymotrypsin in the absence (black) and
presence (red) of the same stabilizing fragment. ¢ Concentration-
dependent response for the stabilizing fragment with chymotrypsin-

digested tankyrase. d The workflow of the final lead compound
optimization from the initial hit to the end was guided by DSF. This figure
was adapted with permission from Larsson et al. (2013). Copyright 2013
American Chemical Society
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(ICsp), and X-ray crystallography yielded a lead compound
with an inhibition activity (ICs¢) of 9 nM and binding affinity
(Ky4) of 16 nM against TNKS2. The elegant approach of lim-
ited proteolysis of the less stable (i.e., unbound) form of the
target directly addresses one limitation of DSF—incomplete
binding leading to multiple transitions in the thermal profile—
amplifying weak binding. However, it is likely that such an
approach will be highly dependent on the target under exam-
ination and may not be generally applicable.

In summary, the examples above both show that fragment-
based drug discovery (FBDD) has become a mainstream
choice for high-throughput screening for lead discovery of
therapeutic interest (Congreve et al. 2008; Murray and Rees
2009) and that DSF has been validated as a robust option in
preliminary screening in FBDD for more than 2 decades
(Pantoliano et al. 1997). The use of DSF in fragment screening
is facilitated by its low sample consumption—both in proteins
and in chemicals—as well as the rapid determination of ex-
perimental AT, determination—reducing labor-intensive
work and providing simplified screening protocols.

The use of DSF in buffer screening and optimization
of protein stability and crystallization

In proteomics studies, inter-related biochemical, cellular, and
physiological information is essential to reveal protein mech-
anisms. A major source of information is the use of structural,
functional, and chemical genomics to characterize target pro-
teins (Christendat et al. 2000). However, the common first
step for all these approaches is the purification of the target
protein, which remains challenging in many cases. On aver-
age, only 50-70% soluble protein and 30% membrane pro-
teins from prokaryotes can be expressed in a recombinant
form, and among those successfully expressed, only 30—
50% can be purified in a homogeneous state (Christendat
et al. 2000; Norin and Sundstrom 2002; Dobrovetsky et al.
2005). Eukaryotic proteins—including many biomedically in-
teresting targets from humans—seem even more challenging
(Banci et al. 2006).

Traditional solutions for protein production and purifica-
tion mainly rely on the screening of recombinant hosts,
encoding construct sequences, expression conditions, and
then purification conditions (Graslund et al. 2008; Rosano
and Ceccarelli 2014; Wingfield 2015). In the last two steps,
the addition of specific additives or changing buffer composi-
tion can significantly increase the solubility of recombinant
proteins, as well as improving the thermal stability of the
target to prevent protein unfolding or aggregation—even at a
low temperature. There have been many reports (Sarciaux
et al. 1999; Vedadi et al. 2006; Reinhard et al. 2013) showing
that optimization of the purification conditions results in en-
hanced protein stability or solubility and it is not unreasonable
to propose that buffer optimization should be seen as an
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integral part of any research project that relies on isolated
protein samples. Even minor gains in protein stability can be
significant in the context of process engineering, for example
in the mass production of antibodies for therapeutic purposes.

One remarkable case is that of the recombinant protein
dnaB, produced in E. coli. Initially, it was shown to be highly
unstable in the purification buffer—even when stored at 0 °C,
90% enzymatic activity was lost within 30 min. In a stepwise
screening process where specific chemical reagents (Mg?",
ADP, (NH4),SO,4, and glycerol) were added, 90% activity
was retained after extensive storage at 60 °C in the optimal
buffer. Furthermore, the new buffer helped the isolation of
soluble dnaB at increased yields and subsequent crystalliza-
tion (Arai et al. 1981). While this is undoubtedly an extreme
example, this clearly shows the value of buffer optimization.

In the early years of structural genomics, a generally ap-
plied strategy was to use a default purification buffer for the
majority of protein targets, with detailed optimization of sam-
ple buffer performed only to address pathological issues (ag-
gregation, loss of activity, change in oligomeric state, etc.)
(Mezzasalma et al. 2007). As shown below, this likely impact-
ed the ultimate success of structural genomics projects, in
which the growth of high-quality crystals from purified sam-
ples represented the major bottleneck. To address the issue of
buffer optimization, Ericsson and coworkers developed a
DSF-based screening system (comprised of different pH
buffers, additives, heavy atoms, etc.) to test 25 different pro-
teins expressed in Escherichia coli (Ericsson et al. 2006). The
buffers consisted of a set of 23 different buffering agents at a
concentration of 100 mM with a pH range from 4.5 to 9.0.
Because each pH step is only 0.2 to 0.5 pH unit, it makes the
screen wide enough for the majority of proteins investigated
currently.

In some cases, protein 7}, was dramatically influenced by a
single pH buffer, correlated with a preference for specific ionic
effects. For example, at pH 7, the T}, of protein AC07 in K-
phosphate is 37 °C, whereas it is 46 °C in the presence of Na-
phosphate (Fig. 4a). In order to decouple the influence of the
choice of buffer and the final pH, a three-component buffer
system (Newman 2004) was implemented, which allowed a
wide range pH without altering the composition of buffer
chemicals. The citric acid-Hepes-Ches (CHC) buffer, which
covers the pH range from 4 to 10, can quickly identify the
most favorable pH of target proteins. This work showed that
the T, of the targets examined followed a typical bell-shaped
curve. For example, AD28 demonstrated lower temperature
stability values at both low and high pH (pH =4 and 10), with
a maximum stability close to pH 6.4.

Combinations of the above buffer optimization with addi-
tives, such as heavy metals, or substrates/cofactors like
NADH at optimal pH can further enhance protein thermal
stability. For example, the addition of NADH was found to
increase the melting temperature of AD21 significantly (AT},
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Fig. 4 a Unfolding temperature 48.0
of ACO07 in various pH buffers of

different compositions. Na- 48K
phosphate (red bar) and K- 24.0
phosphate (blue bar) at a pH close

to 7.4 showed a significant 42,0
difference in 7,,,. b Melting

temperature curves of the protein 40.0
AD21 screened against different Tm
additives. As an essential S0
chemical needed in the proline 36.0
biosynthetic pathway, NAD(P)H

(yellow) showed a visible 34.0
increase in thermal stability when

incubated with the target protein. 320

The figures are adapted from
Ericsson et al. (2006). Copyright
2006 with permission from
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~20 °C; Fig. 4b), which correlated with the previously known
fact that it is an essential cofactor of AD21 in the catalysis of
the last step in proline biosynthesis.

In summary, DSF screening of additives provided data to
optimize the buffer conditions for crystallization screening
(Reinhard et al. 2013). Additives that gave a positive thermal
shift (7;,,) compared with control samples increased the pro-
tein crystallizing rate by 70%, while additives that showed
destabilizing effects reduced the chance of getting crystals
by around 50% compared with the control buffer. This obser-
vation strongly suggests a correlation between protein
stability/solubility and crystallogenesis. For excellent in-
depth reviews into the use of DSF to optimize crystallization
buffers, the reader is referred to Boivin et al. (2013) and
Reinhard et al. (2013).

Structural biology plays an important role in early-stage
drug discovery, as the elucidation of the binding modes of
“hit” compounds can provide essential information to drive

30 40 50 60 70 80

Temperature (°C)

downstream, lead compound development (de Kloe et al.
2009; Wang et al. 2019). While crystallization of proteins
relies on a number of sample properties, with sample purity
and homogeneity generally agreed to be the key determining
factors (Giegi et al. 1994; Dale et al. 2003; Ericsson et al.
2006), thermal stability has also been shown to be a critical
parameter in a successful outcome during crystallogenesis. In
a study carried out by Dupeux et al. (2011), 657 different
proteins were screened by DSF, then subjected to automated
vapor-diffusion crystallization. Based on an analysis of the
protein melting point (7;,) and visually determined crystalli-
zation hits, the authors were able to draw clear inferences on
the importance of thermal stability on the crystallization pro-
cess. In this study, 437 of the 657 samples unfolded show clear
and sharp temperature transitions. This behavior may be
interpreted as the result of a sample population consisting of
a single overall conformation, with relatively little conforma-
tional fluctuation around the “mean” fold—a scenario which
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Fig.5 T, and success rate in 100 -
crystallization: all the samples

were incubated for crystallization 90

at 20 °C; the numbers above the
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is likely to be more conducive to crystallization than a sample
with a high degree of conformational variation due to thermal
mobility of its component elements. The average T, for the
ensemble of samples was 51.5 °C over a range of 25 to 95 °C
(Fig. 5). Notably, proteins with a T;, of 45 °C or higher
displayed a greater tendency to crystallize when incubated at
20 °C, with successful crystallization outcomes 0f 49.1%. For
proteins with a 7, below 45 °C, the likelihood of crystal
growth chance at 20 °C dropped to 26.8%. Additionally, a
number of proteins with a 7, between 25 and 45 °C produced
crystals at the lower temperature of 5 °C, where crystallization
was initially unsuccessful at 20 °C. The study confirmed a pre-
vious observation that thermophilic proteins have higher rates of
crystallization than those from mesophilic organisms, despite
similar 7}, values. In addition, a report from Szilagyi also implied
that thermophilic proteins have a lower proportion of unstruc-
tured regions (Szilagyi and Zavodszky 2000), with the inference
that the disordered regions will hamper crystallization.

As the thermal stability of a sample may influence its
chances of crystallizing, it becomes clear that optimizing the
sample buffer in which the protein is finally purified and
concentrated prior to crystallization can provide benefit to
structural biologists, and structure-based drug design in par-
ticular. In a typical DSF buffer screening experiment, the
conditions (buffering agent, pH, additives, etc.) that result in
the largest thermal shifts are often combined and the resulting
buffer is then used for purification and crystallization.
However, this process can be complicated when multiphasic
unfolding behavior is encountered as it makes accurate T,
determination more difficult. A multiphasic unfolding curve
typically indicates either the presence of multiple, indepen-
dently folding, domains (Ionescu et al. 2008) or a heteroge-
neous state of the protein sample in solution (Choudhary et al.
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2017), or ligand binding is not fully saturated with protein
targets (Shrake and Ross 1992; Matulis et al. 2005), which
may disrupt crystallogenesis and hinder protein functional
characterization. Here, DSF can also be applied to guide sam-
ple preparation buffer screening for crystallization by replac-
ing the buffer ingredients or ligands stepwise. Geders et al.
reported a multiphasic unfolding behavior when his team
attempted to crystallize pyridoxal 5-phosphate (PLP)—depen-
dent transaminase BioA from Mycobacterium tuberculosis
(Geders et al. 2012). During buffer optimization for crystalli-
zation, BioA displayed a multiphasic unfolding behavior
without PLP; subsaturation of cofactors in the protein-
cofactor system also yields a biphasic melting curve. The
protein heterogeneity resulting from insufficient levels of co-
factor PLP could potentially impact crystallization. To avoid
the competition for PLP binding by other factors and to in-
duce PLP saturation of BioA, DSF was used to study PLP
binding. The initial buffers used in both lysis and purification
(Dey et al. 2010) were Tris-based—generating a tri-phasic
melting temperature curve with transitions at 45, 68, and
86 °C (corresponding to misfolded, apo, and PLP-bound
BioA, respectively (Fig. 6a)). The sample also displayed sig-
nificant precipitation at higher concentration levels. The elec-
tron density from a crystal grown from a Tris buffer showed
no interpretable density for a bound PLP molecule. Replacing
the Tris buffer with Hepes within the purification (both lysis
buffer and final purification buffer) resulted in a decreased
tendency for multiphasic melting curves, especially while
Hepes completely replaced Tris in both lysis and purification
buffer (Fig. 6b). This result suggested that the Tris buffer
partially degraded the PLP, resulting in unsaturated PLP bind-
ing to BioA partially. This partial degradation was further
supported by a UV-Vis spectroscopy assay, in which PLP in
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Fig. 6 a DSF melting curves of BioA with PLP and Tris in both lysis and
storage buffer, which shows multiple peaks during denaturing. b A sharp
DSF melting curve of BioA with subsaturation of PLP; misfolded and apo
peaks were eliminated after BioA was saturated with PLP, resulting in
enhanced stability of BioA, with a T}, at 88 °C. ¢ First derivative overlap
of the corresponding melting curves. The red line indicates BioA in Tris
buffer, with multiple transitions at 45, 68, and 86 °C, representing the
misfolded, apo, PLP-bound BioA, respectively. The blue line represents

Tris buffer showed an absorbance maximum near 420 nm,
similar to that shown by PLP in the Schiff base form instead
of a free aldehyde (Fig. 6d). PLP in Hepes buffer showed
absorbance at 390 nm, similar to that of PLP in water. By
replacing Tris with Hepes in all purification buffers and
adding increased concentrations of PLP, the multiphasic melt-
ing curves were replaced with a single, sharp transition curve
with a T;,, at 88 °C. These optimizations also improved the
size and quality of the crystals obtained and also resulted in
clear electron density for a bound PLP molecule. Thus, the
DSF analysis correlated with heterogeneity and suboptimal
crystallization outcomes. This example also highlights two
complications in small molecule screening: firstly, the use
of Tris (or primary amines which can form Schiff base with
aldehydes) should be avoided with PLP-dependent
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88 °C. d UV-Vis spectroscopy of PLP or PLP-BioA(holo) at various
conditions; 400 uM PLP in water (cyan) has the same absorbance as in
Hepes buffer (brown); PLP-bound BioA(holo) (purple) showed the same
absorbance close to 420 nm as PLP in Tris buffer (black). The figures are
adapted from Geders et al. (2012). Reproduced with permission of the
International Union of Crystallography

proteins—and researchers should be aware of the potential
for similar effects in other protein cofactors. Secondly, care
should be taken when analyzing multiphasic DSF profiles, as
they may be due to molecular interactions of the screen with
the buffer, rather than the protein target.

In biochemical or biomedical research, a well-folded protein
structure with the correct activity is one of the critical factors for
in vitro experiments. While numerous recombinant technologies
exist to express proteins, greatly facilitating the understanding of
proteomics in both prokaryotic and eukaryotic cells, the lack of
suitable chaperones in E. coli (the most commonly used recom-
binant source) results in ~80% of these proteins misfolding into
insoluble inclusion body without a defined fold or biological
activity (Carrié and Villaverde 2002; Serensen and Mortensen
2005; Grislund et al. 2008; Rosano and Ceccarelli 2014).
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Moreover, refolding of proteins from inclusion bodies is an em-
pirical art, with functionally related proteins of different construct
designs or from different sources requiring significantly different
conditions to support refolding. Thus, systematic and high-
throughput compatible assays are needed to address this. In
2016, Biter and colleagues established a DSF-guided refolding
method (DGR) to rapidly screen for the refolding of inclusion
bodies, including proteins that contain disulfide bonds and novel
structures with no preexisting model (Biter et al. 2016). The
refolding trials used a PACT (pH, anion, cation testing) sparse
matrix crystallization, leveraging the sparse matrix search of
buffers to examine the large chemical space of biologically com-
patible buffers. Inclusion bodies were purified by centrifugation
prior to solubilization in chaotropes (urea or guanidine) and the
addition of a fluorescent dye (SYPRO Orange). Precipitants were
excluded from the screen (Fig. 7a). The solubilized targets were
incubated with components of the PACT screen for 2 h, centri-
fuged to remove any resultant precipitation/aggregation, and di-
rectly analyzed using DSF. Fluorescence data showing protein
unfolding under DSF conditions was interpreted as
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Fig. 7 a The modified PACT screen in use in a refolding assay; three
main parts consist of pH screen, cations, and anions in different
combinations; the color indicates the T, found in certain conditions. b
Thermal melting profiles of pepsin in native, denatured, refolded, and
misfolded states. ¢ Peak height 7}, in the PACK screen profile; the
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corresponding to a condition that supported protein refolding.
Due to the wide range in pH, cations, and anions, the PACT
screen provided clear hints for pepsin refolding (Fig. 7c, d). For
disulfide-containing proteins, such as lysozyme, the PACT screen
conditions were supplemented with oxidized and reduced gluta-
thione. The resulting thermal melting profile of the refolded ly-
sozyme showed a clear 7, at 65 at pH 9 in the presence of
equimolar GSH and GSSH.

Attempts to refold the novel proteins from inclusion bodies
also succeeded in generating an improved yield of fibroblast
growth factors 19 and 21, leading to crystals. When DGR was
applied to the hormone Irisin, the success in refolding helped to
generate an eight-dimer crystal form (Schumacher et al. 2013).

One year later, colleagues in our group expanded the DGR
approach by investigating the refolding agent arginine and
other additives in systematic buffer screens (Wang et al.
2017). Arginine has been widely used to suppress protein
aggregation in refolding, and it can slow or prevent protein
association reactions via weak interactions with the targets
(Baynes et al. 2005; Arakawa et al. 2007), distinct from
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ulations in red correspond to the misfolded state, and blue is natively a
folded state. The figures are adapted from Biter et al. (2016)
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chaotropes such as urea or guanidine. Therefore, we designed
two sequential screening kits to provide a general screening
strategy. The primary screen is a combination of various pH
buffers in the presence or absence of arginine at a concentra-
tion of 0.4 M. This can rapidly identify a suitable refolding pH
while also screening for the effect of arginine in refolding. A
secondary screen is then explored, by adding different sugars,
detergents, osmolytes, PEGs, amino acids, concentration gra-
dients of salt, and reducing agents, expanding on the PACT
screen which mainly focuses on pH, anions, and cations
(Fig. 8). This approach identified optimal refolding buffers
for four different therapeutic target proteins from inclusion
bodies expressed in E. coli, as well as identifying a final gel
filtration buffer for storage or crystallization. A number of
factors that affect protein refolding were revealed during this
study, including the chemical composition of the buffer,
refolding time, redox state, and the use of arginine as an in-
hibitor of aggregation. For example, DGR analysis of the
refolding of interleukin-17A (IL-17A) gave obvious melting
transition signals at pH 9.5 in CHC and CHES buffer—but not
the MMT or MIB buffer system at the same pH—indicating
that the compositions of the buffer have a significant effect. In

the presence of arginine, the 7, increased from 40 to 60 °C,
suggesting a more stable final product of the refolding process
(Fig. 9). Refolding time also plays an essential role in all the
assays, as data showed for all the proteins tested that the max-
imum efficiency appeared at a defined refolding time. The
receptor-binding domain of hemagglutinin (HA-RBD)
showed a clear melting curve when refolding was limited to
1 h, whereas the melting transition signal disappeared after 6-h
incubation in refolding buffer. IL-17A needed extensive
refolding time, requiring 15 h for an optimal DGR signal.
Additionally, this data demonstrated that buffers optimized
from the refolding process are not necessarily ideal for subse-
quent storage or crystallization—potentially as they stabilize
an intermediate in the refolding process, rather than the final
folded form.

DSF applications for in vivo ligand: target interaction
validation

A common issue in monitoring drug binding and efficacy
during therapy is that the interactions between target proteins
and drugs cannot be measured directly in cells and tissues.
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Fig. 8 The composition of the secondary additive screen covers a wide range of sugars, detergents, salts, buffers, and reducing agents. This figure is

adapted from Wang et al. (2017)
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Fig. 9 Melting transition of IL-17A in CHC buffer system at pH 9-10 in the absence (a) and presence (b) of arginine; both showed a typical sigmoidal

melting curve at pH 9.5. The figures are adapted from Wang et al. (2017)

Validation methods normally study downstream cellular re-
sponses after multiple doses. Furthermore, some drugs tested
may have good binding activity when incubated with target
proteins but fail in clinical trials, with later research showing
them to not act on the predicted target within cells (Auld et al.
2009; Schmidt 2010; Guha 2011). In 2013, Molina et al.
(2013) introduced a new way to monitor the drug interactions
inside cells by performing thermal shift assays on cells, ly-
sates, or tissues, which is also based on ligand-induced ther-
mal stabilization of target proteins, but no protein purification
steps are needed. The cellular thermal shift assay (CETSA)
functions by heating cells, whereby the proteins inside also
unfold and precipitate—similarly to the in vitro approaches
described above. After extract and centrifugation, the remain-
ing soluble proteins were separated from the precipitate and
quantified by Western blotting. Plotting the amount of soluble
protein based on the Western blot signal strength provides the
CETSA melting curve. In the preliminary study, dihydrofolate
reductase (DHFR) and thymidylate synthase (TS) were select-
ed as targets for the antifolate cancer drugs methotrexate and
raltitrexed. Samples were exposed to either of the two drugs
either as intact cells or as lysates. The result showed a distinct
thermal shift increase for DHFR- or TS-treated cells compared
with controls. To investigate drug concentration effects, an
isothermal dose-response (ITDR) method has also been devel-
oped to assess binding of compounds. In this approach, cell
lysate is aliquoted and exposed to different serial concentra-
tions of the drug, while keeping the temperature and heating
time constant. Following Western blotting, the signal strength
can indicate when a higher drug concentration is needed for
saturation, which is potentially more useful than commonly
used half-saturation points (i.e., ICsq, K4) which are related to
affinity. Further research validated that the CETSA method
can be applied as a reliable biophysical technique for studies
of ligand binding to proteins in cells and lysates. In a recent
report, Maji’s group screened a library with more than 2000
small molecules in order to identify inhibitors of CRISPR-
Cas9, which could then be used for the precise control of
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CRISPR-Cas9 in genome engineering. CETSA was used to
confirm a hit compound that disrupted the SpCas9:DNA in-
teraction and decreased the 7, of SpCas9 by ~2.5 °C in
compound-treated cells (Maji et al. 2019). In another
structure-based design of a small molecule to target the inter-
action of menin-MLL in leukemia, an irreversible, highly po-
tent chemical M-525 was also confirmed by CETSA in a
cellular assay (Xu et al. 2018). The covalent-binding com-
pound enhanced the thermal stability of menin in both
MV4;11 and MOLM-13 cells; the concentration of M-525
used here was as low as 0.4—1.2 nM. Furthermore, CETSA
also showed that the compound specifically targeted menin,
and no effect was detected on another MLL-binding protein
WDRS.

Conclusion

DSF constitutes a robust biophysical technique for studying
protein stability in a particular environment, either within se-
lected buffer conditions or when (partially) saturated with li-
gands of interest. The protein unfolding thermodynamic pa-
rameter ATy, is monitored as the primary indicator to justify
stability changes of the target protein, no matter whether tar-
gets were in a purified form, in lysate, cells, or even tissues.
Newly emerged label-free nanoDSF approaches especially
obviate the need for dyes, allowing the same approach to be
applied to membrane protein research, simultaneously ad-
dressing problems caused by the interaction between dye
and the hydrophobic surface of proteins, or the detergent ad-
ditives applied and interactions between the dye and other
molecules in a screen. Over the almost two decades since it
first appeared, the DSF technique has been used to character-
ize the thermal properties of numerous proteins, aided by low
sample consumption and high throughput—making DSF
suitable for optimizing buffer ingredients in crystallization,
as well as screening large ligand libraries. In terms of
ligand-binding validation, although many successful cases
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have been reported in the literature, it is still important to be
aware that this correlation typically occurs for similarly
structured compounds within a series, and stubbornly pur-
suing fragment hits on the basis of significant thermal shifts
may mislead further optimization. It should also be borne in
mind that ligands can interplay with both the folded and
unfolded states of target proteins, and a negative shift in
melting temperature does not exclude binding to the native
state. Unlike titration-based techniques such as ITC, MST,
and SPR in which interaction behaviors of receptors rely on
different serial concentrations of ligands and end-point
measurements, DSF is sensitive to all stages along a
binding pathway, complicating its use to determine the
affinity of molecules toward mobile protein receptors.
Nevertheless, the robustness and applicability of DSF to
address various problems across such a wide range of
sample types should ensure its status as a central
technology of modern drug discovery.
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