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Abstract

Purpose: Bayesian theory provides a sound framework for ultralow-dose computed tomogra-
phy (ULACT) image reconstruction with two terms for modeling the data statistical property
and incorporating a priori knowledge for the image that is to be reconstructed. We investigate
the feasibility of using a machine learning (ML) strategy, particularly the convolutional neural
network (CNN), to construct a tissue-specific texture prior from previous full-dose computed
tomography.

Approach: Our study constructs four tissue-specific texture priors, corresponding with lung,
bone, fat, and muscle, and integrates the prior with the prelog shift Poisson (SP) data property
for Bayesian reconstruction of ULACT images. The Bayesian reconstruction was implemented
by an algorithm called SP-CNN-T and compared with our previous Markov random field
(MRF)-based tissue-specific texture prior algorithm called SP-MRF-T.

Results: In addition to conventional quantitative measures, mean squared error and peak signal-
to-noise ratio, structure similarity index, feature similarity, and texture Haralick features were
used to measure the performance difference between SP-CNN-T and SP-MRF-T algorithms
in terms of the structure and tissue texture preservation, demonstrating the feasibility and the
potential of the investigated ML approach.

Conclusions: Both training performance and image reconstruction results showed the feasibility
of constructing CNN texture prior model and the potential of improving the structure preser-
vation of the nodule comparing to our previous regional tissue-specific MRF texture prior model.
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1 Introduction

Concerns about the radiation risk from the widely used computed tomography (CT) have moti-
vated tremendous efforts toward producing clinically useful images at the lowest dose pos-
sible, i.e., ultralow-dose CT (ULdCT). However, the image quality will degrade seriously in the
ULACT case. To address ULACT image reconstruction challenges, Bayesian theory establishes a
sound framework with two terms for modeling the data statistics property (fidelity term) and
incorporating a priori knowledge for the to-be-reconstructed image (prior term).! This study
aimed to investigate the feasibility of using a machine learning (ML) strategy, particularly a
convolutional neural network (CNN), to construct a tissue-specific texture prior from previous
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full-dose CT (FACT) and to integrate the prior with the prelog shift Poisson (SP) data property
for Bayesian reconstruction of ULACT images.

Tissue textures are recognized as useful biomarkers for clinical tasks and play an important
role in computer-aided detection and diagnosis.>® Previously, we proposed a Markov random
field (MRF)-based tissue-specific texture (MRF-T) prior*™® to preserve the tissue textures in the
ULdCT images, which demonstrated clinical benefit in the task-based evaluation.”® However,
the MRF-T model assumed that the center pixel within the patch has a linear relationship with its
neighbor pixels. Therefore, this study aims to investigate the feasibility of “learning” the rela-
tionship without any assumption (of linear, nonlinear, or other forms) to benefit from the devel-
opment of ML, which has been successfully applied in various areas in medical imaging.’™"
Particularly, we propose to construct a CNN-based tissue-specific texture (CNN-T) prior taking
advantage of its strength in pattern recognition, which may have the potential to preserve more
detail, compared to our previous MRF-T model.

This study further integrates the proposed CNN-T model with the prelog SP data property for
Bayesian reconstruction denoted as SP-MRF-T to address the low photon counts and high noise
level in ULACT. In a CT scanner, noise distribution is complicated by a cascade of random
processes, such as photon generation, transmission, detection, electronic readout noise, and so
on.'!” The prelog model'®?° directly uses the transmission data from the detector, which can
better utilize the statistical property of the x-ray quanta and the electronic background noise in
its cost function. It also overcomes many difficulties associated with the log transformation of
the postlog domain algorithm®' = in the ultralow-dose situation, such as undefined negative
values,>*? weight estimation from the noisy data,?>**?" and so on. Therefore, it has shown
theoretical advantages in ULJCT image reconstruction. In the prelog domain algorithms, the
SP model is a good approximation to describe the signal property?®*® and thus it is adapted
for usage in this study.

In summary, the main contribution of this work is twofold. (1) We investigated the feasibility
of constructing the CNN-T prior with no assumptions, comparing it to our previous MRF-T
model. Compared to some existing CNN priors, which were proposed as a denoiser where the
model parameters were trained with a pair of noise-free and noisy images,’ the presented CNN
prior in this study not only denoises but also preserves tissue image textures by training the
model parameters to learn the tissue textures, thereby improving the model’s clinical impact.
(2) Comparing the presented SP-CNN-T method with our previous SP-MRF-T algorithm,
we explored the potential benefit of CNN-T in texture preservation in ULdCT image reconstruc-
tion. Preliminary results were reported at the 15th international meeting on fully three-dimen-
sional image reconstruction.”

The rest of this paper is organized as follows. Section 2 describes the proposed SP-CNN-T
algorithm and the network design of the CNN priors. Section 3 describes the experiment design
and presents the results. Section 4 describes discussion and conclusions.

2 Method

In this paper, we propose a machine-learning approach to construct a tissue-specific texture prior
and integrate the prior with the prelog data statistical model under the Bayesian image recon-
struction framework for the ULJCT imaging. This section first introduces the Bayesian image
reconstruction framework. Then, we describe the “learnt” CNN-T prior within the Bayesian
framework. The overall architecture of SP-CNN-T algorithm is presented in the following.

2.1 Bayesian Image Reconstruction Framework

Given a set of acquired transmission data, denoted by a vector Y € R™!, where I is the number
of data elements, we are interested in a solution, denoted by a vector g € R’*! with J number
of image voxels, which maximizes the posterior probability p(u|Y). By the Bayesian theorem,
we have

p(Y|u)p(p)

pluly) = PR

6]
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where p(Y) becomes a constant when maximizing the posterior probability; therefore, p(Y) will
be ignored.

For the acquired low-dose transmission data, following the description in the study of Xing
et al.,”® we introduce an artificial quantity Y;:Y; = Y™ — m; + o7, which yields

[Y,] ~ Poisson{b,e”" + 67}, @

where Y is the measured photon counts at the detector, and m; and ¢; are the mean and standard
deviation of the electronic noise, respectively. Notation b; is the incident photon counts, and
l; is the i’th line integral along the x-ray path. Let the log data likelihood or fidelity term be
In[p(Y|p)] and the log prior term, In[p(u)], be described by an MRF model, then the solution
for Eq. (1) can be obtained by minimizing the objective function ®, in which

ji = arg min — Z{Y,- In(b;e M + 67) — (b;e™™i 1 62)} + AR(n), 3)
n

i

where A is the projection matrix and R(p) is the unknown prior, which will be learnt by CNN.
Notation 4 is the hyperparameter to balance the strength between the fidelity term and prior term.
The introduced artificial quantity enables us to model the fidelity term with the SP distribution in
the prelog domain for more accurate modeling. Here R () enables us to incorporate our prior
knowledge as constraint to improve the image reconstruction performance, which could be any
assumption, such as piecewise smooth and low-rank property. There are many types of prior or
regularization with the purpose of image denoising, deblurring, edge preserving, piecewise
smoothing, etc.’**>? In this study, we are more interested in the clinically important texture.
In next section, we introduce how to construct the tissue-specific texture prior using the ML
approach.

2.2 CNN-Based Texture Prior Learning

Tissue texture reflects the voxel gray-level distribution across the field of view or the contrast
between one voxel and its neighboring voxels. Given a pixel and its surrounding neighbors, we
define the tissue-specific texture prior to be the relationship between them, where the center pixel
value could be inferred by its neighbors based on the pattern specified by its texture. Therefore,

we proposed the tissue-specific texture prior in the following analytical form:*°

w, = arg min|w’_z Z (m — whpg )2, 4)

r me&Region(r)

where w, represents the texture prior weights of tissue r, m represents voxels index, €, denotes
a small fixed neighborhood region of the voxel m, and pq are voxels within Q,,. This tissue-
specific texture prior has demonstrated certain advantages in clinical tasks.”® According to
Eq. (4), the texture prior assumes that the center voxel has a linear dependence on its neighboring
voxels. Therefore, we aim to construct such a prior without the linear assumption benefiting from
the ML technology. We denote the trained CNN model as G(.) and the predication model can be
expressed as

HPm = G(I‘Q,,,)‘ 5

CNNs G(.) could learn a linear/nonlinear or other form model for the relationship between
a pixel and its neighbors. Full-dose data were used to train this CNN network. After training,
the CNN network can represent the relationship that all neighboring pixels follow.
Following the idea of tissue texture, constructing the CNN texture prior is straightforward.
We can input the neighboring voxel values to the machine model and ask the machine to predict
the center voxel value. By training so, the machine can learn the relationship or the texture. The
idea and network are shown in Fig. 1. We design a three-layer CNN model to learn such relation-
ship from data. As our texture prior is tissue-specific, we build four CNN models for lung,
bone, fat, and muscle, respectively. This model is trained offline to learn the texture-constrained
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Fig. 1 The network design of the proposed CNN model.

predictions using the task of predicting a pixel value from its neighbors. Our CNN model has
one convolution layer with 16 kernels of size 3 X 3. After the convolution, we use rectified linear
unit as the activation function. In the last layer, we apply one fully connected layer with 784 and
1 neurons. The input of the model is a patch from g with center pixel removed and to-be-
estimated. The output is the estimated value of the center pixel. Mean square error (MSE) is
used as training loss.

2.3 Proposed SP-CNN-T Algorithm

We construct one CNN texture prior, which is a built network saved in the computer. Now,
we need to integrate this prior term with the Bayesian image reconstruction framework.
Let an auxiliary variable be z, which satisfies z = u. Equation (3) can be expressed as

fi = arg min — Z{Yi In(be~™i 4 67) — (bje™™i +62)} + AR(z), st.z=p. (6)
u

By half—quadratic splitting method, we have

fi = arg min =Y "{¥; In(be™ ™ 4 67) — (bie™™ + 62)} + AR(z) + gllz -ul*. D
14

i

where the quadratic-type penalty was used. Here, § is the penalty parameter, which varies in a
nondescending order. Then, Eq. (7) can be solved by the following splitting iterative scheme:*'

! ®)

{ﬂk+1 = arg min — > {Y; In(bje™ ™ + 67) — (bie™ ™ 1+ 62)} +§ |l — 212
)/
Zp1 = arg rnzin Bllz = pesa|* + 4R (2)

where k indicates the iteration number. Using Eq. (8), the fidelity term and regularization term
are decoupled. The fidelity term is associated with a quadratic regularized minimization prob-
lem, i.e., the first part of Eq. (8). Surrogate function strategy was used to detangle pixels in
the first part of Eq. (8) as done in the study of Gao et al.**. Replacing the prior term of Eq. (4)
from the study of Gao et al.,>* we obtained the updated formula for the first part of Eq. (8)

K
e i +o;

i Aei(IF) (Z, Aij) +p

Ay iy e
2 ST A, bie™! <b = 1> + Plue — zi)

Bl = MPi — 9

The regularization term is involved in the second part of Eq. (8) with two terms: f||z — g1 ||
constrains that the solution z should not be too far away from g updated by the fidelity. AR(z)
constrains that z should satisfy some neighborhood relationship, which is produced by the CNN
texture prior defined in Eq. (5), i.e., substituting R with ||z — G||?, we obtained

. P
2y = arg mzln§||z—ﬂk+1||2+/1||z—G(I‘fz+])||2 (10)
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Fig. 2 Architecture of the proposed SP-CNN-T.

where the above equation builds the connection between the proposed CNN texture prior and the
data fidelity constraint under Bayesian framework. Quadratic form penalty was used for both
constraint and prior knowledge. As introduced above, the CNN texture prior G(.) was trained
based on the FACT. During the iteration, it takes the intermediate of low-dose CT (LdCT) and is
used to predict the center pixel based on its neighboring pixels of LACT. This is the key point of
incorporating prior knowledge from FACT into LACT reconstruction. Unlike universal model
for the whole image, such as Huber MRF weights, it considers the tissue types. In addition,
this learning method makes the tissue-specific texture more image-adaptive, which means it can
recognize more substructure. This is further discussed in Sec. 3.

Equation (10) could be simplified to Eq. (11) with « representing the balance between fidelity
and texture constraints

Zepr = arg min ||z = ey | + allz = Glug ™I a=24/p. (11)

The solution of Eq. (11) is

 Hp T aG(I‘éz“)

L1 = T+a (12)

Initially both § and « are set to zero. The attenuation map with zero initial was updated only by
the fidelity term. After about 500 iterations, we start to increase the . Empirically, we varied f in
an exponentially increasing way, meaning f changes slowly at the beginning, then much faster at
later stages. We used # = 1.23*, where k is the iteration number since we start to change f. The f3
changed from around 1 to 107 before the convergence criteria were met. The convergence criteria
are MSE between z and u < 1 X 1076, As discussed above, a represents the balance between
fidelity and prior term. We choose a = 1, which gives us current reasonably good results.

The flowchart of the proposed SP-CNN-T is shown in Fig. 2. The pseudocode of SP-CNN-T
is summarized in Table 1.

3 Experiments and Results

Two patients, who were scheduled for CT-guided lung nodule needle biopsy at Stony Brook
University Hospital, were recruited for this study under informed consent after approval by the
institutional review board. The patients were scanned with full-dose settings, the voltage at
120 kVp, and the tube current at 100 mAs. From here, we obtained the raw transmission data
of two sets of FACT for the following study.

Based on two patients’ scans, we first used one dataset to study the feasibility of constructing
texture prior using the ML. Then, without changing any network design in the ML model
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Table 1 Pseudocode of the proposed SP-MRF-T algorithm.

Algorithm: SP-CNN-T

Learn the tissue-specific MRF coefficients:
Segment the full-dose filtered back projection (FBP) reconstructed image into four tissue types.
Learn the MRF coefficients for each tissue type using the CNN model.
Prelog reconstruction for ULACT:
Initialization u by FBP.
Set parameters: a and g
While stop criterion is not met:
Update u by Eq. (9).
Segment p to lung, fat, muscle, and bone.
for pixel j inside lung, fat, muscle, and bone:
determine tissue type for pixel j;
update z by Eq. (12).
End

End until the stop criterion is satisfied.

and parameters in the image reconstruction, we performed the experiments on the other dataset.
It not only validates the proposed method in a more diverse data but also helps us further under-
stand whether the proposed CNN prior model is sensitive to the data variation or not. In addition,
based on one patient’s scans, we first performed experiments using the learnt CNN prior and
simulated ULJCT transmission data from the same FACT slice, which means that the machine
has “seen” the exact image during the training. Then, we performed the experiments using the
CNN prior from the neighboring adjacent slices for the target slice reconstruction. Because
this proposed tissue-specific CNN prior does not require strict registration between previous
FdCT and current ULACT scan, the second experiment can investigate the performance with
the mismatch of slice location and the tissue regions.

3.1 CNN-Based Tissue-Specific Texture Prior

Following the instruction in Sec. 2, we first segmented the FACT image into four tissue types.
For each tissue type, patches with 7 X 7 size were extracted and used as the training samples.
For the experiment data, there are around 20,000 training samples for lung, fat, and muscles,
and around 2500 training samples for bone region. To train CNN models, we select RMSprop
optimizer,** with learning rate set to 5 x 107>, Early stop® is adapted to prevent overfitting in
training. We initialize the weights of convolution kernels with the method introduced in the
study of He et al.*

Figure 3 shows the training performance of the CNN model for lung region. Figure 3(R)
refers to reference image, which is the ground truth. Figure 3(a) shows the CNN-predicted image
by inputting patch of reference image and center pixels removed and Fig. 3(b) shows the linear
MRF model-predicted image with the same input of CNN model. The structure predicted
by CNN model keeps sharp at the edges and the blood vessels can also be seen clearly.
There is a blurring in analytical MRF texture model, since we retreated the whole lung tissue
as a region previously. Comparing the nodule region (yellow box in Fig. 3) of the two prediction
models with ground truth, the CNN model can effectively learn the texture consistency constraint
with better the local structures preserved.
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Fig. 3 The training performance of the CNN model for lung. (R) Reference image (ground truth).
(a) Reference image predicted by CNN model. (b) Reference image by the linear analytical model.
The display window is (—0.007,0.022) mm~".

3.2 ULACT Image Reconstruction

From the transmission data, we simulated the transmission data of the ULdCT level based on the
physics mechanism of the CT signal generation. The signal is approximated as a combination of
Poisson statistics and Gaussian statistics. The mean of the Poisson distribution for one certain
mAs level can be obtained from the semiexperimental model in Refs. 27 and 37, where the
photon count per ray is linearly dependent with the x-ray current settings at the fixed voltage
setting. We then added Poisson noise to the x-ray quanta and combined it with the Gaussian-
distributed electronic noise. In this study, the mean and standard deviation of the electronic noise
are 10 and 25, respectively, similar to the setup in the study of Li et al.*®

For comparison purpose, we implemented our previous proposed SP-MRF-T method, which
use the SP model for the fidelity term and linear analytical MRF texture model for the prior term
in the cost function. Moreover, SP-No Prior (with no prior applied) and SP-Huber-MRF (Huber
MRF weights®) were also employed for comparison. The element of well-established Huber
MREF weights is inversely proportional to the Euclidean distance between two voxels, which
consider the piecewise smoothing spatially invariantly inside one region and preserve the edge
sharpness of the region. For the analytical prior algorithms, all of them are MRF-type weights
and with the same window size. They share the same optimized parameters. For example, the
reconstruction stopped after 1500 iterations. The hyperparameter to tune the prior strength is set
as 800. For CNN prior, the parameters have been discussed above.

The reconstruction results are compared in Fig. 4. First row shows the reference images.
Second to fifth rows are the results of SP-No Prior, SP-Huber-MRF, SP-MRF-T, and
SP-CNN-T, respectively. First and second columns are the reconstructed images and their
zoomed-in images with display window (0, 0.035) mm~'. Third and fourth columns are differ-
ence images comparing to the reference images with display window (—0.001,0.020) mm~".
The nodule region, which is also our region of interest (ROI), is labeled in yellow box. In addi-
tion, one muscle region is also marked in a red circle for comparison. Without prior, high-level
random noise is observed in images of SP-No Prior. It is clear that the prior can effectively
suppress the noise. Comparing the ROI region, the SP-CNN-T outperforms other methods with
least difference image.

Since the nodule is of the most clinical interest, we then focus our evaluation on the nodule.
In this case, the nodule is glass-ground like, which is an important indicator for high chance to be
cancer. We compared the nodules reconstructed by the aforementioned four methods. The com-
parison is presented in Fig. 5. According to Fig. 5(a), without any prior, the structure is buried in
the noise. It is hard to identify the edges and blood vessels. The noise is suppressed significantly
by applying Huber MRF prior in Fig. 5(b) and tissue-specific MRF prior in Fig. 5(c). However,
the tiny structures were blurred to some extent. For example, the contrast of the “glass edge” of
nodule (labeled by the yellow arrow in Fig. 5) is hard to identify. Our proposed CNN texture
prior preserves the tiny structures well while suppressing the noise.

Quantified measures of the ROI are summarized in Table 2. We use the MSE, peak signal-to-
noise ratio (PSNR), structure similarity (SSIM), feature similarity (FSIM),* and Haralick feature
(HF)* metrics to quantify the image quality. MSE gives a quality score based on the pixel-based
variation. PSNR evaluates the image quality in terms of noise suppression. SSIM evaluates the
image similarity at the structure-based stage. FSIM mimics the human visual system to evaluate
the image quality.® HF gives the quality score from the task-based evaluation view, since HFs
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Fig. 4 Comparison of reconstructed images using different prior models. First row consists of
reference images. Second to fifth rows contain results of SP-No Prior, SP-Huber-MRF, SP-
MRF-T, and SP-CNN-T, respectively. First and second columns are reconstructed images and
their zoomed-in images with display window (0, 0.035) mm~". Third and fourth columns are differ-
ence images comparing to the reference images with display window (—0.001,0.020) mm-~".

have been widely and successfully used in various clinical tasks.***' Since the HF is a set of
quantities or in a vector form, we use the Dice coefficient to quantify the quality.* For MSE,
a smaller value means better image quality. For the other four metrics, higher values mean better
image quality.

According to Table 2, quantified measures agree well with visual inspection. Without any
prior, the image quality was worst for the five metrics. SP-Huber-MRF method improved the
image quality. SP-MRF-T method achieved a further improvement over SP-Huber-MRF
method, which agrees well with our previous study.*® The proposed SP-CNN-T outperforms
the other models for all five metrics, which demonstrates the potential of ML to further improve
the analytical model. There may be two main reasons for the gain of the CNN-T over MRF-T.
One is the linear assumption as mentioned in Sec. 1. The ML model removes this assumption and
could be any form inside its model, which may bring in the gain by higher order approximation.
Another reason could be the power of ML model in texture pattern or substructure recognition.
Therefore, the CNN-T can adapt the weights in the model according to the texture pattern
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Fig. 5 Comparison of ROI in reconstructed images using different prior models. (R) Full-dose
image reconstructed by the FBP, which is treated as the golden standard reference. (a)-(d) The
used priors are no prior, Huber MRF prior, tissue-specific MRF prior, and CNN prior, respectively.
The display window is (—0.007,0.022) mm~'. (e)—(h) Difference between (a)—(d) and the refer-
ence (R).

Table 2 Quantified measures ROI in reconstructed images using different prior models.

MSE PSNR SSIM FSIM HF
SP-No Prior 4.4437 x 1078 53.5226 0.9946 0.9914 0.1333
SP-Huber-MRF 1.9420 x 10°© 57.1175 0.9971 0.9935 0.2500
SP-MRF-T 1.9098 x 107® 57.1902 0.9972 0.9946 0.4444
SP-CNN-T 1.3760 x 10-6 58.6137 0.9980 0.9960 0.6667

described by the neighboring voxels. For example, there are some subsubstructures in the lung
region, such as vessel, alveolus, etc. The CNN model can somehow recognize such substructures
and adapt the corresponding weights to make the texture prior more accurate. Similar work was
also explored in our previous analytical MRF texture model.* In the initial work, we derived the
texture MRF weights for each individual patch of the FACT and then used the weights as prior for
the corresponding patch in its LACT image reconstruction.* This patch-based MRF texture prior
works perfectly, but it requires strict image registration between the FACT and LdCT. Then, we
developed the regional texture MRF model, which derives one set of MRF weights from the
whole tissue and applies it into that tissue region, e.g., lung, bone, fat, and muscle.® Despite
the small variation within the same tissue region, the regional MRF texture prior model works
well.”® Although the patched-based model works better than the regional model, the regional
model makes it possible in practical use. Similarly, the ML model may have the ability to
recognize substructures within the tissue region and thus works better than the analytical model,
where one set weight is used for the whole tissue region.

3.3 Robustness Study

The proposed SP-CNN-T outperforms other comparison methods in one of our experimental
dataset. Without changing any settings in the CNN training model and hyperparameter values
in the image reconstruction, we evaluated this method on another dataset. Since experiments
above have already shown the superiority of the texture prior, we now mainly compare the
analytical texture prior model with the ML prior model.

The reconstruction results of another dataset are shown in Fig. 6. The result on top is from
SP-MRF-T method, and of the bottom from SP-CNN-T. For each row, from left to right, the
picture is reconstructed image, the image difference from FACT (reference), the image difference
of lung from FACT, and the image difference of nodule from FdCT, respectively. The nodule
region is marked in yellow box. The difference image shows larger errors at lung nodule (labeled
by the red arrows) in SP-MRF-T than SP-CNN-T but comparable error in the rest nodule region.
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Fig. 6 Comparison of reconstructed images by (a) SP-MRF-T and (b) SP-CNN-T. For each row,
from left to right, the picture is the reconstructed image [the display window is (0,0.035) mm-~1],
the image difference from FACT (reference), the image difference of lung from FACT, and the
image difference of nodule from FACT. The nodule is labeled in yellow box.

Table 3 Quantified measures ROI in reconstructed images using different prior models.

Methods MSE PSNR SSIM FSIM HF
SP-MRF-T 2.8991x 1076 55.3773 0.9941 0.9958 0.3529
SP-CNN-T 1.6470 x 1076 57.8329 0.9977 0.9982 0.6000

This also indicated our analysis above. MRF-T and CNN-T perform similarly in most of tissue
region, but differently at some substructure location. Quantified measures of the ROI are pre-
sented in Table 3. The metric values agree well with our visual judgment and also agree with
our observation on the other dataset. Improved performance was observed in SP-CNN-T over
SP-MRF-T through five quantified metrics in terms of noise suppression and texture preserva-
tion. Possible reasons for this gain have been discussed above in reference to the study by Zhang
et al.* because of their consideration of the neighboring information.

Experimental results from both datasets agree well with each other. First, we demonstrate the
superior performance of the proposed SP-CNN-T with different types of lung nodules. Second,
the “learning” network designed based on the CNN is stable to the data variation. However,
comparing both cases, we found that the training samples of each tissue type are comparable.
For example, the lung region area of two patients is very similar. To further study the sensitivity
of the network may require various data samples. For the hyperparameter, we chose it as 800
according to our previous experience. Usually, it will give us comparable and reasonable results
when the parameter is within one range. There are also some studies**** to tune the hyperpara-
meters using the ML method. This will be one of our future interests.

3.4 CNN-Based Tissue-Specific Texture Prior from Adjacent Slices

In our previous study,® it is observed that the tissue textures from the nearest three neighboring
slices are very similar to that of the target slice. This observation relieves the constraint of strict
slice registration. Therefore, we further investigate the feasibility of extracting the CNN-T prior
from the neighboring slices for the target slice. We first use the CNN prior, which was trained by
adjacent slice (CNN-TA) around the target slice of the full-dose scan to predict the target slice of
the FACT. Then, we applied the CNN-TA prior to reconstruct the ULACT images of the target
slice.

We denote the target as slice 11, of which two adjacent slices 12 and 13 are used to train the
CNN model. Then, we use the trained CNN-TA to predict target slice directly by feeding in the
patches of slice 11. Figure 7 shows the zoomed ROI of predicted target slice from CNN models
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Fig. 7 Comparison of ROI in full-dose reconstructed images predicted by different CNN prior.
(R) Full-dose image. (a)-(c) The used CNN priors are trained by slices 11 (target slice), 12 (adja-
cent slice), and 13 (adjacent slice) of the full-dose scans, respectively. The display window is
(=0.007,0.022) mm~'. (d)—(f) The difference between (a)-(c) and the reference (R).

trained by different slices as well as their difference to the reference. By visual assessment, the
predicted images are very similar to each other, which agreed with our expectation that the adja-
cent two slices share the similar texture. From their difference, the farthest slice predicted images
with relatively large difference comparing to the other two slices as expected.

We use the CNN-TA as the prior in the SP-CNN-T algorithm to reconstruct the ULdCT scan
of slice 11. The zoomed ROIs of reconstructed images are shown in Fig. 8. The CNN-TA has a
similar performance with the CNN-T, where no obvious difference is shown among Figs. 8(a)—
8(c). However, the difference images of Figs. 8(d)—-8(f) show dissimilar pattern compared with
Figs. 7(d)-7(f). In Fig. 7, the difference images have larger values around structure. The differ-
ence images of Fig. 5 seem following random distribution. This observation indicates the effect
of different noise strength of the FACT and ULACT. In both FACT and ULACT cases, the CNN
prior trained by adjacent slices can be used for the reconstruction of the target slice. In other
words, no strict registration is required for the proposed CNN texture prior (Fig. 9).

Quantitative measures on the results of different reconstruction methods mentioned above are
summarized and shown in Fig. 7. The quantified measures agree well with our visual judgment.
Overall, the proposed texture prior whether analytical or CNN type performs better than other
comparison models in terms of noise suppression and texture preservation. The CNN texture

Fig. 8 Comparison of ROI in low-dose reconstructed images using different CNN prior. (R) Full-
dose image reconstructed by the FBP, which is treated as the golden standard reference.
(a)-(c) The used CNN priors are trained by slices 11 (target slice), 12 (adjacent slice), and
13 (adjacent slice) of the full-dose scans, respectively. The display window is (—0.007,
0.022) mm~". (d)-(f) The difference between (a)-(c) and the reference (R).

Journal of Medical Imaging 032502-11 May/Jun 2020 « Vol. 7(3)



Gao et al.: Constructing a tissue-specific texture prior by machine learning. ..

5 1
2 MSE 0.998 SSIM
3 0.996
2 0.994
0 0.99
for \3 Bt B n 13 q0f _VRF g1 & xl 13
N0 "‘S“‘:_\.\u\:e““'\‘K - MRF s?-C“Nsv_cNN AR oW TR op-NO ?‘S‘,.\Aube‘ MR o s?'CNNSp.cﬂN AR oW TR
62
1
60 PSNR 0.998 FSIM
58 0.996
6 0.994
0.992
54 0.99
52 I 0.988
50 0.986
fof 3 = B 3 3 5 2 3
o v‘s\;ﬂme‘—w\‘ - NRET o o CNNTM; AT Novv\" per- MR S‘,,N\a? - gNﬂ C“NWM AT

1

08 HF (Dice)

_IIIIIl

o"“° et _MRE S?MRFT S?CNNT CNNTM’L NN‘pA%

oo\

Fig. 9 Performance comparison of different methods with MSE, PSNR, SSIM, and Haralick
measures.

prior performs better than the analytical texture model, which fits our expectation that the CNN
prior removes the line assumption of the analytical prior, which may enable it a better approxi-
mation of texture pattern. Similar performance of CNN prior from adjacent slices is observed,
which also makes the proposed CNN-T friendly and applicable in practice.

4 Conclusions and Discussion

In this paper, we proposed a way of constructing tissue-specific texture prior by ML from pre-
vious FdCT scan for current ULACT image reconstruction. This work expanded our previously
proposed analytically derived texture prior by removing the linear assumption of the previous
model.® We further integrated the machine-learnt texture, CNN-T, with the prelog SP model
(SP-CNN-T) under the Bayesian law for ULJCT imaging reconstruction. The proposed SP-
CNN-T method can adaptively extract the MRF textures because of its benefit from the power
of CNN in pattern or substructure recognition. By applying this adaptive tissue texture prior, the
nodule texture can be preserved significantly. The feasibility and potential of this investigated
ML approach is evaluated by clinical patient datasets.

This paper utilized CNN to learn information from FACT as a prior for ULdCT image recon-
struction. This method can be adapted for applications with available previous FdCT, e.g., inter-
val evaluation, image-guided interventions, dynamic studies, biopsy, etc. Even though promising
results have been demonstrated, a task-based evaluation is needed by more clinical datasets for
each specific clinical task. This is one of our future research tasks. Another remaining issue that
shall be addressed is the availability of previous FACT. Although the proposed CNN-T does not
require strict registration between the FACT and ULACT, it still extracts information from its
previous FACT, which may not always be available in all clinical cases, such as lung screening.
We have performed a pilot study of extracting texture information from previous FACT database
to remove this constraint based on the analytical MRF texture model,” where encouraging results
have been shown. In the future, we will also develop this CNN-T model to extract prior infor-
mation from FACT database and evaluate the developed model toward its application in clinical
practice.
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