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Abstract: Recent prediction on the heavy statistical correlation between the mechanical properties
of fiber reinforced composite (FRP) raises new concerns on the accurate reliability evaluation of
composite structures, but such statistical correlation still lacks experimental verification. In this work,
an experimental methodology is proposed to determine the statistical correlation between mechanical
properties of unidirectional FRP composite. A rectangular shaped carbon fiber reinforced plastic
(CFRP) specimen with a circular hole is loaded by tension, and 3D digital image correlation (DIC)
is employed to characterize the heterogeneous strain field around the hole. Virtual field method
(VFM) is used to derive E11, E22, ν12, and G12 of specimens. Specimen configuration considering fiber
angle and hole diameter is optimized to achieve accurate determination of correlation coefficients.
Experimental results on the linear correlation coefficients between E11, E22, ν12, and G12 agree well
with previous theoretical predictions.
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1. Introduction

Fiber reinforced plastic (FRP) composite is intrinsically a multiphase and heterogeneous material,
and significant uncertainty has been observed on its mechanical properties [1–3]. Therefore, it is
essential to investigate the behavior of FRP structures in probabilistic manners [4–7], which allows
evaluation of structure reliability or failure probability by incorporating uncertainties. Most of the
relevant studies have calculated FRP structure reliability by considering ply-scale (or lamina-scale)
uncertainty such as ply mechanical properties, ply thickness, and ply angle [8–11] (to mention just a
few), where ply mechanical properties are often considered to be random variables independent from
one another. Recent theoretical studies by Shaw et al. [12] suggest that ply mechanical properties would
be statistically correlated, and Zhang et al. [13–15] further demonstrate that the statistical correlation
between ply in-plane elastic properties could heavily affect structure reliability. However, to the authors’
knowledge, the theoretically predicted statistical correlation between ply mechanical properties has
not been experimentally verified, and the statistics on the mechanical properties of fiber and matrix
employed for the prediction of ply-scale statistical correlation include many assumptions. This raises a
problem surrounding how much we can trust the statistical correlation predicted from micro-scale
constituent properties. Conventional macro-scale test methods on measuring FRP mechanical properties
suggested by (American Society for Testing and Materials) ASTM or (International Organization for
Standardization) ISO [16–19] only provide a certain modulus for a test configuration or a specimen,
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which provides no information on the statistical correlation between different moduli. This may be a
major reason why ply elastic properties are often considered to be statistically independent of one
another in most current studies on reliability evaluation of composite structures.

Several inverse methods, such as finite element model updating method [20], constitutive equation
gap method [21], and virtual fields method (VFM) [22], have been recently developed to derive all
constitutive parameters of engineering materials from one test configuration and one specimen.
The VFM is an efficient technique to characterize material properties, which avoids iterative problem
solutions and requires little computation effort. Pierron et al. [23] employ a combination of VFM and
speckled interferometry to achieve elastic properties of unidirectional glass–epoxy composite, using
the Iosipescu test configuration. Wang et al. [24] employ a combination of VFM and DIC (digital image
correlation [25,26]) to characterize elastic properties of orthotropic foam material. The VFM is also
used to identify dynamic orthotropic parameters of composites through ultra-high-speed imaging and
grid method [27–29].

The objective of this work is to experimentally identify the statistical correlation between in-plane
elastic properties of unidirectional FRP. Carbon fiber reinforced plastic (CFRP) specimens are fabricated
and a circular hole is cut out in the specimen central region. Hole size and fiber angle of the specimen
are optimized to achieve accurate determination of specimen elastic properties. DIC is adopted to
characterize nonuniform strain field around the hole, and the VFM is used to derive E11, E22, ν12, and
G12 of specimens. A total number of 15 specimens are tested, and linear correlation coefficients between
E11, E22, ν12, and G12 are determined. Experimental results show good agreement with previous
theoretical prediction on the statistical correlation between CFRP elastic properties.

2. Experimental Arrangement

The experimental apparatus and specimen configuration used in this work are shown in Figure 1.
The material studied in this work is CFRP with a configuration of T300/Epoxy. Unidirectional CFRP
specimens with dimension of 290 mm × 36 mm (length × width) were cut from a large composite
panel made by prepreg molding. The composite panel is made of 12 layers of prepreg, and its nominal
thickness is 1.5 mm. A circular hole was cut at the center of the specimen. In practice, to ensure high
enough measurement accuracy, a region of interest (ROI) is defined as a square area with a size of
36 mm × 36 mm around the hole, as shown in the dashed square marked in Figure 1. A specimen
with such a shape configuration would introduce heterogeneous stress state around the hole, which is
required to determine E11, E22, ν12, and G12 by the VFM. Fiber angle (θ) and hole diameter (φ) are to be
optimized so that the elastic properties derived by the VFM are least sensitive to strain measurement
error. The specimen was fixed between two grips mounted on an electromechanical test machine with
a load capacity of 50 kN. Tensile load was applied by moving the actuator of the test machine at a speed
of 1 mm/min until an initial crack occurs around the hole, which generated a clear burst noise. The very
low speed of load introduction enables the specimens to be subjected to quasi-static loading condition.

Three dimensional DIC was employed to characterize nonuniform deformation of specimens.
The fundamental principle of DIC is to calculate full-field displacement and strain by tracking specific
speckle patterns in digital images obtained from an objective. To form speckle patterns, all of the
specimens in this study were first painted by a layer of white coating and then sprinkled with black
particles. Images of specimen surface were recorded synchronously with the tensile load data read
from a load cell mounted on the test machine. Commercially available software Vic-3D (provided by
Correlated Solutions Inc., Irmo, SC, USA) was used to calculate full-field strain of specimens, and
details on the DIC set-up are listed in Table 1. The deformation field was calculated by employing
first-order shape function and criteria of sum of squared difference (SSD). Cubic b-spline interpolation
and binomial low-pass filter were selected to reduce noise on displacement measurement, and strain
was calculated from the displacement field after being spatially smoothed with a window size of
15 pixels. Such a configuration is considered to be capable of providing a strain field with good
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accuracy [30]. As possible misalignment between grips would introduce out-of-plane motion, 3D DIC
was employed so that possible out-of-plane motion could be compensated in strain calculation.Materials 2020, 13, x FOR PEER REVIEW 3 of 13 
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Table 1. Details on digital image correlation (DIC) set-up.

Technique Used Image Correlation

Subset size 31 × 31 pixels2

Shift 5 pixels
Camera 8 bit, Vic 5M

Field of view 35 mm (L) × 40 mm (W)
Image recording rate 2 Hz

Spatial resolution 0.0285 mm/pixel
Displacement resolution around 0.025 pixel

Strain resolution around 0.8 × 10−4

3. Virtual Fields Method (VFM)

The VFM is essentially based on the principle of virtual work [22,31]. The general equation of the
principle of virtual work can be expressed as:

−

∫
Vm

σ : ε∗dV +

∫
∂Vm

→

T .
→
u
∗

dS =

∫
Vm

ρ
→
a .
→
u
∗
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where σ.is the Cauchy stress tensor,
→

T the Cauchy stress vector acting at the boundary surface ∂Vm,
→
a is the acceleration vector over the volume Vm,

→
u
∗

is a zero-order vectorial function referred to as “
virtual displacement field”, ε∗ is the virtual strain tensor derived from

→
u
∗

and ρ is the materials density.
In Equation (1), the first item at the left hand side of the equal sign is ‘internal virtual work’, the second
item at the left hand side of the equal sign is ‘external virtual work’, and the item at the right hand side
of the equal sign is ‘virtual work’ done by acceleration fields. Under quasi-static conditions, the item at
the right-hand side of the equal sign is null.

The basis of VFM is to exploit Equation (1) with particular virtual fields. In the case of linear
elasticity, elastic parameters can be identified directly from a linear system which is built up through
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rewriting Equation (1) with as many independent virtual fields as unknowns, provided that the
measured kinematic fields are heterogeneous. It is worth emphasizing that most full-field measurement
techniques only provide deformation over the external surface of the solid. Therefore, specimens need
to be well designed so that the surface response is respective of the volume response. Typically, a
thin plate under plane stress assumption is usually employed. In the case of an in-plane test, if h is
the thickness of the volume Vm and S is the associated planar surface, for the quasi-static condition
investigated in this work, Equation (1) reduces to a 2D situation as:

h
∫
S

σ : ε∗dS =

∫
S

→

T .
→
u
∗

dL (2)

If a plane stress is applied on an orthotropic material, according to Hooke’s Law, the relationship
between Cauchy stress and linear strain in the material coordinate system can be expressed by:

σ11

σ22

σ12

 =


Q11 Q12 0
Q21 Q22 0

0 0 Q66



ε11

ε22

2ε12

 (3)

where Qij are the stiffness matrix components in the material coordinate system, σi and εi are the stress
and strain components, and subscripts 1, 2, and 6 represent the longitudinal, transverse, and in-plane
shear components, respectively. 2ε12 is equivalent to γ12, which is the shear strain in 1-2 plane. For
unidirectional FRP, Qij is expressed by:

Q11 = E11
1−ν2

12(E22/E11)

Q22 = E22
1−ν2

12(E22/E11)

Q12 = Q21 = ν12E11
1−ν2

12(E22/E11)

Q66 = G12

(4)

Since the CFRP specimen might be prepared with an off-axis angle θ, the strain characterized
in a reference system (denoted by x-y) needs to be firstly transformed to material coordinate system
(denoted by 1-2) by Equation (5) and is then substituted in Equation (2) to derive elastic properties
of specimens. 

ε11

ε22

ε12

 =


cos2 θ sin2 θ 2 cosθ sinθ
sin2 θ cos2 θ −2 cosθ sinθ

−2 cosθ sinθ 2 cosθ sinθ 2(cos2 θ− sin2 θ)



εx

εy

εxy

 (5)

To identify 4 independent stiffness components in Equation (4) using the virtual fields method, it
is necessary to define four independent virtual fields (u*) with respected to the required boundary
conditions. In the present case, since only the longitudinal resultant force is introduced in the present
work, the virtual longitudinal and transverse displacement along the bottom edge of ROI and the
virtual transverse displacement along the top edge of ROI are zero, and the virtual longitudinal
displacement along the top edge of ROI is a certain constant.

4. Optimization of Specimen Configuration

To achieve accurate determination of E11, E22, ν12, and G12 of unidirectional CFRP by the VFM, it
generally needs to generate a heterogeneous strain/stress field which contains recognizable deformation
components corresponding to all the four elastic properties. For the specimen used in this work, the
fiber angle θ and hole diameter φ would affect the heterogeneous deformation status around the hole,
and they consequently affect the accuracy of measurement of E11, E22, ν12, and G12. Considering the
main error source for the determination of E11, E22, ν12, and G12 is random error of strain measurement
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by DIC, an optimized specimen configuration should enable the determination of specimen elastic
properties to be mostly insensitive to the random error of strain measurement.

To achieve optimized specimen configuration which is mostly insensitive to random error of
strain measurement, specimen configurations with the hole diameter (φ) ranging from 6–8 mm and the
fiber angle (θ) ranging from 70◦–90◦ were investigated. The selected ranges are appropriate according
to the results obtained and discussed later. Linear–elastic 2D finite element (FE) modeling was first
conducted to investigate nonuniform strain field around the hole by commercially available software
ANSYS Ver14.5 (provided by ANSYS Inc., Canonsburg, PA, USA). As the specimen thickness is much
smaller than the width and length, assumption of plane stress state would be reasonable. Four-node
orthotropic shell element (shell181) was employed to build the FE model, and elastic properties used
for the element are shown in Table 2 [1]. The elastic properties of T300 carbon/epoxy shown in Table 2
are experimentally obtained following methodologies recommended by ASTM standard, and a total
number of 70 specimens were employed for the tensile and shear test. As the specimen used in this
work is also made of T300 carbon fiber and epoxy, values in Table 2 would be a good reference for
constructing FE models aiming for specimen optimization.

Table 2. Elastic properties of shell element in FE model [1].

Properties E11 E22 ν12 G12

Values 133.9 GPa 8.84 GPa 0.33 4.45 GPa

The geometrical size and mesh of the FE model are shown in Figure 2. To get an accurate
nonuniform strain field around the hole, fine and mapping mesh is generated in ROI in this work. An
elaborate mesh convergence study concerning the average strain over the ROI was obtained. Elements
at the edge of the hole were set at a size of around 0.6 mm × 0.8 mm (the edge of the circle is meshed to
identical 36 elements), and element size increases as the element moves away from the hole. Elements
out of ROI were set at a size of 2 mm × 2 mm. As mapping mesh is achieved, the element size in the
ROI changes slightly due to the variation of hole diameters from 6 mm to 8 mm, but the variation has
negligible influence on mesh convergence. Such mesh approach is considered to be appropriate to
represent nonuniform stress/strain state around the hole [32].Materials 2020, 13, x FOR PEER REVIEW 6 of 13 
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Figure 2. Geometrical size and mesh of finite element (FE) model.

Nodes on the left end of the geometrical model are constrained in the y-direction, and nodes on
the right end bear uniformly distributed tensile load at a total value of 10 kN. From experimental
observation, tensile load around 10 kN would trigger initial crack for specimens with considered fiber
angles and hole diameters. Figure 3 shows the nonuniform strain field derived from the FE modeling
(θ = 90◦ and φ = 6 mm), where only deformation in the ROI is considered in this work. Figure 3a plots
x-direction strain, showing that significant x-direction compressive deformation exists near the top and
bottom areas of the hole; Figure 3b plots y-direction strain, showing that significant y-direction tensile
deformation exists near the left and right areas of the hole; Figure 3c plots shear strain in the x-y plane,
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showing that significant in-plane shear deformation exists near the top-right, top-left, bottom-right,
and bottom-left areas of the hole.Materials 2020, 13, x FOR PEER REVIEW 7 of 13 
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90◦: (a) εx; (b) εy; (c) γxy.

To simulate the effect of limited strain accuracy after the actual strain measurement by DIC,
random strain field sampled from Gaussian distribution N (0.1 × 10−4) was added on the strain field
(εx, εy, and γxy) derived by FE modeling, as illustrated in Figure 4. The raw strain shown in Figure 4a
at element centroid and the related coordinate of these irregular elements in the ROI were first output
from ANSYS. A regular strain field consisting of 500 by 500 data points was then produced from the
raw strain and coordinate through interpolation (interpolation function named griddata with the type
of cubic in MATLAB was employed in the present work). The random strain field shown in Figure 4b
mimics strain measurement noise by DIC, and such strain measurement noise would consequently
lead to errors on the determination of CFRP elastic properties. Since noise of the strain measurement
of DIC also depends on specimen speckle quality, which varies slightly between different specimens,
strain noise at slightly larger magnitude than strain resolution shown in Table 1 was employed. To
evaluate the effect of hole-diameter and fiber-angle in the elastic property derived by the VFM method,
an error function beta is defined as:

β =
1
4

4∑
i=1

∣∣∣∆i − ∆i−re f
∣∣∣

∆i−re f
(6)

where ∆i denotes elastic property derived by the VFM method, and ∆i-ref denotes the reference elastic
property (elastic property used in the FE modeling). β represents a difference between elastic properties
obtained using noisy strain contour and the reference values. A smaller β indicates better accuracy on
the determination of CFRP elastic properties, and vice versa. For each specimen configuration, 1 × 104

samples of random strain field were drawn to add to the strain field derived by FE to calculate β. A
typical sample of random strain field is shown in Figure 4b. Results on the statistics of β for different
specimen configurations are shown in Figure 5. Figure 5 clearly shows that specimen configuration
with φ = 7 mm and θ = 90º provides the best prediction on the elastic properties considering both the
mean value and standard deviation of β, and this geometrical configuration is employed for specimens
in the following experimental study.
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5. Influence of Strain along Hole Edge on Measurement of Correlation Coefficients

In practical strain measurement using the subset-based DIC, strain in the subsets along the very
edge of the hole is missed due to the intrinsic nature of strain calculation algorithm, which might affect
the identification of parameter identification [33]. To investigate the effect of the strain missing at the
very edge of the hole, a comparison was conducted on deriving the CFRP elastic properties using the
strain contour derived by FE modeling in 2 cases, with and without the strain values of the elements
along the edge of the hole.

One thousand groups of the CFRP elastic properties (E11, E22, ν12, and G12) were firstly sampled
according to statistics in our previous theoretical work [13]. To account for their correlation, Gibbs
sampling method was employed, with the procedure as follows [34]:
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(1) Initiation of random variable xi (i = 1, 2, . . . , n);
(2) For t = 0,1,2, . . . , do the iterative sampling as follows:

1. x(t+1)
1 ∼ p(x1|x t

2, xt
3, · · · xt

n)

2. xt+1
2 ∼ p(x2|x t+1

1 , xt
3, · · · xt

n)

3. · · · · · · · · ·

4. xt+1
j ∼ p(x j|x t+1

1 , · · · , xt+1
j−1 , xt

j+1 · · · x
t
n)

5. · · · · · · · · ·

6. xt+1
n ∼ p(xn|x t+1

1 , xt+1
2 , · · · xt+1

n−1)

The Gibbs sampling method conducts the sampling process by constructing a Markov chain that
has the desired distribution as its equilibrium distribution. Since samples from the beginning of the
chain may not accurately represent the desired distribution, samples numbered from 1001 to 2000 were
used as the sampling result in this work. The 1000 samples on CFRP elastic properties are shown in
Figure 6. Based on the 1000 samples, linear correlation coefficients between CFRP elastic properties
were estimated by Equation (7):

ρ(x, y) =
Cov(x, y)√

Var(x)Var(y)
(7)

where ρ(x,y) denotes the linear correlation coefficient between random variables x and y, Cov(x,y)
denotes the covariance of x and y, and Var(x) denotes the variance of x. The estimated linear correlation
coefficients from the 1000 samples are shown in Figure 6, and they are very close (with a different less
than 0.05 on absolute value) to their corresponding reference values given in [13].Materials 2020, 13, x FOR PEER REVIEW 9 of 13 
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The 1000 group of sampled elastic properties were then employed to build 1000 FE models similarly
as shown in Figure 2 but with specimen configuration with φ = 7 mm and θ = 90◦ (configuration
for practical specimens), and each FE model provides a strain distribution similar to that shown in
Figure 3. The VFM was then employed to derive CFRP elastic properties from strain contour of the
1000 FE models, by considering and not considering strain of the elements at the edge of the hole.
Linear correlation coefficients between CFRP elastic properties are then derived using Equation (6).
The derived linear correlation coefficients are shown in Figure 7. It is clearly seen that neglecting
strain on elements at the very edge of the hole provides very similar linear correlation coefficients to
the scenario where strain of all elements is considered, and both scenarios provide linear correlation
coefficients very close to the corresponding true values, with a discrepancy smaller than 0.3. Therefore,
it is shown that the strain measurement missing at the very edge of hole would have negligible effect
on determination of linear correlation coefficients between CFRP elastic properties.
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6. Experimental Results

In this work, a total number of 15 CFRP specimens with the selected dimensions (see Section 4)
were tested following the procedure as introduced in Section 2. A typical heterogeneous strain of
CFRP specimens measured by DIC is shown Figure 8, where the corresponding load is around 8 kN. It
can be seen that the strain patterns of εx, εy, and γxy generally agree well with those derived by FE
modeling shown in Figure 3. E11, E22, ν12, and G12 were then derived for each specimen using the VFM.
The statistics including mean value, coefficient of variance (CoV), and linear correlation coefficients are
derived from the elastic properties of the 15 specimens, with the results listed in Table 3. It can be seen
that the mean values of the elastic properties generally agree well with Jeong and Shenoi [1] where
tests are conducted following ASTM standards, though E22 and G12 derived by this study are around
20% smaller. The difference between the E22 and G12 in this work and Jeong and Shenoi [1] is probably
caused by the different types of epoxy used for specimens in this work and Jeong and Shenoi [1], as E22

and G12 are mainly dependent on matrix properties.
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Table 3. Statistics of unidirectional CFRP elastic properties derived from experiments.

Random
Variables

Linear Correlation Coefficient
Mean CoV Ref. [1]

E11 E22 ν12 G12

E11(GPa) 1 135.1 0.043 133.9

E22(GPa) 0.28/0.54 * 1 7.50 0.145 8.84

ν12 −0.10/−0.35 * −0.56/−0.30 * 1 0.33 0.049 0.34

G12(GPa) 0.31/0.63 * 0.87/0.84 * −0.76/−0.50 * 1 3.65 0.156 4.45

*: Values by theoretical prediction in Zhang et al. [13]

Very importantly, Table 3 shows that the linear correlation coefficients derived from experiments
generally agree well with theoretical prediction in Zhang et al. [13], especially in the following aspects:

(1) Both the experimental measurement and theoretical prediction show that the linear correlation
coefficients between ν12 and other elastic properties are negative, while the linear correlation coefficients
between E11, E22, and G12 are positive;

(2) Both the experimental measurement and theoretical prediction show that significant statistical
correlation exists between E22 and G12, and this phenomenon would be explained by the fact that they
both heavily depend on matrix properties;

(3) Both the experimental measurement and theoretical prediction show that medium correlation
exists between E11 and E22 (or G12).

It is important to notice that the linear correlation coefficients shown in Zhang et al. [13] are
derived by assuming a CoV of 5% on fiber volume ratio (FVR). In practice, the variance of FVR depends
on different fabrication approaches and even different manufacturers. The difference in the values
of the linear correlation coefficients between this experimental work and the theoretical prediction
might be attributed to the difference in CoV of FVR between practical specimens used in this work and
assumptiona in [13], as it is demonstrated that the CoV of FVR would have a significant influence on the
statistical correlation between CFRP elastic properties [13]. Following the methodology shown in [13], if
the CoV of FVR lowers to 3%, the predicted linear correlation coefficients between E11 and E22, E11 and
ν12, E11 and G12 are 0.31, −0.15, 0.40 respectively, which agree better with the experimental observation.
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7. Conclusions

An experimental methodology is proposed to determine the statistical correlation between
mechanical properties of unidirectional FRP composite, by a combination of DIC and VFM. For the
CFRP specimens used in this work, the experimentally measured linear correlation coefficients agree
well with theoretical prediction in our previous work [13]. To the best of the authors’ knowledge, this
work provides the first experimental verification of statistical correlation between mechanical properties
of unidirectional CFRP composite, and the statistical correlation between some elastic properties is
indeed significant. Hence, we strongly suggest that designers of composite structures would carefully
take into account the statistical correlation between ply elastic properties if structure reliability is
required to be accurately evaluated. Our future work will further identify statistical correlation
between mechanical properties of FRP made by different constituent materials and different fabrication
approaches, and the dependence of the correlation coefficients on constituent-level uncertainty is also
to be experimentally studied.
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