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Abstract

Background: Personal genomics and comparative genomics are becoming more important in clinical practice and
genome research. Both fields require sequence alignment to discover sequence conservation and variation. Though
many methods have been developed, some are designed for small genome comparison while some are not
efficient for large genome comparison. Moreover, most existing genome comparison tools have not been
evaluated the correctness of sequence alignments systematically. A wrong sequence alignment would produce
false sequence variants.

Results: In this study, we present GSAlign that handles large genome sequence alignment efficiently and identifies
sequence variants from the alignment result. GSAlign is an efficient sequence alignment tool for intra-species
genomes. It identifies sequence variations from the sequence alignments. We estimate performance by measuring
the correctness of predicted sequence variations. The experiment results demonstrated that GSAlign is not only
faster than most existing state-of-the-art methods, but also identifies sequence variants with high accuracy.

Conclusions: As more genome sequences become available, the demand for genome comparison is increasing.
Therefore an efficient and robust algorithm is most desirable. We believe GSAlign can be a useful tool. It exhibits
the abilities of ultra-fast alignment as well as high accuracy and sensitivity for detecting sequence variations.

Keywords: Genome comparison, Sequence alignment, Variation detection, Personal genomics, Comparative
genomics

Background
With the development of sequencing technology, the cost
of whole genome sequencing is dropping rapidly. Sequen-
cing the first human genome cost $2.7 billion in 2001; how-
ever, several commercial parties have claimed that the
$1000 barrier for sequencing an entire human genome is
broken [1]. Therefore, it is foreseeable that genome sequen-
cing will become a reality in clinical practices in the near fu-
ture, which brings the study of personal genomics and
comparative genomics. Personal genomics involves the se-
quencing, analysis and interpretation of the genome of an
individual. It can offer many clinical applications, particu-
larly in the diagnosis of genetic deficiencies and human dis-
eases [2]. Comparative genomics is another field to study
the genomic features of different organisms. It aims to
understand the structure and function of genomes by

identifying regions with similar sequences between charac-
terized organisms.
Both personal genomics and comparative genomics re-

quire sequence alignment to discover sequence conserva-
tion and variation. Sequence conservation patterns can be
helpful to predict functional categories, whereas variation
can be helpful to infer relationship between organisms or
populations in different areas. Studies have shown that
variation is important to human health and common gen-
etic disease [3–5]. The alignment speed is an important
issue since a genome sequence usually consists of millions
of nucleotides or more. Methods based on the traditional
alignment algorithms, like AVID [6], BLAST [7] and
FASTA [8], are not able to handle large scale sequence
alignment. Many genome comparison algorithms have
been developed, including ATGC [9, 10], BBBWT [11],
BLAT [12], BLASTZ [13], Cgaln [14], chainCleaner [15],
Harvest [16], LAGAN [17], LAST [18], MAGIC [19],
MUMmer [20–23], and minimap2 [24] .
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One of important applications of genome comparison
is to identify sequence variations between genomes,
which can be found by linearly scanning their alignment
result. However, none of the above-mentioned methods
have been evaluated the correctness of sequence align-
ment regarding variation detection. A wrong sequence
alignment would produce false sequence variants. In this
study, we estimated the performance of each selected
genome sequence comparison tool by measuring the
correctness of sequence variation. We briefly summa-
rized the algorithm behind each pairwise genome se-
quence alignment tool in Table S1(Supplementary data).
The alignment algorithms can be classified into two
groups: seed-and-extend and seed-chain-align, and the
seeding schemes can be K-mer, minimizer, suffix tree,
suffix array, or BWT.
Recently, many NGS read mapping algorithms use Bur-

rows Wheeler Transformation (BWT) [25] or FM-index
[26] to build an index for the reference sequences and
identify maximal exact matches by searching against the
index array with a query sequence. It has been shown that
BWT-based read mappers are more memory efficient than
hash table based mappers [27]. In this study, we used
BWT to perform seed exploration for genome sequence
alignment. We demonstrated that GSAlign is efficient in
finding both exact matches and differences between two
intra-species genomes. The differences include all single
nucleotide polymorphisms (SNPs), insertions, and dele-
tions. Moreover, the alignment is ultra-fast and memory
efficient. The source code of GSAlign is available at
https://github.com/hsinnan75/GSAlign.

Implementation
The algorithm of GSAlign is derived from our DNA read
mapper, Kart [28]. Kart adopts a divide-and-conquer
strategy to separate a read into regions with and without
differences. The same strategy is applicable to genome
sequence alignment. However, in contrast with NGS
short read alignment, genome sequence alignment often
consists of multiple sub-alignments that are separated by
dissimilar regions or variants. In this study, we present
GSAlign for handling genome sequence alignment.

Algorithm overview
Similar to MUMmer4 and Minimap2, GSAlign also fol-
lows the “seed-chain-align” procedure to perform gen-
ome sequence alignment. However, the details of each
step are quite different. Figure 1 illustrates the workflow
of GSAlign. It consists of three main steps: LMEM iden-
tification (seed), similar region identification (chain), and
alignment processing (align). We define a local maximal
exact match (LMEM) as a common substring between
two genomes that begins at a specific position of query
sequence. In the LMEM identification step, GSAlign
finds LMEMs with variable relengths and then converts
those LMEMs into simple pairs. A simple pair represents
a pair of identical sequence fragments, one from the ref-
erence and one from the query sequence. In the similar
region identification, GSAlign clusters those simple pairs
into disjoint groups. Each group represents a similar re-
gion. GSAlign then finds all local gaps in each similar re-
gion. A local gap (defined as a normal pair) is the gap
between two adjacent simple pairs. In the alignment-

Fig. 1 The flowchart of GSAlign. Each rectangle is an LMEM (simple pair) and the width is the size of the LMEM. They are then clustered into
similar regions, each of which consists of adjacent LMEMs and gaps in between. We then perform gapped/un-gapped alignment to close those
gaps to build the complete alignment for each similar region
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processing step, GSAlign closes gaps to build a complete
local alignment for each similar region and identifies all
sequence variations during the process. Finally, GSAlign
outputs the alignments of all similar regions, a VCF
(variant call format) file, and a dot-plot representation
(optional). The contribution of this study is that we
optimize those steps and integrate them into a very effi-
cient algorithm that saves both time and memory and
produces reliable alignments.

Burrows-Wheeler transform
We give a brief background of BWT algorithm below.
Consider a text T of length L over an alphabet set Σ; T
is attached with symbol $ at the end, and $ is lexico-
graphically smaller than any character in Σ. Let SA[0, L]
be the suffix array of T, such that SA[i] indicates the
starting position of the i-th lexicographically smallest
suffix. The BWT of T is a permutation of T such that
BWT[i] = T[SA[i] − 1] (Note that if SA[i] = 0, BWT[i] =
$). Given a pattern S, suppose SA[i] and SA[j] are the
smallest and largest suffices of T where P is their com-
mon prefix, the range [i, j] indicates the occurrences of
S. Thus, given an SA range [i, j] of pattern P, we can
apply the backward search algorithm to find the SA
range [p, q] of zP for any character z. If we build the
BWT with the reverse of T, the backward search algo-
rithm can be used to test whether a pattern P is an exact
substring of T in O(|P|) time by iteratively matching
each character in P. One of the BWT index algorithms
was implemented in BWT-SW [29] and it was then
modified to work with BWA [27]. For the details of
BWT index algorithm and the search algorithm, please
refer to the above-mentioned methods and Kart.

LMEM identification
Given two genome sequences P and Q, GSAlign gener-
ates the BWT array with P and its reverse complemen-
tary sequence P′. Let P[i1] be the i1-th nucleobase of P,
and P[i1, i2] be the sequence fragment between P[i1] and
P[i2]. GSAlign finds LMEMs by searching against the
BWT array with Q. Since each LMEM is a common sub-
string that begins at a specific position of Q, it is repre-
sented as a simple pair (i.e., identical fragment pair) in
this study and denoted by a 4-tuple (i1, i2, j1, j2), mean-
ing P[i1, i2] =Q[j1, j2] and P[i2 + 1] ≠Q[j2 + 1]. If the
common substring appears multiple times (i.e., fre-
quency > 1), it would be transformed into multiple sim-
ple pairs. For example, if the substring Q[j1, j2] is
identical to P[i1, i2] and P[i3, i4], it would be represented
as two simple pairs (i1, i2, j1, j2) and (i3, i4, j1, j2). Note
that an LMEM is transformed into simple pairs only if
its size is not smaller than a user-defined threshold k
and its occurrences are less than f. We investigate the ef-
fect of threshold k and f in the Table S2 (Supplementary

data) and we found that GSAlign performs equally well
with different thresholds.
The BWT search iteratively matches every nucleotide

of the query genome Q. It begins with Q[j1] (j1 = 0 at the
first iteration) and stops at Q[j2] if it meets a mismatch
at Q[j2 + 1], i.e., the SA range of Q[j1, j2 + 1] = 0. The
next iteration of BWT search will start from Q[j2 + 1]
until it meets another mismatch. When GSAlign is run-
ning with sensitive mode, the next iteration of BWT
search starts from Q[j1 + 5] instead of Q[j2 + 1]. In doing
so, GSAlign is less likely to miss true LMEMs due to
false overlaps between P and Q. The search procedure
terminates until it reaches the end of genome Q.
Please note that the LMEM identification can be proc-

essed simultaneously if GSAlign runs with multiple
threads. For each query sequence in Q, GSAlign divides
it into N blocks of equal size when it is running with N
threads and each thread identifies LMEMs for a se-
quence block independently. The multithreading can be
also applied in the following alignment step. We will
demonstrate that such parallel processing greatly
speedup the alignment process.

Similar region identification
After collecting all simple pairs, GSAlign sorts all simple
pairs according to their position differences between ge-
nomes P and Q and clusters those into disjoint groups.
The clustering algorithm is described below.
Suppose Sk is a simple pair (ik,1, ik,2, jk,1, jk,2), we define

PosDiffk = ik,1− jk,1. If two simple pairs have similar Pos-
Diff, they are co-linear. We sort all simple pairs accord-
ing to their PosDiff to group all co-linear simple pairs.
The clustering starts with the first simple pair S1 and we
check if the next simple pair (S2) is within a threshold
MaxDiff (the default value is 25). The size of MaxDiff
determines the maximum indel size allowed between
two simple pairs. If |PosDiff1 − PosDiff2| ≤MaxDiff, we
then check the PosDiff of S2 and S3 until we find two
simple pairs Sk and Sk + 1 whose |PosDiffk − PosDiffk + 1| >
MaxDiff. In such cases, the clustering breaks at Sk + 1 and
simple pairs S1, S2, …, Sk are clustered in the same
group. We investigate the performance of GSAlign with
different values of MaxDiff and summarize the analysis
in Table S3 (Supplementary data).
We then re-sort S1, S2, …, Sk by their positions at se-

quence Q (i.e., the third value of 4-tuple). Since simple
pairs are re-sorted by their positions at sequence Q,
some of them may be not co-linear with their adjacent
simple pairs and they are considered as outliers. We re-
move those outliers from the simple pair group. A sim-
ple pair Sm is considered as an outlier if |PosDiffm −
PosDiffm − 1| > 5 and |PosDiffm − PosDiffm + 1| > 5 where
Sm-1, Sm and Sm + 1 are adjacent. In such cases, we will
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perform a dynamic programming to handle the gap be-
tween Sm-1 and Sm + 1.
For those simple pairs of same positions at sequence

Q (i.e., the fragment of Q has multiple occurrences in
P), we keep the one with the minimal difference of Pos-
Diff compared to the closest unique simple pair. Then
we check every two adjacent simple pairs sa = (ia,1, ia,2,
ja,1, ja,2) and sb = (ib,1, ib,2, jb,1, jb,2), we define gap(Sa,
Sb) = jb,1 − ja,2. If gap(Sa, Sb) is more than 300 bp and the
sequence fragments in the gap are dissimilar, we con-
sider Sb as a break point of a similar region. To deter-
mine whether the sequence fragment in a gap are
similar, we use k-mers to estimate their similarity. If the
number of common k-mers is less than gap(Sa, Sb) / 3,
they are considered dissimilar. In such cases, we con-
sider Sb as a break point of a similar region, and Sb will
initiate another similar region. We investigate different
gap size thresholds in the Table S4 (Supplementary data)
and found that GSAlign was not sensitive to the thresh-
old. The simple pair clustering will be continued with
the next un-clustered simple pair until all simple pairs
are visited.
We use an example to illustrate the process of simple

pair clustering and outlier removing. Suppose GSAlign
identifies nine simple pairs as shown in Fig. 2a. We sort
these simple pairs by their PosDiff and start clustering
with S1. Simple pairs S1, S2, …, S8 are clustered in the
same group since any two adjacent simple pairs in the
group have similar PosDiff. For example, |PosDiff1 − Pos-
Diff2| = 10, and |PosDiff2 − PosDiff3| = 0. By contrast,
|PosDiff8 − PosDiff9| = 60, we break the clustering at S9.
We then re-sort S1, S2, …, S8 by their positions at se-
quence Q as shown in Fig. 2b, and mark S6 and S7 are
not unique since the two simple pairs have the same
position at Q. We compare S6 and S7 and keep S6 be-
cause it has the minimal difference of PosDiff with its
neighboring unique simple pairs.

We remove S1 and S8 since they are not co-linear with
their adjacent simple pairs. S1 is considered an outlier
because |PosDiff1 − PosDiff3| > 5 and |PosDiff1 − Pos-
Diff6| > 5. After S1 is removed, the gap between S3 and
S6 would probably form an un-gapped alignment since
they have the same PosDiff. S8 is also an outlier because
|PosDiff8 − PosDiff5| >MaxDiff. Finally, we confirm there
is no any large gap between any two adjacent simple
pairs in the group. Thus, the group of S3, S6, S2, S4, and
S5 forms a similar region, and upon which we can gener-
ate a local alignment.
Given two adjacent simple pairs in the same cluster, sa =

(ia,1, ia,2, ja,1, ja,2) and sb = (ib,1, ib,2, jb,1, jb,2), we say sa and
sb overlap if ia,1 ≤ ib,1 ≤ ia,2 or ja,1 ≤ jb,1 ≤ ja,2. In such cases,
the overlapping fragment is chopped off from the smaller
simple pair. For example, BWT index. Figure 3. shows a
tandem repeat with different copies in genome P and Q.
In this example, “ACGT” is a tandem repeat where P has
seven copies and Q has nine copies. GSAlign identifies
two simple pairs in this region: A (301, 330, 321, 350) and
B (323, 335, 351, 363). A and B overlap between P[323,
330]. In such cases, we remove the overlap from the pre-
ceding simple pair (i.e., A). After removing the overlap, A
becomes (301, 322, 321, 342) and we create a gap of
Q[343, 350]. After removing overlaps, we check if there is
a gap between any two adjacent simple pairs in each simi-
lar region. We fill gaps by inserting normal pairs. A nor-
mal pair is also denoted as a 4-tuple (i1, i2, j1, j2) in which
P[i1, i2] ≠Q[j1, j2] and the size of P[i1, i2] or Q[j1, j2] can be
0 if one of them is an deletion. Suppose we are given two
adjacent simple pairs (i2q-1, i2q, j2q-1, j2q) and (i2q + 1, i2q + 2,
j2q + 1, j2q + 2). If i2q + 1 − i2q > 1 or j2q + 1 − j2q > 1, then we in-
sert a normal pair (ir, ir + 1, jr, jr + 1) to fill the gap, where ir
– i2q = i2q + 1 – ir + 1 = 1 if i2q + 1 − i2q > 1; otherwise ir = ir +
1 = − 1 meaning the corresponding fragment size is 0.
Likewise, jr – j2q = j2q + 1 – jr + 1 = 1 if j2q + 1 − j2q > 1, other-
wise let jr = jr + 1 = − 1.

Fig. 2 An example illustrating the process of simple clustering and outlier removing. GSAlign clusters simple pairs and remove outliers according
to PosDiff. Simple pairs in red are not unique. Simple pairs with gray backgrounds are considered as outliers and they are removed from
the cluster
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Alignment processing
At this point, GSAlign has identified similar regions that
consist of simple pairs and normal pairs. In this step,
GSAlign only focuses on normal pairs. If the sequence
fragments in a normal pair have equal size, it is very
likely the sequence fragments only contain substitutions
and the un-gapped alignment is already the best align-
ment; if the sequence fragments contain indels, gapped
alignment is required. Therefore, we classify normal
pairs into the following types:
1) A normal pair is Type I if the fragment pair has

equal size and the number of mismatches in a linear
scan is less than a threshold;
2) A normal pair is Type II if one of the fragment is a

null string and the other contains at least one
nucleobase;
3) The remaining normal pairs are Type III;
Thus, only Type III require gapped alignment. GSAlign

applies the KSW2 algorithm [30] to perform gapped
alignment. The alignment of each normal pair is con-
strained by the sequence fragment pair. This allows
GSAlign to generate their alignments simultaneously
with multiple threads. At the end, the complete align-
ment of the genome sequences is the concatenation of
the alignment of each simple and normal pairs.

Differences among GSAlign, MUMmer4, and Minimap2
In general, GSAlign, MUMmer4, and Minimap2 follow
the conventional seed-chain-align procedure to align
genome sequences. However, the implementation details
are very different from each other. MUMmer4 combines
the ideas of suffix arrays, the longest increasing subse-
quence (LIS) and Smith-Waterman alignment. Mini-
map2 uses minimizers (k-mers) as seeds and identifies
co-linear seeds as chains. It applies a heuristic algorithm
to cluster seeds into chains and it uses dynamic pro-
gramming to closes between adjacent seeds. GSAlign

integrates the ideas of BWT arrays, PosDiff-based clus-
tering and dynamic programming algorithm. GSAlign
divides the query sequence into multiple blocks and
identifies LMEMs on each block simultaneously using
multiple threads. More importantly, GSAlign classifies
normal pairs into three types and only Type III normal
pairs require gapped alignment. This divide-and-
conquer strategy not only reduces the number of frag-
ment pairs requiring gapped alignment, but also
shortens gap alignment sizes. Furthermore, GSAlign can
produce the alignments of normal pairs simultaneously
with multi-threads. Though MUMmer4 supports multi-
threads to align query sequences in parallel, the concur-
rency is restricted to the number of sequences in the
query.

Results
Experiment design
GSAlign takes two genome sequences: one is the refer-
ence genome for creating the BWT index, and the other
is the query genome for searching against the BWT
array. If the reference genome has been indexed before-
hand, GSAlign can read the index directly. After com-
paring the genome sequences, GSAlign outputs all local
alignments in MAF format or BLAST-like format, a VCF
file, and a dot-plot representation (optional) for each
query sequence.
The correctness of sequence alignment is an important

issue and variant detection is one of the major applica-
tions for genome sequence alignment. Therefore, we es-
timate the correctness of sequence alignments by
measuring the variant detection accuracy. Though most
of genome alignment tools do not output variants, we
can identify variants by linearly scanning the sequence
alignments. This measurement is sensitive to misalign-
ments; thus we consider it is a fair measurement to esti-
mate the performance of sequence alignment.

Fig. 3 Simple pairs a and b overlaps due to tandem repeats of “ACGT”. We remove the overlapped fragment from simple pair A (the
preceding one)
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We randomly generate sequence variations with the
frequency of 20,000 substitutions (SNVs), 350 small
indels (1~10 bp), 100 large indels (11~20 bp) for every 1
M base pairs. To increase the genetic distance, we gener-
ate different frequencies of SNVs. Benchmark datasets
labelled with 1X contain around 20,000 SNVs for every
1M base pairs, whereas datasets labelled with 3X (or
5X) contain 60,000 (or 100,000) SNVs per million bases.
We generate three synthetic datasets with different SNV
frequencies using the human genome (GRCh38). The
synthetic datasets are referred to as simHG-1X, simHG-
3X, and simHG-5X, respectively. To evaluate the per-
formance of genome sequence alignment on real ge-
nomes, we download the diploid sequence of NA12878
genome and its reference variants (the sources are
shown in Supplementary data). We also estimate the
Average Sequence Identity (ASI) based on the total
number of mismatches due to the sequence variants
over the genome size. For example, an SNV event pro-
duce one mismatch and an indel event of size n pro-
duces n mismatches. Thus, the ASI of the four datasets
are 97.93, 93.86, 89.90, and 99.84%, respectively.
The diploid sequence of NA12878 consists of 3,088,

156 single nucleotide variants (SNVs) and 531,315
indels. The reference variants are generated from NGS
data analysis. Please note that GSAlign is a genome
alignment tool, rather than a variant caller such as Free-
bayes or GATK HaplotypeCaller (GATK-HC). GSAlign
identifies variants from genome sequence alignment,
while Freebayes and GATK-HC identify variants from
NGS short read alignments. We use sequence variants
to estimate the correctness of sequence alignment in this
study. Table 1 shows the genome size, the variant num-
bers of SNV, small and large indels as well as the ASI of
each benchmark dataset.
In this study, we compare the performance of GSAlign

with several existing genome sequence aligners, includ-
ing LAST (version 828), Minimap2 (2.17-r943-dirty),
and MUMmer4 (version 4.0.0beta2). We exclude the
others because they are either unavailable or developed
for multiple sequence alignments, like Cactus [31],
Mugsy [32], or MULTIZ [33]. We exclude BLAT be-
cause it fails to produce alignments for larger sequence

comparison; we exclude LASTZ because it does not sup-
port multi-thread. Moreover, LASTZ fails to handle hu-
man genome alignment.

Measurement
We define true positives (TP) as those variants which
are correctly identified from the sequence alignment;
false positives (FP) as those variants which are incor-
rectly identified; and false negatives as those true vari-
ants which are not identified. A predicted SNV event is
considered true if the genomic coordinate is exactly
identical to the true event; a predicted indel event is
considered true if the predicted coordinate is within 10
nucleobases of the corresponding true event. The preci-
sion and recall are defined as follows: precision = TP /
(TP + FP) and recall = TP / (TP + FN).
To estimate the performance for existing methods, we

filter out sequence alignments whose sequence identity
are lower than a threshold (for Mummer4 and LAST) or
those whose quality score are 0 (for Minimap2). The ar-
gument setting used for each method is shown in the
Table S5 (Supplementary data). We estimate the preci-
sion and recall on the identification of sequence varia-
tions for each dataset. GSAlign, Minimap2, MUMmer4,
and LAST can load premade reference indexes; there-
fore, we run these methods by feeding the premade ref-
erence indexes and they are running with 8 threads.

Performance evaluation on synthetic datasets
Table 2 summarizes the performance result on the three
synthetic datasets. It is observed that GSAlign and Mini-
map2 have comparable performance on the benchmark
dataset. Both produce alignments that indicate sequence
variations correctly. MUMmer4 and LAST produce less
reliable alignments than GSAlign and Minimap2.
Though we have filtered out some of alignments based
on sequence identity, their precisions and recalls are not
as good as those of GSAlign and Minimap2. In particu-
lar, the precision of indel events of MUMmer4 and
LAST are much lower on the dataset of simHG-5X. It
implies that the two methods are not designed for gen-
ome sequence alignments with less sequence similarity.
We also compare the total number of local alignments
each method produces for the benchmark datasets. It is
observed that GSAlign produces the least number of
local alignments, though it still covers most of the se-
quence variants. For example, GSAlign produces 250
local alignments for simHG-1X, whereas the other three
methods produce 417, 3111 and 1168 local alignments,
respectively.
In terms of runtime, it can be observed that GSAlign

spends the least amount of runtime on the three data-
sets. Minimap2 is the second fastest method. Though
MUMmer4 is faster than LAST, it produces worse

Table 1 The synthetic datasets and the number of simulated
sequence variations. The Average Sequence Identity (ASI) is
estimated by the total mismatches divided by the number of
nucleobases

Dataset Genome size SNV Small indel large indel ASI

simHG-1X 3,088,279,342 58,421,383 1,001,626 285,757 97.93%

simHG-3X 3,088,292,247 175,100,939 962,721 275,584 93.86%

simHG-5X 3,088,289,999 291,714,646 919,762 263,271 89.90%

NA12878 6,070,700,436 3,088,156 531,315 NA 99.84%

Lin and Hsu BMC Genomics          (2020) 21:182 Page 6 of 10



performance than LAST. We observe that LAST is not
very efficient with multi-threading. Though it runs with
eight threads, it only uses single thread most of time
during the sequence comparison. Interestingly, GSAlign
spends more time on less similar genome sequences (ex.
simHG-5X) because there are more gapped alignments,
whereas MUMmer4 and LAST spends more time on
more similar genome sequences (ex. simHG-1X) because
they handle more number of seeds. Minimap2 spends
similar amount of time on the three synthetic datasets
because Minimap2 produces similar number of seeds for
those datasets. Note that it is possible to speed up the
alignment procedure by optimizing the parameter set-
tings for each method; however, it may complicate the
comparison.

Performance evaluation on NA12878
The two sets of diploid sequence of NA12878 are aligned
separately and the resulting VCF files are merged together
for performance evaluation. Because many indel events of
NA12878 locate in tandem repeat regions, we consider a
predicted indel is a true positive case if it locates at either

end of the repeat region. For example, the two following
alignments produce identical alignment scores:
AGCATGCATTG AGCATGCATTG.
AGCAT----TG, and AG----CATTG.
It can be observed that the two alignments produce

different indel events.
In such case, both indel events are considered true

positives if one of them is a true indel.
Table 3 summaries the performance evaluation on the

real dataset. It is observed that GSAlign, Minimap2 and
LAST produce comparable results on SNV and indel de-
tection. They have similar precisions and recalls. However,
their precisions and recalls are much worse than those on
synthetic datasets. It seems counter-intuitive since the
synthetic datasets contain much more variants than
NA12878 genomes. Thus, we reconstruct the NA12878
genome sequence directly from the reference variants and
call variants using GSAlign. The precision and recall on
SNV detection become 0.996 and 0.998 and those on indel
detection become 0.994 and 0.983. It implies that the dip-
loid genome sequence and the reference variants are not
fully compatible.

Table 2 The performance evaluation on the three GRCh38 synthetic data sets. The indexing time of each method is not included in
the run time. They are 110 (BWT-GSAlign), 129 (Suffix array-MUMmer4), and 2.6 min (Minimizer-Minimap2), respectively

Dataset Method SNV Indel Local
align#

Run
time
(min)

precision recall precision recall

SimHG-1X GSAlign 1.000 1.000 0.999 0.999 250 11

Minimap2 1.000 0.996 0.999 0.995 417 39

MUMmer4 0.998 0.932 0.985 0.932 3111 869

LAST 1.000 0.992 0.992 0.947 1168 2524

SimHG-3X GSAlign 1.000 0.998 0.994 0.997 366 18

Minimap2 1.000 0.996 0.991 0.995 561 37

MUMmer4 0.989 0.923 0.796 0.925 4925 289

LAST 1.000 0.990 0.809 0.950 1234 1185

SimHG-5X GSAlign 1.000 0.993 0.958 0.992 587 24

Minimap2 1.000 0.995 0.952 0.994 1058 40

MUMmer4 0.986 0.907 0.486 0.912 5513 157

LAST 1.000 0.981 0.461 0.947 1636 458

Table 3 The performance evaluation on HG38 and the diploid sequence of NA12878. The performance on SNV and Indel detection
implies that the diploid genome sequence and the reference variants are not fully compatible

Dataset Method SNV Indel Run
time
(min)

Memory
usage
(GB)

Precision Recall Precision Recall

NA12878 (Diploid) GSAlign 0.832 0.969 0.759 0.767 5 14

Minimap2 0.830 0.970 0.754 0.768 65 23

MUMmer4 0.752 0.946 0.711 0.749 3898 57

LAST 0.832 0.969 0.760 0.764 1305 28
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In terms of runtime, it is observed that GSAlign only
spends 5 min to align the diploid sequences of NA12878
with HG38. Minimap2 is the second fastest method. It
spends 65 min. LAST and MUMmer4 spend 1305 and
3898 min, respectively. In terms of memory consump-
tion, it is observed that GSAlign consumes the least
amount of memory among the selected methods. It re-
quires 14 GB to perform the genome comparison, while
MUMmer4 requires 57 GB.

Discussion
Sequence comparison between difference species
Though GSAlign is designed for comparing intra-species
genomes, it can be used to identify conserved syntenic re-
gions for inter-species genomes. Here we compare human
genomes with whole chimpanzee genome and mouse

chromosome 12. We compare human (GRCh38) and chim-
panzee (PanTro4) genomes using the four selected tools
with 8 threads. Since the ground-truth alignment between
GRCh38 and chimpanzee (PanTro4) genomes is unknown,
we only show the total alignment length, the predicted
SNV and Indel numbers of each alignment tool as well as
their run time. We summarize their result in Table 4.
Though the genome size PanTro4 is around 3146.6 Mbp, it
contains around 2757.6M known nucleotides. GSAlign
spends eight minutes on the genome comparison and gen-
erates alignments of total length 2412 Mbp. Minimap2 is
the second fastest method and it generates alignments of
total length 2791 Mbp. LAST and MUMmer4 are much
slower. They generate alignments of total length 2717 and
2661 Mbps, respectively.
Mouse chromosomes share common ancestry with hu-

man chromosomes [34]. Here we demonstrate the sequence
comparison between human genome and mouse chromo-
some 12 by showing the dot-plot matrix generated by GSA-
lign. Though the genome sequences of the two species are
very dissimilar, they still share conservation of genetic link-
age groups. In this analysis, GSAlign spends three minutes
to compare HG38 and mouse chromosome 12 and it gener-
ates 2713 local alignments with a total length of 1738 K
bases. Among the 22 body human chromosomes, GSAlign
discovers that human chromosomes 2, 7 and 14 share the
largest number of conserved syntenic segments with mouse
chromosome 12. GSAlign visualizes the conserved syntenic
segments with a dot-plot presentation in Fig. 4. The x-axis

Table 4 The performance comparison on HG38 and the
chimpanzee (PanTro4) genome

Dataset Method Alignment
length (Mbp)

SNV# Indel# Run time
(min)

GRCh38 Vs.
PanTro4

GSAlign 2412 31,710,
527

3,650,
337

8

Minimap2 2791 39,242,
895

4,375,
360

18

MUMmer4 2661 41,545,
986

5,450,
956

1368

LAST 2717 35,815,
610

4,483,
929

884

Fig. 4 The dot-plot of the alignment for human chromosomes 2, 7, and 14 and mouse chromosome 12. The x-axis indicates the positions of
mouse chromosome 12, and y-axis indicates the positions of human chromosomes 2, 7 and 14. The orthologous landmarks are plotted based on
the pairwise alignments between the three human chromosomes and mouse chromosome 12
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indicates the positions of mouse chromosome 12, and y-
axis indicates the positions of human chromosomes 2, 7
and 14. The orthologous landmarks are plotted based on
the pairwise alignments between the three human chromo-
somes and mouse chromosome 12. Comparing the result
with existing studies, we find that the dot-plot is consistent
with Fig. 4f in the study of Mouse Genome Sequencing
Consortium [34].

Conclusions
In this study, we present GSAlign, a new alignment tool
that handles genome sequence comparison. We evaluate
the correctness of sequence alignment by measuring the
accuracy of variant detection. GSAlign adopts the divide-
and-conquer strategy to divide genome sequences into
gap-free fragment pairs and gapped fragment pairs. GSA-
lign is a BWT-based genome sequence aligner. Therefore,
it requires less amount of memory than hash table-based
or tree-based aligners do. GSAlign also supports multi-
thread computation, thus it is more efficient when com-
paring large genomes. We evaluate the performances of
GSAlign with synthetic and real datasets. The experiment
result shows that GSAlign is the fastest among the se-
lected methods and it produces perfect or nearly perfect
precisions and recalls on the identification of sequence
variations for most of the datasets. We also found that the
diploid genome sequence of NA12878 is not fully compat-
ible with the reference variants derived from NGS data.
As more genome sequences become available, the de-

mand for genome comparison is increasing. Therefore,
an efficient and robust algorithm is most desirable. We
believe GSAlign can be a useful tool. It shows the abil-
ities of ultra-fast alignment as well as high accuracy and
sensitivity for detecting sequence variations.

Availability and requirements
Project name: GSAlign.
Project home page: https://github.com/hsinnan75/

GSAlign
Operating system: Linux.
Programming language: C/C++.
Other requirements: N/A.
License: MIT License.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12864-020-6569-1.

Additional file 1 : Table S1. A summary of several existing genome
sequence alignment tools. Table S2. The effect of minimal LMEM size k
and their maximal frequency f for GSAlign on the Sim_Chr1 dataset.
Table S3. The effect of MaxPosDiff for GSAlign on the Sim_Chr1 dataset.
Table S4. The effect of gap size threshold on the Sim_Chr1 dataset.
Table S5 lists the argument setting for each method tested in this study.

Aligner and their arguments used on the benchmark datasets, where fa1
and fa2 are input genomes with FASTA format.
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