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Several imaging modalities are available for investigation of the morphological, functional, and molecular
features of engineered tissues in small animal models. While research in tissue engineering and regenerative
medicine (TERM) would benefit from a comprehensive longitudinal analysis of new strategies, researchers
have not always applied the most advanced methods. Photoacoustic imaging (PAI) is a rapidly emerging
modality that has received significant attention due to its ability to exploit the strong endogenous contrast of
optical methods with the high spatial resolution of ultrasound methods. Exogenous contrast agents can also be
used in PAI for targeted imaging. Applications of PAI relevant to TERM include stem cell tracking, longi-
tudinal monitoring of scaffolds in vivo, and evaluation of vascularization. In addition, the emerging capabilities
of PAI applied to the detection and monitoring of cancer and other inflammatory diseases could be exploited by
tissue engineers. This article provides an overview of the operating principles of PAI and its broad potential for
application in TERM.
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Impact Statement

Photoacoustic imaging, a new hybrid imaging technique, has demonstrated high potential in the clinical diagnostic applica-
tions. The optical and acoustic aspect of the photoacoustic imaging system works in harmony to provide better resolution at
greater tissue depth. Label-free imaging of vasculature with this imaging can be used to track and monitor disease, as well as
the therapeutic progression of treatment. Photoacoustic imaging has been utilized in tissue engineering to some extent;
however, the full benefit of this technique is yet to be explored. The increasing availability of commercial photoacoustic
systems will make application as an imaging tool for tissue engineering application more feasible. This review first provides
a brief description of photoacoustic imaging and summarizes its current and potential application in tissue engineering.

Introduction

The fields of tissue engineering and regenerative

medicine (TERM) are primarily focused on the devel-
opment of new sources of tissue or organs for replacement,
regeneration, or reconstruction.1 New approaches for the
design of engineered tissues are continually under devel-
opment and investigation.2 However, tissue regeneration is a
complex process modulated by multiple cues in the physi-
ological environment. The better understanding of the in-
teractions between engineered and host tissues is required
for the design of new systems, but the tools available for
evaluating this process are limited even in preclinical models.
There is a significant need for new tools that enable moni-

toring and assessment of engineered tissues in vivo in
animal models to enable the design and evaluation of next-
generation tissue engineering strategies.3

Histological analysis is the gold standard for tissue
evaluation. While histology provides crucial information,
it is limited particularly when faced with unique aspects
of tissue engineering. Histological analysis is generally an
end point experiment precluding longitudinal monitoring or
assessment. Besides, the processing required for histology
can alter biomaterial structure in unpredictable ways, and
the limited volume assessment can provide misleading re-
sults. A broad range of biomedical imaging technologies
are available that may allow long-term monitoring of the
morphological, functional, and molecular properties of

1Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, Texas.
2Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois.

TISSUE ENGINEERING: Part B
Volume 26, Number 1, 2020
ª Mary Ann Liebert, Inc.
DOI: 10.1089/ten.teb.2019.0296

79



Table 1. Summary of Imaging Modalities in Tissue Engineering and Regenerative Medicine

Modality
Resolution

(lm)
Imaging

depth (mm) Application Advantages Limitations

MRI 25–100 Full body Tissue segregation and volume
quantification198,199

Monitoring cells and
biomaterials200–205

Cartilage imaging/
chondrogenesis,206

osteogenesis,207 angiogenesis208

Vasculature characterization209

Total blood volume and
oxygenation210–212

No radiation
Safe contrast agents
No intra-arterial

puncture
Excellent soft tissue

contrast
Superior image quality

Spatial resolution
is the inverse
function of field
of view

Longer scan times
Requires separate

facility
Strong magnetic

field, limited real
time imaging

X-ray/CT/mCT 1–100 Full body Bone structure and morphology213

Quantify tissue regeneration214,215

Blood flow and perfusion216

Neovascularization217,218

Scaffold characterization219,220

In vivo monitoring of
biomaterials221

Cell tracking and monitoring222,223

Nondestructive
characterization of
samples

Superior resolution
for microvasculature
imaging

Excellent image
quality

Uses ionizing
radiation energy

Low soft tissue and
biomaterial
contrast

Contrast agents
may be toxic

Long data
acquisition

Requires separate
facility

PET/SPECT 1000 Full body Cell tracking and monitoring224–226

Perfusion227,228

Angiogenesis229

Molecular imaging230

Functional information
High detection

sensitivity
Wide range of

radiolabels available
for molecular
imaging

Uses ionizing
radiation

Do not provide
structural
information

Poor spatial
resolution

Longer scan times
Low signal to noise

ratio
Nonspecific uptake

of radiotracers

US 30 300 Blood flow231–233

Vascularization234,235

Microvasculature imaging54,236

Tissue regeneration237–240

Tissue properties241–243

Monitoring biomaterials or tissue
engineered constructs244–246

Safe
Portable
Superior temporal

resolution
Higher imaging depth,

Structural,
mechanical
(elastrography), and
functional (Doppler)
information

Anisotropic
Limited soft tissue

contrast
Tradeoff between

spatial resolution
and imaging
depth

MFM 1–1.6 0.5–1.0 Cell morphology and
physiology247–250

Cell distribution in scaffold248

Biomaterial characterization251–253

Cell tracking254

Microvasculature morphology and
oxygenation250,255

Superior spatial
resolution

Reduced
photobleaching

No photodamage

Limited imaging
depth

Limited in vivo
application

OCT 1–15 2–3 Cell morphology and cell
dynamics256,257

Tissue development258,259

Vascular imaging and
perfusion260–263

Biomaterial characterization264–266

Blood flow267,268

Real time imaging
High spatial and

temporal resolution
Does not require

exogenous contrast
agent

Flow velocity
independent of
vessel orientation

Limited imaging
depth, limited
in vivo
application

(continued)
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engineered tissues. In addition, noninvasive imaging modal-
ities may ultimately allow monitoring of therapeutic progress
clinically as a potential guide for intervention if necessary.

The ideal characteristics of an imaging system depend,
in part, on the application under evaluation. Desired char-
acteristics for any imaging technique include (1) safe, (2)
noninvasive, (3) high spatial resolution, (4) high tissue pen-
etration, (5) quantitative, (6) functional, (7) allow longitudinal
monitoring, (8) enable cell tracking, (9) provide information
of biomaterial properties, and (10) free of exogenous labeling
agents. Common imaging modalities such as magnetic reso-
nance imaging (MRI), computed tomography (CT), and ul-
trasound (US) can achieve some of the characteristics.

Regardless of modality used, there is a natural give and
take based on relative advantages and limitations in TERM
applications (Table 1). For instance, MRI may have high
spatial resolution and high tissue penetration, but it requires
long scan times, is expensive, and may not enable material
contrast. X-ray based imaging modalities (e.g., X-ray CT)
provide superior resolution and imaging depth, but uses
ionization radiation and provides limited soft-tissue contrast
when used at a standard X-ray dose. US, in contrast, is safe
and provides higher imaging depth, but generally has low
spatial resolution for the TERM application. Therefore, the
continued development and application of new imaging
tools would benefit the TERM fields.

Photoacoustic imaging (PAI) system has emerged as a
promising alternative for biomedical imaging for TERM
applications.4–9 PAI has been extensively investigated in
biomedical imaging such as cancer diagnosis, cardiovascu-
lar diseases, and neurology to name a few. While the PA
effect was first discovered by Alexander Bell in the 18th
century,10 its rapid progress in the past few decades is fueled
by fast-paced advancement in laser technology and emerg-
ing fundamental research in PAI. PAI, also known as
optoacoustic imaging, is a hybrid technique meaning it
exploits two different phenomena, optical and acoustic, to
generate images. When an optical pulse from a laser is used
to excite a tissue, optical absorption results in a transient
local thermal expansion of tissues. Thermal expansion leads
to a change in pressure distribution in the tissues and
the generation of broadband ultrasonic waves. The resultant
acoustic signals can then be detected outside the tissue for
reconstruction.5,6 The reconstructed image depicts a map of

initial pressure distribution that is proportional to absorbed
optical energy.11 These images provide anatomical, func-
tional, and molecular information of biological tissues.

PAI generally offers a high spatial resolution, increased
imaging depth relative to most optical methods, label-free
vascular imaging, and retrieval of functional and molecular
information. In addition, extrinsic contrast agents can be
used to generate or enhance PA contrast. Moreover, PAI
does not use ionizing radiation, and therefore, PAI demon-
strates high potential for clinical applications where safety is
an important concern. As there are a number of excellent
review articles on PAI,4,5,6–9,11 we provide only a brief
overview of three major modalities of PAI: PA computed
tomography (PACT), PA microscopy (PAM), and multi-
spectral PAI. The bulk of the review focuses on current and
potential applications of PAI in TERM.

Basic Image Formation Principles of PAI

Optical imaging plays an important role in preclinical and
clinical studies. However, it suffers from poor spatial res-
olution at depth due to light diffusion in highly scatter-
ing tissues.12 Conventional optical imaging techniques,
including confocal microscopy and two-photon fluorescence
microscopy, have an imaging depth typically limited to
<1 mm.13 In contrast, US images can be obtained at a much
deeper tissue level (a few centimeters). However, US im-
aging does not provide molecular specificity and its image
quality typically has low contrast limited by the US con-
trast mechanism that depends on the mechanical and elastic
properties of the tissue rather than individual molecules.8,9

PAI has emerged as a promising modality to address many
of the most challenging issues in conventional optical and
US imaging methods. It is based on a hybrid technology that
combines rich optical contrast mechanisms and superior
ultrasonic penetration depth and resolution.5–8,14–16 For PAI,
photons from a nanosecond laser pulse are absorbed by
certain endogenous chromophores or exogenous contrast
agents in a tissue sample, causing impulsive heating and
acoustic stress. The acoustic stress relaxes by launching
broadband US pressure waves (i.e., PA emission), which
propagate to the outside of the tissue and are detected by a
mechanically scanned US receiver or an array of US re-
ceivers to form PA images.5,17,18 For effective PA signal

Table 1. (Continued)

Modality
Resolution

(lm)
Imaging

depth (mm) Application Advantages Limitations

PAI 0.1–800 0.1–80 Total hemoglobin269

Oxygen saturation270,271

Metabolic rate of oxygen50

Perfusion272

Vasculature and
angiogenesis118,123,273

Blood flow274

Cell tracking and
monitoring149,155,153

Biomaterial characterization275,276

Safe
Real time imaging
High imaging depth

with reasonable
spatial resolution

Label free imaging of
blood vessels

Functional information
Low background

No structural
information

Requires
exogenous
contrast agents
for cellular
imaging

CT, computed tomography; MFM, multi-photon fluorescence microscopy; MRI, magnetic resonance imaging; OCT, optical coherence tomo-
graphy; PAI, photoacoustic imaging; PET/SPECT, positron emission tomography/single photon emission computed tomography; US, ultrasound.
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generation, it is necessary to reach the so-called thermal and
stress confinement conditions using a pulsed laser with its
pulse duration normally within several nanoseconds, so that
the thermal diffusion and stress relaxation can be neglected
during the laser illumination period.4 The initial pressure,
P0, generated by an optical absorber is determined by the
expression P0¼GlaF, where la is the optical absorption
coefficient of the photoabsorber, F is the fluence of the light
at the photoabsorber, and G is the tissue’s Grüneisen pa-
rameter.18,19 The Grüneisen parameter is related to the tissue
properties and can be further expressed as C = bc2/Cp = b/
(jqCp), where b is the isobaric volume expansion coeffi-
cient, Cp is the specific heat, c is the acoustic speed, j is the
isothermal compressibility, and q is the mass density.5,19

Since acoustic waves scatter much less than optical waves
in tissue, PAI allows for deep-tissue imaging by leveraging
the acoustic signals originated from optical absorption and
offers advantages of rich endogenous and exogenous optical
contrast agents for functional molecular imaging without
the use of ionizing radiation.20

Photoacoustic Computed Tomography

In a canonical PACT experiment, an expanded laser
beam is used to irradiate the whole tissue region of interest.
PA waves generated from the whole volume of the targeted
tissue are detected by an US detection system that com-
pletely or partially surrounds the object. From the detected
acoustic signals, a reconstruction algorithm is utilized to
form an image that depicts the distribution of the initial
PA-induced pressure distribution P0, or equivalently, if the
Grüneisen parameter is known, the distribution of the ab-
sorbed optical energy. Depending on the imaging system
design, the reconstructed image can be two dimensional
(2D) or three dimensional (3D). For example, a recent report
has demonstrated the development of a 2D PACT system for
imaging detailed angiographic structures in human breasts
within a single-breath hold.21 PACT allows its spatial res-
olution to be scaled with the desired imaging depth in tissue
at a high depth-to-resolution ratio. It can reach up to 7 cm
into a tissue while maintaining a good spatial resolution
on the order of 1/200 of the desired imaging depth.8 In the
past decade, extensive studies have demonstrated the ap-
plications of PACT for multiscale and multicontrast images,
which reveal a tissue’s anatomical, functional, metabolic,
and histologic properties based on endogenous contrast, and
provide molecular and cellular specificity based on exoge-
nous contrast agents.8,9,22

Similar to other computed imaging modalities such as X-
ray CT and MRI, image quality in PACT will be influenced
by the quality of measurement data and the choice of image
reconstruction algorithm used. An extensive effort from
many research groups has been devoted to the development
of different approaches for image reconstruction in PACT.11

Multiple reported approaches, including filtered back-
projection,23,24 model-based inversion algorithms,25–27 and
wavelet-based approaches,28,29 have been demonstrated to
provide a successful mapping of the distributions of targeted
optical absorbers in a 3D tissue volume. Most of the re-
ported implementations of PACT sought to reconstruct
estimates of the PA-induced pressure distribution. Active
research for developing new image reconstruction algo-

rithms is undergoing to correct the artifacts and distortions
in PACT images due to tissue heterogeneity.30–32 For ex-
ample, researchers are currently developing a transcranial
image reconstruction algorithm to compensate for the ef-
fects of wave propagation through the skull to better image
the brain.33,34 Quantitative PACT methods seek to obtain
accurate estimates of the medium’s optical parameters.
Obtaining absolute chromophore concentrations from PA
images obtained at multiple wavelengths is a nontrivial
aspect of PAI but is essential for accurate functional and
molecular imaging.7 However, such methods are still in a
stage of development and have not been widely validated.35

Photoacoustic microscopy

In contrast to PACT for deep tissue imaging, PAM is used
to achieve superior high-resolution imaging, although its
imaging depth is limited. PAM typically utilizes a confocal
configuration by having overlapped foci of both the optical
excitation and ultrasonic detection to optimize its sensitivity
and resolution.36 As the time-of-flight information of the PA
signal provides the axial resolution, each focused laser beam
position produces a depth-resolved one-dimension (line)
image into the tissue without mechanical scanning. Thus, a
2D transverse scanning of the laser beam (together with the
US receiver) generates a 3D image. The lateral resolution is
determined by the product of the point spread functions of
the laser focus and acoustic detection focus.37 Optical-
resolution PAM (OR-PAM) can be achieved when the op-
tical focus is significantly tighter than the acoustic focus.38

Even though other optical imaging techniques, such as
confocal and two-photon fluorescence microscopy, also
provide high-resolution imaging (spatial resolution of 1–
2 mm) capability at an imaging depth similar to that of PAM
(0.2–1 mm depth), PAM possesses a unique feature for
label-free imaging with optical absorption as a contrast. For
example, in vivo label-free functional imaging of hemo-
globin oxygen saturation (sO2) in single blood capillaries
can be imaged clearly with OR-PAM (Fig. 1).38 Different
from PACT, image formation for PAM is relatively straight-
forward and does not require the use of complicated image
reconstruction algorithms, as it utilizes direct image forma-
tion principles.

Multispectral imaging

In this section, we will discuss the principle of multi-
spectral PAI and its pertinent applications in tissue en-
gineering. In addition, we will briefly cover the use of
multispectral imaging for quantitative PACT.

PAI at a single optical excitation wavelength can spatially
resolve certain photoabsorbers with a distinct absorption
spectrum. However, for samples containing multiple ab-
sorbers with overlapped absorption spectra, the different
sources of absorption cannot be distinguished from one
another if PAI is conducted at a single excitation wave-
length. This situation is not uncommon especially for in vivo
studies, as the spectra of the targeted photoabsorber may
overlap with other endogenous photoabsorbers or other
exogenous contrast agents used to label different tissues.39

In such a situation, multispectral PAI is required to identify
the photoabsorbers of interest through their unique absorp-
tion spectra through spectral unmixing.
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Spectral unmixing algorithms are applied to the resulting
images obtained at multiple excitation wavelengths to
distinguish targeted photoabsorbers (whether endogenous
and/or exogenous) with overlapped absorption spectra.40

In short, 2D spectral unmixing commonly adopts a linear
mixture model, which assumes that the measured spectrum
at each image location M(r, k) (function of position, r, and
wavelength, k) is a linear combination of the spectral sig-
nals, Si(k), of k distinct materials, weighted by their relative
concentration(s) at that specific location, ci(r): M r, kð Þ¼
+k

i¼1
Si kð Þci rð Þ .40,41 With spectral unmixing, the spatial

distribution of multiple photoabsorbers with overlapped
absorption spectra can all be mapped separately. However,
the unmixing of 3D images is complicated by light fluence
attenuation as a function of tissue depth and the wavelength
used, which is fundamentally a nonlinear inversion problem.
The unknown depth-dependent and wavelength-dependent
fluence, F(r, k), introduces changes to the detected PA
spectra, P(r, k), corresponding to depth, termed ‘‘spectral
coloring’’: P r, kð Þ ~ F r, kð Þ .7,41 Therefore, the detected spec-
trum in 3D PAI will vary according to its location in the
tissue and influenced by the combination of the tissue-specific
optical properties along the optical path being irradiated.

Quantitative PAI is a technique that aims at obtaining/
estimating the absolute concentrations of the present chro-
mophores from PA images.7 As the attenuation of light,
even at a fixed depth, can vary with the excitation wave-
length used, it is challenging to accurately quantify the
concentration of the targeted photoabsorber. Therefore, it
is of great interest to develop novel methods to correct/
overcome this challenge to obtain quantitative results in
deep tissue. There are multiple ongoing studies on this topic
as reported recently.7,42,43 The most common method hinges
on multispectral imaging to estimate the optical absorption
and scattering coefficients. Once determined, estimates of
local concentrations of absorbers can be calculated, with the
most common one being hemoglobin oxygen saturation (sO2).

To summarize, by leveraging the use of multiple excita-
tion wavelengths in conjugation with either PACT or PAM,
multispectral imaging can offer an analysis of multiple
endogenous and exogenous contrast agents concurrently in
real time. Currently, these multispectral imaging techniques
have been used to image blood vessels,44 quantify oxygen

saturation levels,45 identify/monitor melanoma,46 detect lip-
ids in vessels,47 and to detect and characterize glioblastoma,48

to name a few of the multitude of applications capable with
this powerful technique.

Contrast in PAI

Several contrast mechanisms can be exploited in PAI to
provide insight into engineered tissues. Contrast agents can
be categorized as endogenous and exogenous agents. One
of the exciting aspects of PAI is the differential optical
absorption of endogenous chromophores that provides in-
trinsic contrast. Intrinsic optical absorbers such as blood,
lipid, melanin, and collagen can be imaged with PAI without
the need for additional contrast agents (Fig. 2). Multispectral
analysis can allow identification and separation of distinct
optical absorbers. In addition, exogenous contrast agents can
be introduced to enhance detection sensitivity and to target
specific structures, molecules, or cells.

Endogenous contrast agent

Common endogenous contrast agents, including blood,
lipid, and melanin, have been widely investigated to predict,
detect, or monitor a variety of disease conditions ranging
from cancer to inflammatory diseases, such as atheroscle-
rosis. The sections below provide examples of how endog-
enous contrast has been exploited to provide insight into
tissue features relevant to TERM applications.

Blood. Blood is the most studied endogenous contrast
agent for PAI. The absorbance of blood is in a broad spec-
tral range and is significantly higher relative to other com-
mon chromophores, at least by an order of magnitude. As a
result, functional vasculature (i.e., vasculature containing
blood) generates significant contrast with PAI. This con-
trast can be used to quantify the microvascular density and
evaluate vascular network structure. The optical absorption
of blood is primarily due to hemoglobin. The absorption
properties of hemoglobin are dependent on its oxygenated
(HbO2) or deoxygenated (Hb) state. This optical property of
blood allows PAI to determine total hemoglobin concen-
tration, oxygen saturation level of blood, differentiate be-
tween veins from arteries, and blood flow speed (Fig. 3).49

FIG. 1. OR-PAM of rela-
tive total hemoglobin con-
centration (HbT) in a living
mouse ear, revealing the
vascular anatomy. Insert
shows a densely packed
capillary bed and individual
red blood cells traveling
along a capillary. � 2011
Reprinted with permission
of Optical Society of Amer-
ica.38 OR-PAM, optical-
resolution PAM. Color
images are available online.
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These features result in extensive applications of PAI in
diagnosis, monitoring, or evaluation of conditions that are
typically characterized by alterations in vasculature such as
cancer and cardiovascular diseases.50 Vascularization is also
critical for the clinical success of engineered tissues, making

this an important feature of PAI.51 In PA, signal genera-
tion is independent of the movement of the absorber (i.e.,
hemoglobin). Other commonly used tools, such as power
doppler imaging, require movement of blood and which can
result in false positive or undetected vessels.52,53

FIG. 2. Absorbance spectra of endogenous contrast agents. � 2012 Reprinted with permission from iThera Medical, Inc.
Color images are available online.

FIG. 3. Metabolic PAM images. (A)
Metabolic PAM image of total concentra-
tion of hemoglobin (CHb) (B) metabolic
image of hemoglobin oxygen saturation
(sO2) of area inside the dashed box (C)
Red arrow indicates positive scanning di-
rection, and blue arrow indicates negative
scanning direction and (D) Speed of blood
flow across the dashed line in (C). Scale
bar: (A) 500mm (B, C) 125mm. � 2011
Reprinted with permission from Society of
Photo-Optical Instrumentation Engineers
(SPIE).49 Color images are available
online.
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Lipid/fat. Lipids exhibit absorbance in the range be-
tween 1150 and 1310 nm.54 The strong absorption of lipids
has enabled intravascular lipid deposition to be detected
with PAI.55 Lipid deposition inside the arterial wall is in-
creased in atherosclerosis, a harbinger of many cardiovas-
cular diseases. In addition to diagnosis, PAI of lipids can
also be used to characterize the lipid content and its spatial
distribution within plaques and thus can be used to monitor
disease progression.56 Wang et al. reported the presence of a
‘‘valley’’ in the water absorption spectra between 1450 and
1900 nm. Based on this result, they reported a new optical
window for deep tissue imaging from 1600 to 1850 nm,
where the absorption of pure water is comparable to the
absorption coefficient of heme protein at 800 nm.57 Spectral
features of C-H overtones within this range demonstrated
label-free detection of arterial plaques. Lipids are rich in
CH2 groups, and therefore, CH2 overtones can distinguish
the presence of lipids at 1.7 mm wavelength through the
layer of blood.58–60

Melanin. Melanin is a group of natural pigments that
determine skin color. Melanocytes are the cells that play a
crucial role in the production and distribution of melanin.
Melanin exhibits a strong absorbance (1000 times than
water) in the visible range of 700–730 nm. At these wave-
lengths, melanin demonstrates high contrast relative to
other endogenous contrast agents. Melanin PAI has mostly
been investigated to diagnose or monitor the progression
of Melanoma, a skin cancer that arises from mutation of
melanocytes.61,62

Collagen. Collagen is the most abundant protein in
the body and a key component of the extracellular matrix
in many tissues and organs. Collagen imaging may allow
disease diagnosis and monitoring of disease progression.63,64

For example, Kruizinga et al. showed that lipid and collagen
could be differentiated in the arterial wall for the detection
of atherosclerotic lesions.65 However, the absolute spectrum
of collagen is not well established, partly due to the high
scattering and fluorescence properties of collagen in the
visible range. In addition, a tunable laser system that oper-
ates in the range of above 1000 nm is required to evaluate
the absorbance of collagen.66 Recently, Sekar et al. com-
pared collagen absorption in the visible and short wave in-
frared region (SWIR). They reported higher absorption of
collagen in the range of 1.1–1.7 mm than in the visible range
of the spectrum. On further comparison within the SWIR
range, they observed collagen absorption to be 5 times higher
than lipids at 1700 nm and 1.5 times higher at 1100 nm.67

Similar to lipids, Wang et al. have reported that vibrational
overtone absorption of CH3 group can distinguish collagen
in PAI.60

Exogenous contrast agent

PAI without the introduction of exogenous contrast has
been widely studied and shown to be useful in a variety of
applications. Nevertheless, there are many limitations with
relying solely on label-free imaging. Contrast agents have
played an important role in molecular imaging, due to their
versatility, customizability (for specific applications) and
ease of use. There are various principles, materials, shapes,

and sizes of contrast agents suitable for different imaging
modalities. Ideal contrast agents could significantly increase
contrasts, effectively improve imaging depth or accuracy,
and provide pertinent molecular specific information.68–70 In
this section, a short review about various exogenous contrast
agents for PA molecular imaging is presented.

Synthetic near infrared dyes. There are many biocom-
patible dyes that absorb in the near infrared (NIR) opti-
cal window,71 including heptamethine cyanine dyes (i.e.,
Indocyanine Green [ICG], and the IRDye family [range
from 680 to 800 nm]), borondipyrromethene dyes (i.e., the
AlexaFluoro family [range from 650 to 790 nm]), squaraine
dyes (i.e., D172,73), rhodamine dyes, and azo dyes (i.e.,
methylene blue), which have all been used extensively in
PAI. These dyes are typically small molecules, on the order
of 1 nm, and are able to quickly clear the body through the
renal system. Many of these dyes are fluorescent and are
commonly used in purely optical imaging. For PAI, the PA
emission comes from the energy due to the optical absorp-
tion. A low fluorescence quantum yield of the dye results in
more efficient PA signal generation, as more of the absorbed
energy is converted into the PA signal rather than being
emitted as fluorescence.68

It has been shown that to obtain static contrast in PAI, a
NIR dye such as ICG can be detected at nanomolar con-
centrations in tissue.8,74 However, with respect to respon-
sive imaging probes for PAI, very few reports are currently
available. One such report by Mishra et al., demonstrated
the development of a metallochromic sensor utilizing a
heptamethine cyanine dye, IR780, to measure calcium con-
centrations.75 Quantifying calcium ion concentrations pertain
to many biological processes/responses. Specifically, per-
taining to bone tissue regeneration, calcium is a fundamental
building block of the native extracellular matrix,76 as well as
being shown to have a significant role in osteogenic differ-
entiation,77 making it an ideal candidate for molecular PAI
in tissue engineering.

NIR protein dyes. With the steady rise in applications
capable with PAI, synthetic dyes (which require methods
for target and delivery) present many hindrances for more
longitudinally relevant applications. Protein dyes, as con-
ventionally used in optical imaging, can be genetically
encoded, thus ever present in a targeted sample in vivo,
allowing for a multitude of imaging applications. One par-
ticular family of the dyes that shows great promise for PAI
is the iRFP family.78–81 With optical absorptions in the
range of 650–750 nm and a low quantum yield (for better
PA signal generation), they can be coupled with gene-
delivery technologies (i.e., CRISPR) to be a powerful tool
for the targeting, labeling, and longitudinal monitoring of
specific cell groups in vivo.82

Plasmon nanoparticles. Noble metal (i.e., gold and
silver) nanoparticles (NPs) have been widely used as PA
contrast agents. This is primarily due to their strong and
tunable optical absorption that results from the surface
plasmon resonance (SPR) effect. The SPR effect occurs
when free charges on the surface of noble metal NPs os-
cillate in concert with the electromagnetic field, resulting in
an optical absorption that is five orders of magnitude greater
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than dyes (on a per-particle basis). When the size and shape
of the NP change, so does its resonant frequency. For ex-
ample, as a gold nanorod grows longer, its peak absorption
shifts to longer wavelengths.83 The ideal wavelength for
absorption depends on the other endogenous and exoge-
nous absorbers in the region and the excitation wavelengths
available for imaging. In addition to being highly tun-
able, gold NPs (GNPs) form strong gold-thiolate bonds that
enable covalent surface modification, such as polyethylene
glycol functionalization, for increasing biocompatibility84

and active targeting (i.e., antibody conjugations).68 Fur-
thermore, utilizing a silica coating around GNPs can both
increase PA stability,85 allowing for longer image times
without damaging the contrast agent, while also increasing
the PA signal generation,86 for better image quality.

The field of stem cell therapy is currently advancing to-
ward clinical trials in a variety of biomedical applications,
most notably in the field of TERM.87–91 This advancement
leads to the new requirements of medical imaging to mon-
itor stem cell therapies (i.e., stem cell tracking). One ex-
ample of utilizing plasmonic NPs to meet the demands of
monitoring novel stem cell therapies was reported by Ricles
et al. They showed the use of a dual GNP system in con-
junction with PACT for the monitoring of both implanted
mesenchymal stem cells, loaded with gold nanorods, and
infiltrating macrophages, loaded with gold nanospheres, to
the wounded area.92

Carbon nanostructures. Carbon forms different allo-
tropic structures as follows: carbon nanotubes, graphene-
based nanomaterials, and nanodiamonds. All three classes
can be synthesized to possess an intrinsic absorption in the
NIR range and thus play an important role for PAI. Despite
possessing a lower molar extinction coefficient than gold,
carbon NPs (CNPs) hold significant potential for molecular
PAI due to their flexibility of synthesis and functionaliza-
tion.93,94 CNPs can be also conjugated with plasmonic NPs
to further enhance their PA emission properties. For ex-
ample, fluorescent nanodiamonds (FNDs), a novel nano-
material that has been utilized for biomedical imaging
applications due to its excellent photostability, high bio-
compatibility, and extended far-red fluorescence emis-
sion,95 may also be utilized as a PA contrast agent by
conjugating them with GNPs.96 It has been demonstrated
that their PA signals can be significantly enhanced by a
factor of 30 when the FNDs are conjugated with GNPs. The
large increase in the PA signal has been attributed to the
local field enhancement of the GNPs and the energy transfer
between FNDs and GNPs, which increases the nonradiative
decay processes of FNDs through fluorescence quenching,
thus enhancing the conversion efficiency of the absorbed
laser energy into heat for enhanced thermoelastic effects
(i.e., PA signal generation).96

One example of utilizing carbon nanostructures in tissue
engineering was reported by Cai et al., where single-walled
carbon-nanotubes (SWNTs) were incorporated in poly(lactic-
co-glycolic acid) (PLGA) polymer scaffolds to both image
and characterize the scaffold through PAM.97 Character-
ization and longitudinal monitoring of porous polymeric
scaffolds are critical, as these structures are vital in the de-
velopment of neo-tissue formation, as they provide structural

support, and can be integrated to house implanted cells and
elude pertinent growth factors.98

Polymer NPs. There are many different polymer NPs,
in which their strength comes from their ease of customiz-
ability (i.e., conjugations with other NPs or dyes, encapsu-
lations of other NPs or dyes, and functionalization for
molecular targeting). Organic semiconducting polymer NPs
prepared from semiconducting polymers are promising na-
noagents with excellent optical properties for imaging and
therapy and have been demonstrated in PAI.99 Conjugated
polymers are macromolecular structures with a highly de-
localized conjugated backbone. The conjugated system is
spread through the entire polymer backbone, and the poly-
mers are densely packed into NPs, yielding much higher
extinction coefficients and photostability than possible with
small molecule dyes. One can tune the optical properties
(which are strongly dependent on the conjugated core) by
adopting different backbone structures, combining different
conjugated polymers, and controlling aggregation and sur-
face functionalization.100

Wound healing and regenerative medicine go hand in
hand. Whether implanting an engineered biomaterial or
transplanting stem cells, the wound healing process follows
the required invasive procedure.101 pH is a recognized in-
dicator of the state of the wound, providing information
about bacterial contamination and the stage of healing.102

Pu et al. have reported a novel PA pH-dependent contrast
agent, made of semiconducting polymer NPs in response
to reactive oxygen species.103 This can potentially be im-
plemented to work in conjugation with PACT to monitor pH
in vivo, thus wound healing, following biomaterial or stem
cell therapies.

Table 2 summarizes the different types of exogenous
contrast agents used in PAI, its application in tissue engi-
neering, and general limitations.

PAI in TERM

Tissue engineering scaffolds

Biomaterial scaffolds, both natural and synthetic, are of-
ten a fundamental component of a successful tissue engi-
neering strategy. The scaffolds provide physical support for
tissue growth but also can directly modulate cell activity and
function.104 The physical, chemical, and mechanical prop-
erties of tissue engineering scaffolds play a vital role in cell
migration, proliferation, and differentiation,105 and changes
in these properties due to degradation (intentional or not)
can facilitate the success or failure of the tissue. Substantial
scaffold degradation studies are often performed in vitro
before implantation, but the characterization of degrada-
tion in vivo is a significant challenge in tissue engineering.3

Longitudinal quantitative analysis of the scaffolds can pro-
vide information that is critical to understanding the be-
havior of the materials in vivo. In addition, tools that allow
evaluation of cell-scaffold interactions in vivo may provide
important cues in understanding cell behavior in tissue en-
gineering systems.

Common imaging modalities, including CT and scanning
electron microscope (SEM), are used for preimplantation
characterization of scaffold structure. However, SEM can-
not be applied to image implanted samples and most
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biomaterials do not generate sufficient contrast for imaging
with CT under in vivo conditions. Besides, imaging of cells
within scaffolds is often performed by staining with osmium
tetroxide, which requires harvest and postprocessing.106,107

PAI has been explored as an alternative technique for im-
aging polymeric scaffolds and the cells cultured in these
scaffolds. Usually polymer itself does not generate enough
PA signal for PA contrast; therefore, contrast agents are
incorporated into biomaterial scaffolds to enhance PA
contrast. In the absence of intrinsic cellular contrast, exog-
enous contrast agents such as dyes or NPs can be incorpo-
rated into cells108–110 or biomaterial scaffolds to enhance PA
contrast.111 For instance, SWNTs were entrapped in PLGA
scaffolds for mechanical reinforcement and to provide PAI
contrast.97 Both OR-PAM and acoustic resolution PAM
(AR-PAM) were used to characterize average porosity and
pore size of PLGA scaffolds immersed in a biological buf-
fer. Micro CT images of dry and wet scaffolds were taken
for the comparisons. Micro-CT images of dry samples
clearly depicted well resolved porous structure. However,
wet scaffolds (immersed in fetal bovine serum) failed to
provide any structural details. The structural details from
PAM images agreed well with measurements obtained by
micro CT of dry scaffolds. To evaluate scaffolds in an en-

vironment mimicking in vivo imaging, the scaffolds were
embedded in chicken breast tissue. With *660mm tissue
penetration depth and lateral resolution of 2.6 mm, OR-PAM
images depicted detailed structures of the scaffold that was
comparable to that of an optical microscope such as one-
photon fluorescence microscope. AR-PAM, in contrast, was
able to image scaffold through 1.7 mm of soft chicken tis-
sue. The lateral resolution of AR-PAM is less (45mm), but
able to achieve greater tissue depth. As resolution depends on
the penetration of US signals, the deeper tissue penetration
typically corresponds with a sacrifice in lateral resolution.

PA has received significant attention largely due to its
advantages for noninvasive imaging in people or animal
models.112 Talukdar et al. used PA and US imaging con-
comitantly to image SWNT-PLGA scaffolds ex vivo, as well
as in vivo.113 In this study, US images provided the ana-
tomical location of the scaffold, whereas PA images pro-
vided the blood oxygen saturation maps around and within
the scaffolds which is difficult to achieve with other imaging
modalities. PLGA and PLGA-SWNT scaffolds were first
embedded in the chicken breast tissue of varying thickness
for ex-vivo testing (Fig. 4). For in vivo imaging, the scaf-
folds were implanted subcutaneously in rats at *2 mm depth.
The PA and spectroscopic images (blood oxygen saturation

FIG. 4. PA imaging of scaffolds. US-PA images of PLGA (A–C) and SWNT-PLGA (D–F) scaffolds imaged at 680 nm
embedded into chicken breast tissue at depths of (A, D) 0.5 mm (B, E) 2 mm and (C, F) 6 mm (G) 3D US-PA image
rendition of SWNT-PLGA scaffolds embedded 0.5 mm in chicken breast tissue (H) US/PA amplitude scale is shown. �
2014 Reprinted with permission from Mary Ann Liebert.113 3D, three-dimensional; PLGA, poly(lactic-co-glycolic acid);
US-PA, ultrasound-photoacoustic. Color images are available online.
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maps) of the PLGA scaffolds and SWNT-PLGA scaffolds
were obtained at day 7 and 14, which suggest that nonin-
vasive long-term monitoring of scaffolds postimplantation
is possible with PAI. The rate of scaffold degradation
plays an important role in tissue engineering. While in vitro
degradation studies are routine, evaluation of in vivo deg-
radation is difficult. Recently, PAI has been used for non-
invasive structural assessment of degradable polymers
in vivo in parallel with US shear wave imaging for analysis
of polymer mechanical properties.114 The PAI signal from
the scaffolds agreed with histological images obtained from
the explanted tissue. This result indicates that PAI can be
utilized to monitor structural changes that may occur in the
scaffolds in vivo. PAI technique may provide vital infor-
mation about tissue engineering scaffolds postimplantation
and hence fill the gaps in understanding between in vitro and
in vivo degradation behavior.

Vascular imaging

One of the most established applications of PAI is the
analysis of vasculature in tissue.115–120 This noninvasive and
label-free vasculature imaging approach has been utilized to
study existing disease conditions, monitor therapeutic prog-
ress, and diagnose clinical conditions. Vascular imaging
with PA has been successfully used in diagnosis and as-
sessment of cancer,121–123 cardiovascular diseases,124 micro-
vascular abnormalities,120,125,126 and superficial soft tissue
damages.127 Vascularization is crucial for engineering tis-
sues of sufficient volume for clinical impact.128–130 In the
absence of adequate nutrients and oxygen, tissues can be-
come hypoxic hindering tissue development and function.
Assessing vascular development and function in engineered
tissues in vivo is vital. Early detection of relevant abnormal
vascularization condition may provide the opportunity to
intervene to improve therapeutic outcomes or avoid cata-
strophic events.

Vascular imaging with PAI has been performed to eval-
uate wound healing. Wound healing involves three phases:
Inflammation phase, proliferative phase, and remodeling
and scar formation. The structural changes that occur fol-
lowing the inflammation phase include extracellular matrix
formation, angiogenesis, granulation tissue formation, and
reepithelialization.131 PAI of angiogenesis and oxygen sat-
uration level can be used to evaluate wound healing. A
higher oxygen saturation level together with angiogenesis
has been used as an indicator of wound healing and tis-
sue regeneration.132 In one study, PAI was used to monitor
perfusion and hemodynamic changes in the burn healing
process. PA images taken postburn at different interval
demonstrated increased PA amplitude indicating neovascu-
larization. The distribution and the density of neovascular-
ization were qualitatively confirmed using histological
analysis.133 In another interesting application, PAI in com-
bination with US imaging was first used to diagnose the
severity of the burn and later used to track stem cells to
monitor vascularization and skin tissue regeneration.127 Three
different temperatures (87�C, 100�C, and 133�C) for various
durations were applied to mimic varying burn degrees. The
PA images of the wound caused by 100�C and 113�C for
30 s indicated significant subcutaneous bleeding similar to
third degree burns. No PA signal was observed in case of

87�C for 30 s and 113�C for 10 s indicating less severe burn
injury. Skin incision verified PA images to be in well ac-
cordance with subcutaneous bleeding level suggesting that
this technique can be used to determine the severity of burn
injury. In a follow-up to this initial injury, PAI was used to
monitor the therapeutic progress after treating burn injury
with adipose-derived stem cells (ASCs). These ASCs were
labeled with gold nanorods for imaging contrast. PA images
were used to evaluate blood vessel density and blood per-
fusion at 2 weeks postinjury. Spectral PA images of ASCs
and vascularization provided critical information regarding
the morphological changes that occurred along the wound
healing process (Fig. 5).

Recently, PAI was used to detect thrombosis in the ca-
rotid artery of a mouse model of ferric-chloride induced
endothelial injury and arterial occlusive thrombus forma-
tion. Within thrombi, the hemoglobin concentration de-
creases. By measuring the optical absorption of hemoglobin,
Li et al. reported the detection of artery thrombosis in
mice.134 Red blood cells (RBCs) in fresh clot formation
generate higher PA signal than old clots. As the clot ages, it
retracts forcing RBCs and other content out of the clot135

resulting in a reduced PA signal. Based on this phenomenon,
Karpiouk et al. used PAI to visualize thrombosis and esti-
mate the age of the blood clot to differentiate the acute and
the chronic stage of thrombosis.136 While this application is
not tissue engineering per se, the ability to evaluate clot
formation could be useful in evaluating tissue-engineered
vascular grafts. One recent study demonstrated PAI as a
technique to monitor neovascularization and integration of
decellularized human scaffold over an extended period of
time postimplantation.17 Decellularized scaffolds were im-
planted subcutaneously and monitored for neovasculariza-
tion and integration over the period of 15 weeks. The higher
PA signal intensity at 5 weeks indicated increased neovascu-
larization, which plateaued at 12 and 15 weeks. The initial
increase in PA signal intensity usually results from inflamma-
tory effects; however, this effect lasts for a couple of days.
A stable increase in PA intensity over the extended period could
be attributed to neovascularization. Physically, the scaf-
folds retrieved after 15 weeks postimplantation were re-
ported to integrate well. This study shows that we can
leverage label-free imaging of vasculature to explore or test
novel strategies to evaluate or improve the vascularization
of bioengineered scaffolds or even organs using PAI.

PAI is a promising approach for vascular imaging and
characterization due to its ability to achieve resolution in the
range of 0.1–800mm in the tissue thickness up to 8 cm all
based on intrinsic contrast (Fig. 6A).137 Furthermore, PAI
of vascular function has been used to assess peripheral ar-
terial disease (PAD).138 PAD involves both large and small
vessels. While large vessels are easily assessed using ultra-
sonography and CT angiography or MRI angiography,
assessment of smaller vessels is hampered due to limited
spatial resolution. PAI has been reported as a potential tech-
nique to evaluate small vessels-PAD. Detecting vascular
changes induced in normal or diseased physiological con-
ditions can provide crucial information relevant to PAD. To
show changes in microvasculature circulation, the human
index finger was subjected to the hot and cold stimulus to
induce constriction and dilation of blood vessels (Fig. 6B).
Stimulus induced changes in microcirculation were clearly
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FIG. 5. PA imaging in cell tracking and monitoring. PA images of burn tissue treated with ASCs. ASCs were labeled
with gold nanorods for PA contrast. Spectroscopic PA imaging allowed to identify and track ASCs over the period of
14 days. Oxygen saturation (oxygenated-red and deoxygenated-blue) indicated wound healing or tissue regeneration process.
� Reprinted with permission of Mary Ann Liebert.127 ASCs, adipose-derived stem cells. Color images are available online.

FIG. 6. (A) Label free imaging of angiogenesis at varying depths at different time points using PA imaging. � 2015
Reprinted with permission of AME.137 (B) PA images of blood vessels after cold (left) and warm (right) stimulus. � 2018
Reprinted with permission of Springer Berlin Heidelberg.138 Color images are available online.
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visible in PA. This experiment represents a proof of concept
for evaluating arterial diseases, including small vessels-
PAD. The same technique can be used to test the results of
strategies focused on increasing blood flow in peripheral
vascular disease through the assessment of changes in vas-
culature circulation in response to a given stimulus.

Cell tracking and monitoring

Like polymers, cells also lack intrinsic cellular con-
trast except for melanoma cells. Melanin, a characteristic of
melanoma cells, generates intrinsic PA contrast. Due to this
intrinsic contrast of melanoma cells, Zhang et al. reported
cell migration, distribution, and quantification of melanoma
cells in PLGA scaffold for the first time.139 PLGA scaffold
did not generate PA contrast; however, spatial distribution
and temporal proliferation of cells inside the 3D scaffold of
thickness over 1 mm were visible with PAI. In the absence
of intrinsic absorbance, external agents are used to generate
PA contrast. One of the major external contrast applications
in tissue engineering is cell tracking and monitoring.

Cells are often implanted as a critical component of a
tissue regeneration strategy. One of the major challenges in
stem cell therapy is tracking and monitoring of cells fol-
lowing implantation. This may provide vital information
about the therapeutic outcome of the treatment, mechanism
of the therapeutic effect, and potential risks of ectopic ef-
fects. It is crucial to understand cell fate, engraftment, and
survival in vivo to understand the underlying mechanism of
the stem cell function. PAI has been used as a noninvasive
measure to track stem cells following implantation. To date,
various contrast agents have been investigated for stem cell
tracking, including dyes,36,140 reporter genes,141 fluorescent
probes,142 and NP.143,144 Recently, bone mesenchymal stem
cells (BMSCs) were investigated as a treatment in a mice
brain injury model and were labeled with Prussian blue
particles to generate PA image contrast.36 PA tomography
images following BMSC treatment provided pathophysio-
logical status of brain injury, vascularization information,
and recovery process. PA images indicated injury location
and change in the bleeding area starting at 3 min following
injury. There was dramatic increase in PA signal until
30 min postinjury; later, PA signal gradually decreased due
to blood coagulation and spreading of blood pool and could
no longer be detected on day 13 indicating the natural re-
covery process of about 15 days. Another study applied PAI
to image and monitor cells implanted 6–8 mm deep in mice.
In this study, a tyrosine based reporter gene was used to
selectively label cells for long-term monitoring of cells.145

With this technique, cells could be engineered to constitu-
tively express tyrosinase (Tyr), an enzyme that catalyzes the
formation of eumelanin, to provide PA contrast. Expression
of the tyrosinase reporter allowed for monitoring of MSCs
post transplantation in an acute myocardial infarction rat
model.146

Gold labeled NPs have also been used to track cells.
GNPs generate PA contrast that can be tuned based on NP
size and structure. Nam et al. demonstrated in vivo imaging
of GNP-labeled MSCs using PAI.147 MSCs were prelabeled
with GNPs and mixed with a PEGylated fibrin gel in 1:1
volume ratio and then injected intramuscularly at the tissue
depth of *5 mm. They reported that GNP-labeled MSCs

could be monitored for 10 days following injection. The
same group previously reported that GNPs did not alter the
cell viability, cell proliferation, or differentiation of MSCs
suggesting that GNPs could be used for long-term moni-
toring of cells in vivo.148,149 PAI has been used to evaluate
endothelial cell distribution in decellularized scaffold during
reendothelialization.150 In another similar study, PAI was
used to track and monitor GNP labeled ASCs for dermal
tissue engineering. In this study, GNP labeled ASCs were
detected up to 2 weeks in a PEG-based scaffold.151 Fur-
thermore, silica coating on GNPs as a contrast agent dem-
onstrated enhanced PA in comparison with uncoated GNPs
to track and monitor MSCs.152,153 Similar to PEGylated
GNPs, silica coating did not evoke any significant effect in
the therapeutic effectiveness of stem cells. Jokerst et al.
showed that silica coated GNPs did not affect the plur-
ipotency of stem cells.153 Further research is needed for
assessing cell behavior and the immune response toward the
silica coated GNPs.154 Recently, PAI was used to guide the
delivery of stem cells into the rodent spinal cord. GNP la-
beled MSCs were imaged in real time while being injected
into the spinal cord of the rat. They report detecting cell
number as low as 1000 cells with this imaging system.155

In another study, human embryonic stem cell derived car-
diomyocytes were delivered to the heart of the mouse
for cardiac regenerative therapy. These cells were tagged
with PA NPs that consist of semiconducting polymers,
poly [2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta [2,1-b;3,4-
b¢]dithiophene)-alt-4,7(2,1,3 benzothiadia-zole)], for cell
tracking and monitoring purpose. Strong PAI signals from
these NPs easily differentiated implanted cells from back-
ground tissues.156

Current Status of PAI in Diagnostic Applications

Label-free detection of vascularization is one of the most
appealing applications of PAI. Based on this and other ad-
vantages of multispectral PAI techniques have been devel-
oped for the evaluation and assessment of many disease
states. Generally, these studies have exploited the ability of
PAI to evaluate hemodynamic changes due to abnormal
vessel assembly or function in these conditions. For exam-
ple, hypervascularization and increased oxygen saturation
are hallmarks of inflammation. Extensive vascularization
co-occurring with low oxygen saturation may indicate tumor
stage or progression.157 As blood vessels are easily visual-
ized with PAI system without the aid of external contrast
agent, PAI holds great potential for clinical diagnostic ap-
plications. This includes cancer, cardiovascular disorders,
inflammatory diseases, rheumatoid arthritis (RA), myocar-
dial infarction, and diabetic retinopathy.158 The research
described in this section provides examples of PAI used in
other medical applications using approaches that have not
been fully exploited by researchers in the fields of TERM.

Inflammatory diseases

Increased vascularization and oxygen saturation often
mark an inflammatory state.159 In many instances, clinical
outcomes of inflammatory disease treatments depend on
early diagnosis and intervention.160 Increased vasculariza-
tion in arthritic joints of RA patients exhibited up to a 10-
fold increase in the PA signal compared to noninflamed
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joint.161 In addition to diagnosis, PAI reportedly monitored
the escalation of inflammation and the therapeutic effect
of the treatment.162,163 For example, in Crohn’s disease
(CD) chronic relapse of inflammation is common. A tool
that allows quick detection of inflammation based on tissue
perfusion and oxygenation allows for intervention or ad-
justing the treatment therapy. Although a detailed study is
required, preliminary results performed in 108 patients
suggest that PAI can be used to noninvasively evaluate CD
based on hemoglobin levels in the intestinal wall.164 In
addition, CD may be characterized by fibrosis in addition to
inflammation that is attributed by the irreversible deposi-
tion of collagen. CD fibrotic stricture may require surgi-
cal intervention, and therefore, accurate characterization of
stricture is critical. Due to the optical absorbance of collagen
around 1300 nm, PAI has shown to detect the presence of
fibrotic stricture noninvasively in CD.165

Atherosclerosis is characterized by prolonged inflamma-
tion. The complex structure of vascular plaques correlates
with disease progression and risk.166 The plaque composi-
tion is important to access its rupture vulnerability and to
determine the course of treatment. Intravascular PA (IVPA)
imaging has been reported to allow differentiation be-
tween the various components within an atherosclerotic
lesion.56,167–169 IVPA utilizes a catheter or probe-based
system for intravascular delivery of light to generate PA
signal. The basis for detecting atherosclerotic plaque us-
ing PAI is the difference in optical absorbance of blood,
collagen, and lipid.170 The vulnerability of plaques can be
evaluated in an atherosclerosis rabbit model by targeted
macrophages with NPs.171 However, the inherent challenge
in IVPA is to design a flexible catheter or probe with clin-
ically relevant diameter that has high sensitivity and che-
mical specificity.58 Furthermore, these catheters or probes
should have sufficient resolution to provide structural and
functional information of the vascular wall. Many design
considerations are currently being investigated to opti-
mize IVPA catheter designs.58,172,173 Nevertheless, PAI is a
powerful tool for evaluating inflammation in a variety of
disease states suggesting that it could be utilized to assess
the response of a tissue to an implanted tissue engineering
or biomaterial-based therapeutic.

Cancer

PAI in oncology is rapidly evolving. PAI is already in
clinical trials for the detection of some types of cancers,
while for many others it is in preclinical or investigational
phase.123,174–178 While a standardized technique is required
for PAI before its transition to routine clinical use, the current
in-house prototypes have demonstrated promising results for
a wide range of cancers such as breast,179–181 cervical,182

prostate,183 skin,184 thyroid,185 and ovarian cancer.157 PAI
leverages vasculature imaging and functional information
such as oxygen saturation for cancer detection,178 progres-
sion,186 characterization,187–191 prognosis, and monitoring
therapeutic efficiency of treatment.192–194 Delivery vehicles
for cancer therapy are equipped with different PA contrast
agents for multimodal imaging for better diagnosis and
staging of cancer.195 Neovascularization is commonly ob-
served in tumors, triggered by the hypoxic state within the
tissue.196 Oxygen saturation level and extent of vasculari-

zation can be an indication of cancer progression. Long-
itudinal monitoring of vascular parameters gives insight into
the therapeutic progress of a given treatment. In addition to
the detection and characterization of cancer, PAI has also
been used to stage cancer. When a primary tumor metas-
tasizes, they first localize to a regional sentinel lymph node.
With the aid of an external contrast agent, PAI has been
used to noninvasively locate a sentinel lymph node to guide
biopsy with minimal surgical procedures.197

Future Prospects

PAI offers several potential advantages of other imaging
modalities when real-time longitudinal monitoring of func-
tional imaging is needed. PAI does not use ionization energy
allowing long term monitoring over the course of weeks or
months. PAI allows tracking and monitoring of cells, as well
as biomaterials, following implantation with the aid of ex-
ternal contrast agents. While PAI has seen heavy investigation
in stem cell tracking, biomaterial monitoring is not well ex-
plored yet. One of the challenges in tissue engineering is
monitoring in vivo degradation of scaffold.3 Extrinsic contrast
agents can be incorporated in the scaffolds or tissue engi-
neering constructs to monitor and evaluate degradation be-
havior in vivo. Concomitant vasculature development can be
imaged following scaffold implantation. Often after the sur-
gical biomedical therapeutic intervention, there exists a risk of
certain complication. Based on the amount of hemoglobin
present at the injury site, it can be monitored to evaluate
whether the injury is progressing toward wound healing route
or inflammation route which would allow to better manage
the clinical outcome of the therapeutic procedure.

There has been a recent upsurge in interest in PAI based
on its strong potential for clinical imaging. However, sev-
eral challenges still need to be addressed. The depth of
tissue imaging can be increased but typically at the cost of
resolution. Catheter or endoscopic PA probes are under
development, which enable localized evaluation of specific
internal organs or tissues while overcoming depth-related
resolution issues. These tools may not be broadly applicable
in TERM but certainly can be an important tool in specific
applications such as tissue engineered vascular grafts. While
there are many PA contrast agents under investigation, lon-
gitudinal monitoring could be improved through the devel-
opment of contrast agents that provide sustained PA contrast.
Most PA systems allow qualitative evaluation, and the de-
velopment of more quantitative PA techniques will have a
significant impact on biomedical research. Finally, the de-
velopment of standardized, easy-to-use commercial systems
will increase the impact of PAI.

Conclusions

There is a significant need for tools that allow monitoring
and tracking of tissue engineering therapies. While there are
many imaging strategies that are currently used to evaluate
these processes, PAI offers an attractive alternative. The
endogenous contrast resulting from vascularization, colla-
gen, and lipids enables insight in the absence of any addi-
tional factors. In addition, given the wide range of available
external contrast agents, PAI has immense potential to
monitor specific characteristics such as cells or scaffolds by
incorporating or targeting with exogenous agents. Monitoring
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cell behavior or processes in vivo real time, therefore, can
provide better understanding of how the given stimulus
or biological process affects the cellular or therapeutic re-
sponse in general. In addition, this information can be used
as a feedback to design improved tissue engineering con-
structs for reconstruction, repair, or regenerative purpose.
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