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Abstract: Depth-resolved optical attenuation coefficient is a valuable tissue parameter that
complements the intensity-based structural information in optical coherent tomography (OCT)
imaging. Herein we systematically analyzed the under- and over-estimation bias of existing depth-
resolved methods when applied to real biological tissues, and then proposed a new algorithm
that remedies these issues and accommodates general OCT data that contain incomplete decay
and noise floor, thereby affording consistent estimation accuracy for practical biological samples
of different scattering properties. Compared with other algorithms, our method demonstrates
remarkably improved estimation accuracy and numerical robustness, as validated via numerical
simulations and on experimental OCT data obtained from both silicone-TiO2 phantoms and
human ventral tongue leukoplakia samples.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

In direct analogy to ultrasound imaging, optical coherence tomography (OCT) acquires cross-
sectional images of biological tissues by measuring back-scattered light from different depths
[1,2]. The contrast of OCT originates from the in-sample spatial fluctuation of refractive
index, which ranges from ∼1.3 to ∼1.5 for most biological tissues [3]. Such back-scattering
intensity-based contrast information can be insufficient for tissue characterization and disease
diagnosis, especially when a longer center-wavelength (e.g. 1300 nm) light source is used
[4,5]. On the other hand, optical attenuation properties of biological tissues, including the
absorption and scattering coefficients, can be extracted fromOCT data as valuable complementary
parameters for tissue characterization, abnormality detection, and disease diagnosis [4,6–9].
Conventional approach to quantifying tissue attenuation involves typically modeling the tissue as
a homogeneous slab and fitting part of OCT A-line signal to a single-exponential decay curve
[10–14]. Such simplified treatment smears the depth-resolved ability of OCT and disregards the
depth-dependent attenuation coefficient of practical heterogeneous biological tissues. Recently,
a depth-resolved attenuation estimation algorithm has gained popularity [15–17]. Under the
single-scattering framework and assuming that almost all light is attenuated within the recorded
imaging depth, this algorithm estimates local attenuation coefficients with axial resolution and
much improved numerical robustness than the straightforward piecewise fitting method [15]. The
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model in discrete domain is transcribed below:

µ̃[n] ≈
A2[n]

2δ ·
∑N

n+1 A2[m]
, (1)

where µ̃ denotes the depth-resolved attenuation coefficient profile given by Ref. [15], A[n]
the real-valued magnitude of a complex OCT A-line profile, δ the coherent length of the
low-coherence beam (also the axial pixel size here), and N the number of resolvable pixels
within each A-line. Note that the A-line magnitude A[n] in OCT imaging is proportional to
the E-field magnitude of light returned from the sample arm, and therefore A2[n] denotes the
depth-dependent light intensity in the scattering sample.
When applying this algorithm to practical OCT images of other biological tissues, however,

extra care needs to be taken to avoid potential pitfalls. First, the algorithm doesn’t take into
account noise floor in practical OCT A-lines, which becomes dominant at deeper imaging
depth. Such noise floor, stemming from multiple-scattered photons [18,19] and system noise [2],
violates the single-scattering assumption and compromises the overall attenuation estimation
accuracy [20]. Additionally, we find that such excessive noise floor leads to considerable
underestimation bias (as presented shortly). One intuitive solution is to completely exclude the
noise floor-dominant portion of an A-line (from some specific depth beyond) from analysis; the
resultant truncated A-line profile, although complying better with the single-scattering model,
breaks the second assumption that almost all light gets attenuated within the imaging depth. This
in turn leads to substantial overestimation bias, which grows significantly near the end of the
depth range of interest [15,20,21]

In light of these practical pitfalls, Liu et al. [20] has recently proposed an improved algorithm
which mitigates the growing error near the depth limit of analysis by adding the discarded sum of
undetected signal beyond the boundary back to the denominator of Eq. (1), thereby yielding

µ̂[n] ≈
A2[n]

2δ ·
∑N

n+1 A2[m] + A2[N]
µ[N]

. (2)

Here the boundary attenuation efficient µ[N] is obtained by fitting a short piece of OCT A-line
profile near the effective depth limit to the classical exponential decay model. This essentially
substitutes the unwanted noise floor by a synthetic single-scattering tail, thereby reinstating the
assumption of almost complete attenuation of Vermeer’s algorithm [15]. Nevertheless, we found
this method relies heavily on the fitting accuracy of the boundary µ[N], which in practice could
lead to conspicuous and randomly distributed bright or dark striped artifacts in the resultant
attenuation image. More recently, Amaral et al. [21] proposed a proof-of-concept general
model that generalizes Vermeer’s model and promises improved attenuation estimation accuracy;
however, this method requires physically measuring the transmittance through the selected tissue
slab, which is very challenging in real-world in vivo imaging circumstances.

Herein we systematically analyze the underling roots and corresponding consequences of under-
and over- estimation issues that afflict the existing method, and then propose an alternative, robust
depth-resolved attenuation coefficient calculation algorithm which rectifies the underestimation
at shallower depths and overestimation at deeper locations for an incompletely decayed OCT
A-line. The efficacy of this new algorithm is first validated via simulated numerical phantoms,
and then further verified using practical data from both single- and multi-layer silicone-TiO2
phantoms and ventral tongue leukoplakia tissues. Comparison with existing methods proposed
by Vermeer et al. [15] and Liu et al. [20] is also presented.
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2. Attenuation coefficient estimation model

2.1. Estimation bias of the contemporary method

The continuous form of µ̃ in Eq. (1) can be written as:

µIdeal(z) =
A2(z)

2 ∫∞z A2(y)dy
≈

A2(z)
2 ∫Dz A2(y)dy

= µ̃(z), (3)

where D is the maximum imaging depth. The approximation made in Eq. (3) is rooted in the
almost complete attenuation assumption which, however, hardly holds in real-world OCT imaging
practice, even for highly scattering biological tissues (thus large µ values). In a typical OCT
A-line profile, the informative signal decays rapidly with depth and finally transits into a trailing
noise floor that extends until the depth limit. As a simplified model, denoting the depth at which
such transition occurs by F (e.g., 5 dB above the noise floor intensity), we find that the attenuation
coefficient given by Eq. (3) for shallower depths z<F turns out:

µ̃w/NF(z) =
A2(z)

2 ∫Fz A2(y)dy + 2 ∫DF A2(y)dy

<
A2(z)

2 ∫Fz A2(y)dy + 2 ∫∞F B2(y)dy
≈ µ̃Ideal(z).

(4)

Here we have introduced a hypothetical continuation of the A-line profile A(z) beyond the
transit depth F, denoted by B(z) for z>F, which complies with the single scattering-based signal
attenuation model, and therefore has smaller magnitude than the noise floor dominated by
multiple-scattered photons or system noise [2,18,19].
Equation (4) above indicates that the presence of noise floor in practical OCT A-line profiles

can cause substantial underestimation of attenuation coefficients in the useful imaging range (i.e.,
for depth z<F). The longer the noise floor portion, the more significant the underestimation.
To verify the phenomenon, we synthesized a hybrid A-line profile A(z) by splicing a noise-free
homogenous decay portion with attenuation coefficient of 3 mm−1 (ranging from 0.5 mm to
1.7 mm) with an about 2.2-mm-long noise floor extracted from real-world OCT data acquired
from a scattering phantom using a swept source OCT system (Fig. 1(a)). Indeed, the µ̃(z) profile
estimated using Eq. (1) (blue curve, Fig. 1(b)) falls significantly below the theoretical value
(black curve, Fig. 1(b)) in the exponential decay range of interest (from around 1.0 mm to 1.7 mm
here). With the noise floor cut to half of the previous length (i.e., ∼1.1 mm long, Fig. 1(c)), as
expected, the overall underestimation error gets less severe (blue curve, Fig. 1(d)), as manifested
by the elevated attenuation coefficient value at transition depth µ̃(z = 1.7mm)=∼0.75 mm−1

and the delayed onset of 3dB underestimation depth z3dB =∼1.50 mm in Fig. 1(d), compared
with corresponding values in Fig. 1(b) (µ̃(z = 1.7mm)=∼0.4 mm−1 and z3dB =∼1.35 mm,
respectively).
To avoid such underestimation bias, one straightforward option is to completely exclude

the noise floor portion from attenuation calculation (Fig. 1(e)), but in this way the resultant
attenuation profile suffers in turn from the overestimation bias which grows with depth (Fig. 1(f)).
Especially, if the noise floor gets overly truncated (Fig. 1(g)), the overestimation bias becomes
more prominent (Fig. 1(h)). Such growing overestimation error near the end of the analyzing
depth is also prominent in Fig. 1(b) and Fig. 1(d), as well as noticed in the original paper
[15]. To gain further insight into this universal overestimation bias, we take a closer look at the
approximation made in Eq. (3) and rewrite the equation as

µ̃(z) = µIdeal(z) ×

(
1 +
∫∞D A2(y)dy
∫Dz A2(y)dy

)
. (5)
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Fig. 1. Estimation bias of Vermeer’s method on OCT data with noise floor. a, c, e.
Synthesized OCT A-line data with the same length of effective signals (red dashed line), but
different noise floor lengths, corresponding to the cases of long (a), short (c), and no (e)
noise floor, respectively. g. Part of e resulting from overcutting of the noise floor. b, d, f, h.
Corresponding depth-dependent attenuation profiles µ̃(z) obtained by Vermeer’s algorithm
(blue curve) compared against ground truth profiles µIdeal(z) of matching lengths (black
curve).

At shallower depths (i.e. smaller z) where ∫Dz A2(y)dy � ∫∞D A2(y)dy, the estimated µ̃(z)
approximates the ground truth µIdeal(z) well with negligible error. As z grows and approaches the
calculation depth limit D, the integral ∫Dz A2(y)dy in the denominator decreases monotonically,
and therefore the overestimation bias increases accordingly and peaks at depth D. The depth at
which such rising-tail overestimation bias becomes prominent is controlled by the magnitude
of ∫∞D A2(y)dy. The less the light gets attenuated up to the depth limit D, the larger the integral
∫∞D A2(y)dy becomes, and the earlier (and stronger) the overestimation bias emerges (and grows),
as confirmed by simulation results in Fig. 1. Especially, even when the incident light attenuates
almost completely within the imaging range, thereby the magnitude of ∫∞D A2(y)dy being small,
such rising-tail overestimation bias still emerges as z approaches the limiting depth D and
∫Dz A2(y)dy approaches zero. Therefore, such overestimation bias near the depth limit is inherent
to the original algorithm [15] both physically and numerically.
As the underestimation bias can be eliminated by entirely excluding the noise floor portion

from calculation (as demonstrated in Figs. 1(e)–1(h)), correcting the overestimation bias for
general incompletely decayed A-lines is therefore critical for improving the overall estimation
accuracy throughout the remaining single scattering-dominant depth range. In light of this, we
propose a new estimation strategy to eliminate the progressive overestimation error near the
calculation depth limit, as detailed in the following section.

2.2. Overestimation-free depth-resolved attenuation estimation

A spatially coherent beam propagating through a turbid medium gets attenuated due to both
scattering and absorption. Considering a depth-resolved attenuation coefficient profile µ(z), the
differential attenuation equation, according to Lambert-Beer’s law, can be described as:

dL(z) = −µ(z) · L(z)dz, (6)

where L(z) denotes the optical irradiance (W/cm2) of the beam after traveling a distance z in the
medium. For OCT imaging of most biological tissues with near-infrared (NIR) light source,
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the contribution of tissue absorption to µ(z) can be ignored [3], and therefore the attenuation of
OCT signal results almost completely from tissue scattering. Assuming that a fixed fraction β
out of the attenuated portion of incident irradiance near depth z is back-reflected towards the
OCT detector, the back-scattered irradiance, denoted by the square of A-line profile A2(z), should
comply with:

A2(z) = Cβh · LR[L(z) − L(z + δ)]e− ∫
z
0 µ(y)dy

≈ Cβh · LRµ(z)L(z)δ · e− ∫
z
0 µ(y)dy

= Cβh · LRµ(z)L(0)δ · e−2 ∫
z
0 µ(y)dy,

(7)

where a scaling factor C denotes the conversion scale from beam irradiance to OCT signal, and
LR the irradiance of the constant reference-arm beam. The exponential decay term in the first line
of Eq. (7) represents light attenuation in the return path [19]. Note that the factor h is regarded
depth-independent for now so that the model focuses purely on signal decay induced by sample
attenuation; this corresponds to practical OCT A-line data with the focusing effect calibrated (see
Methods). Integrating A-line magnitude squared from z to the imaging depth limit D, one gets:

∫
D
z A2(s)ds = Cβh · LRL(0)δ · ∫Dz µ(s) · e−2 ∫

s
0 µ(y)dyds

= Cβh · LRL(0)δ ·
(
−
1
2

e−2 ∫
s
0 µ(y)dy

)����s=D

s=z

=
A2(z)

µ(z) · e−2 ∫
z
0 µ(y)dy ·

1
2

(
e−2 ∫

z
0 µ(y)dy − e−2 ∫

D
0 µ(y)dy

)
=

A2(z)
2µ(z)

(
1 − e−2 ∫

D
z µ(y)dy

)
.

(8)

We thus obtain an implicit equation of the attenuation coefficient profile µ(z) as:

µ(z) =
A2(z)

2 ∫Dz A2(y)dy

(
1 − e−2 ∫

D
z µ(y)dy

)
. (9)

The corresponding discrete version of Eq. (9) reduces to

µ[n] =
A2[n]

2δ ·
∑N

n+1 A2[m]

(
1 − e−2δ ·

∑N
n+1 µ[m]

)
. (10)

This equation can be solved recursively starting from the boundary value µ[N], which is in turn
fitted from the last typically ∼100-200 µm (sample-dependent) segment of the informative depth
range, after locating the tissue surface and cutting off the noise floor. To determine the fitting
length, we average 10 neighboring A-lines, and then fit the last 100 µm of the average A-line
to a log-linear model log A(z) = −µz + ε . If the resultant correlation coefficient R (defined as

R =
√
1 −

∑
i (yi − fi)2/

∑
i (yi − ȳ)2, where yi

.
= log A[i] denotes the logarithm A-line values to

fit, fi the corresponding fitted values, and ȳ .
= 1

M
∑M

i yi the mean of yi dataset) is smaller than
0.95, the fitting interval will be elongated in 20 µm increment until R achieves 0.95 or until the
fitting interval reaches 200 µm (in which case we will accept the fitted value anyway to avoid
deviating too far from the boundary). Note that in the context of simple linear regression, R is
the square root of coefficient of determination R2 which explains the extent to which the total
variance of raw data is explained by the model [22,23]. In the following sections, the efficacy of
the proposed algorithm will be validated on both numerical simulations and actual OCT data
from scattering phantoms and clinical tissue experiments; comparison with existing algorithms
reported in Ref. [15] and Ref. [20]will also be presented and discussed.
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3. Methods

3.1. Phantom fabrication and ex vivo imaging procedure

To experimentally verify the accuracy of the proposed depth-resolved algorithm, silicone phantoms
with different concentrations of TiO2 particles were fabricated following a published protocol
[24] to mimic single- and multi-layer tissues. First, a ∼10-mm-thick single-layer homogeneous
phantom was formed from a mixture of silicone and 0.2 w% concentration of TiO2. Then to
build a multi-layer phantom, four thin homogenous phantoms with 0.05 w%, 0.1 w%, 0.2 w%,
and 0.3 w% TiO2 concentrations, respectively, were first made separately; the thickness of each
thin phantom was controlled to be around 300-350 µm by slowly pouring the viscous, uncured
silicone-TiO2 mixture into a petri dish under the guidance of real-time OCT imaging (with the
refractive index of silicon-TiO2 assumed to be 1.40). The surface of the phantom became smooth
automatically owning to its fluidity. After leaving the petri dishes still on a level surface to cure
for 24 hours, these thin phantom layers were then carefully harvested and stacked together; care
was taken to make sure no inter-layer air gap exists.

Tissue imaging study was conducted in accordance with the protocol approved by the Ethics
Committee of Tianjin Stomatological Hospital. A healthy volunteer and a patient with leukoplakia
were enrolled for in vivo and ex vivo imaging studies. They were informed of experiment contents
and consents were obtained prior to each experiment. OCT images of leukoplakia were collected
ex vivo by imaging tissues harvested from the patient’s ventral tongue, while OCT images of
normal ventral tongue were acquired in vivo from the healthy volunteer at a location corresponding
to the leukoplakia position of the patient.

3.2. System setup and axial PSF calibration

All imaging experiments were conducted on a home-made swept-source OCT system with a
measured axial resolution of ∼15 µm and a lateral resolution of ∼17 µm (both in air). The system
consists of a 100-kHz sweep source laser (HSL-20-100-B, Santec) centering at 1310 nm with a
tuning range of ∼87 nm, a Mach-Zehnder interferometer and a balanced photodetector (1817-FC,
New Focus). Sensitivity roll off is an important factor in attenuation estimation. Thanks to
the long coherence length of 20.3mm, roll-off within 2mm depth is almost unchanged, and is
measured to be −2 dB over the entire imaging depth of 5.7mm. Based on the fact that tissue
imaging depth seldom exceeds 2mm, the effect of roll-off is neglected here. A well-developed
sensitivity roll-off expression can be used if necessity [25]. In practice, the scaling factor h in
Eq. (7) is depth-dependent due to focusing effects, which necessitates experimental calibration.
A classical and simplified axial PSF model is adopted here [26]:

h =

[
1 +

(
z − zf
αzR

)2]−1
, (11)

where zf denotes the position of beam waist and zR the Rayleigh length. Their values were
estimated by sweeping a flat mirror placed inside a water chamber through the imaging range of
the sample arm and fitting the back-reflection signal to Eq. (11) with α= 1 (i.e. the coherent
case [4]). Then the axial PSF for scattering phantom imaging was estimated by setting α= 2 in
Eq. (11) due to the loss of coherence. For proper calibration, all phantoms were imaged under
the same sample- and reference-arm configuration as used in PSF measurement.

4. Results

4.1. Digital phantom simulation

To validate the accuracy of our algorithm, we started with five single-layer, homogenous numerical
phantoms with distinct attenuation coefficients. The imaging depth was set to 2.5 mm, with the
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phantom surface situated 0.2 mm deep, and the axial pixel size (i.e., resolution cell) set to 2.5 µm.
For demonstration, the numerical simulations are free from noise floor and confocal effect. Thus,
underestimation is not an issue here. The simulated OCT A-line profiles (magnitude squared)
constructed according to Eq. (7) is plotted in Fig. 2(a). The attenuation coefficient profiles µ̃[n]
calculated using Eq. (1) and µ[n] given by our algorithm (i.e., using Eq. (10)) are compared
in Fig. 2(b). While matching the ground truth in the beginning, all µ̃[z] profiles (solid curves,
Fig. 2(b)) soar up monotonically with depth; also noticeable is that, for less scattering digital
phantoms, the overestimation bias is generally more pronounced and sets in from a shallower
depth, which conforms our previous analysis following Eq. (5). In contrast, the new method
herein proposed compensates this error source by including a rectification factor 1− e−2δ ·

∑N
n+1 µ[m]

in Eq. (10). The resultant attenuation profiles (dashed lines, Fig. 2(b)), as expected, match the
theoretical values well over the entire depth range. We also applied the method proposed in [20]
on the same noiseless data, and obtained very similar attenuation profiles as our algorithm (data
not shown).

Fig. 2. Numerical simulation results of single- and multiple-layer digital phantoms. a.
Simulated OCT signals (in logarithmic scale) of five different single-layer phantoms, with the
corresponding attenuation coefficients indicated in matching color. b. Attenuation profiles
recovered from OCT signals in a with both Vermeer’s method (solid lines) and the new
algorithm herein proposed (dashed lines). c. Simulated OCT signal (in logarithmic scale)
from a noisy 5-layer heterogeneous phantom with attenuation coefficients of 0.5 mm−1, 1
mm−1, 3 mm−1, 2 mm−1, and 0.5 mm−1 (from top to bottom), respectively. d. Attenuation
profiles recovered from the OCT signal in c with Vermeer’s method (blue curve) and the
new algorithm herein proposed (yellow curve).

To further validate the proposed method, we also simulated a 5-layer numerical phantom.
Staring from 0.2 mm deep, five 0.516-mm-thick layers of different attenuation coefficients were
concatenated (Fig. 2(c)). Gaussian noise was then added with a signal-to-noise ratio (SNR) of
∼26 dB, which was deliberately set poorer than normal OCT, in order to examine the robustness
of both estimation algorithms. As shown in Fig. 2(d), both methods are robust against noise.
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However, the attenuation profile µ̃(z) given by the previous method [15] is afflicted with prominent
soaring tails in the bottom two layers (blue curve in Fig. 2(d), while the µ(z) profile given by
the proposed method (yellow curve in Fig. 2(d)) matches well the ground truth (orange curve in
Fig. 2(d)). The attenuation profile calculated by using the Ref. [20] method also matches the
ground truth well (data not shown), indicating that that method achieves similar performance as
ours on synthetic data with no noise floor.

4.2. Phantom experiments

A single-layer quasi-infinite phantom (∼10 mm thick) was imaged to experimentally assess
the performance of the algorithm. After correcting the axial PSF as described in Section 3.2,
and realigning A-lines to get a flat phantom surface for the convenience of later comparison,
we first determined the magnitude of noise-floor based on the bottom ∼2.5 mm portion of the
averaged A-line (purple double arrow, Fig. 3(b)), and then determined the truncation depth as
the location where the decaying OCT magnitude is 5dB higher than that of noise-floor (∼2.3
mm here; blue arrow, Fig. 3(b)) [20]. Then within the remaining single scattering-dominant,
high-fidelity shallower depth range, a best estimation of the µIdeal was determined by fitting the
logarithm of the A-line magnitude to a linear model log(A(z))= -µz+ ε (red curve in Fig. 3(b))
yielding µIdeal ∼ 2.13 mm−1 with a coefficient of determination of 0.98. This value serves as the
“ground-truth” value against which other estimation results will be compared.

First, without removing the noise floor, µ̃-image was calculated based on Eq. (1) using A-line
data throughout the entire imaging depth of 5.7 mm (Fig. 3(c)). The resultant attenuation image
exhibits the characteristic underestimation bias in the relatively shallow depth range (about 1.7
to 2.3 mm) as we have seen in Fig. 1. The averaged profile over all such-calculated A-lines is
also shown in Fig. 3(d) (orange curve), where its deviation from the globally fitted µIdeal value
(black curve, Fig. 3(d)) is prominent. The µ̃-image also exhibits rapidly growing overestimation
error near the depth limit (orange profile in the right extension panel of Fig. 3(d)). Nevertheless,
the strongly scattering (and thus more attenuating), randomly distributed clumps of particles are
more distinguishable in the µ̃-image than in the intensity image, demonstrating the enhanced
imaging contrast afforded by attenuation images.
Then, with data in this truncated depth range, the µ̃-image given by Ref. [15], µ̂-image

given by Ref. [20] and µ-image given by our method are juxtaposed in Figs. 3(e)–3(g), and the
respective average attenuation profiles across all A-lines are compared in Fig. 3(d). First, we
notice that there’s no underestimation for any attenuation image or averaged attenuation profile,
underpinning the effectiveness and necessity of removing the noise floor from depth-resolved
attenuation calculation. Second, the growing overshooting bias of µ̃(z) estimation near the end
of depth range is manifest in both µ̃-image (Fig. 3(e)) and the average attenuation profile (blue
curve, Fig. 3(d)). This again corroborates our previous analysis about the intrinsic overestimation
tendency of the µ̃(z) estimation algorithm as revealed in Fig. 1(f), where cutting off the noise
floor introduces overestimation to the informative signal range. In comparison, mean µ(z) profile
estimated with our algorithm matches the fitted value (µIdeal ∼ 2.13 mm−1) across the entire
selected depth range of analysis without systematic under- or over-estimation bias. Mean µ̂(z)
profile agrees with the ground truth and mean µ(z) profile well over most depth range except
near the end, where it exhibits considerable overshooting bias (beyond 2.25 mm, Fig. 3(d)).
Corresponding to this depth range, the bottom part of the µ̂-image, however, contains both
extra bright overestimated regions (red arrowheads, Fig. 3(f)) and dark striped underestimated
shadows (yellow arrowheads, Fig. 3(f)), implying that the overall overshooting error observed in
mean µ̂(z) profile is simply an ensemble effect. Down to each individual A-line, the attenuation
profile could suffer from either over- or under-estimation bias in this depth range. In contrast, the
µ-image obtained with our algorithm contains almost no bright and fewer dark stripes (yellow
arrowhead, Fig. 3(g)). Given that both algorithms start with the same fitted boundary attenuation
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Fig. 3. OCT intensity and attenuation coefficient images of a single-layer silicone-TiO2
phantom. a. Normalized OCT image. b. Averaged OCT magnitude of all A-lines (black
curve) for noise floor determination. The noise floor portion is demarcated by purple double
arrow, and the transition depth is indicated by a blue arrow. The effective signal portion
used for global fitting of µIdeal is overlaid with the resultant single-exponential decay curve
(red curve). c. µ̃-image calculated with noise floor (w/ NF) using Eq. (1) after axial PSF
correction and surface alignment. d. Mean attenuation profiles averaged over all A-lines of
c, e, f and g. The black curve is the globally fitted value. Attenuation profile of c from 2.3
mm to 5.7 mm is plotted separately in the right panel. e, f, g. µ̃-, µ̂- and µ-images calculated
from truncated A-lines without noise floor. Bright (dark) striped artefacts representing over-
(under-) estimation bias are indicated by red (yellow) arrowheads in µ̂- and µ-images. All
OCT images shown are 5 mm width in the lateral direction.

value µ[N] for each A-line, and that the fitted µ[N] value is error-prone due to the noisy nature
of OCT data (especially at such deep locations), this observation suggests that our algorithm is
more robust to initial estimation error (see Discussion for details).

To evaluate the performance of the proposed algorithm in heterogeneous samples, a four-layer
scattering phantom was fabricated. From top to bottom, the TiO2 concentration in each layer is
0.05 w%, 0.1 w%, 0.3 w% and 0.2 w%, respectively, with the intensity image shown in Fig. 4(a).
Again, the µ̃-image calculated using the entire A-line data without cutting off the noise floor part
(Fig. 4(b)) suffers eye-catching overestimation error near the lower boundary. The corresponding
mean attenuation profile across all A-lines throughout the imaging field is shown in Fig. 4(f)
(orange curve) and compared with the layer-wise fitted values (black line) used as “ground truth”.
One can observe that µ̃ values in layers III and IV are severely underestimated. Note also that
theoretically, the mean attenuation values are supposed to be proportional to the respective TiO2
particle concentrations, and stay mostly uniform within each layer. In practice, the fitted values
fall below expectations in layers III-IV with higher TiO2 concentrations, which results probably
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from multiple scattering [27] and the inherent difficulty of fully mixing and evenly distributing
larger amount of TiO2 particles within silicone solution.

Fig. 4. OCT image and the corresponding attenuation images of a multi-layer silicone-TiO2
phantom. a. Normalized OCT image. b. µ̃-image calculated over the entire imaging depth
of 5.7mm with noise floor (w/ NF). c, d, e. µ̃-, µ̂- and µ-images calculated without noise
floor (w/o NF). Bright (dark) striped artefacts representing over- (under-) estimation bias are
indicated by red (yellow) arrowheads in the µ̂-image. f. Comparison of mean attenuation
profiles averaged over all constituent A-lines of subfigures b, c, d and e, respectively. g.
Quantitative comparison of the average value and standard error of mean attenuation profiles
shown in f over all depths within each layer. h. A 3D volumetric µ-image demonstrating the
consist estimation accuracy of our algorithm. All OCT images shown are 5mm width in the
lateral direction.

As the lower boundary of this heterogeneous phantom (prepared in a Petri dish) is obvious
in the intensity image, we simply treated all depth beyond the boundary as noise floor and
excluded it from further calculation. As expected, attenuation images calculated with noise floor
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removed (Figs. 4(c)–4(e)) are free of such systematic underestimation bias. The respective mean
attenuation profiles of all A-lines are also compared in Fig. 4(f). Two large peaks at the top and
bottom of the phantom reveal strong reflection (thereby manifested as strong attenuation) due to
the large variation of refractive index between air and phantom. The mean µ̃(z) profile calculated
without noise floor (green curve in Fig. 4(f)) is again polluted by significant overshooting bias
near the bottom of layer IV (i.e., the depth limit of analysis here), while the mean µ̂(z) and µ(z)
profiles (blue and red curves, Fig. 4(f)) generally follow the fitted value much closer expect that
µ̂(z) values in layer IV are slightly overestimated compared with the fitted value. Correspondingly,
scattering particles in layer IV of µ̂- and µ-images are much cleaner and more discernible
(Figs. 4(d)–4(e)) than those of µ̃-image (Fig. 4(c)).

We then turn our attention to the uniformity of these attenuation profiles within each layer. The
average and standard error of mean attenuation coefficients within each layer obtained by different
calculation methods are compared in Fig. 4(g). All methods yield more uniform attenuation
profiles within the first two, relatively less scattering layers, as one can also tell from attenuation
images and profiles (Figs. 4(c)–4(f)). Within the bottom two layers: 1) both mean µ̃(z) profiles
(with or without noise floor) demonstrate significant intra-layer variation, besides deviating
greatly from the respective fitted values; 2) mean µ̂(z) profile demonstrates larger variability than
mean µ(z) profile obtained by our algorithm. The increased non-uniformity of µ̂(z) values is
also manifested by conspicuous, randomly distributed bright or dark striped artefacts in layer IV
of the µ̂-image (red and yellow arrowheads, Fig. 4(d)). The less occurrence of such over- and
under-shooting bias in the µ-image (Fig. 4(e)) suggests again that our algorithm is more robust to
initial estimation bias of µ[N] (see Discussion for details).
Finally, a three-dimensional volumetric visualization of sequentially stacked 500 µ-images

obtained by the proposed algorithm is shown in Fig. 4(h). The layered cake appearance
demonstrates the consistent accuracy of the proposed algorithm over the entire field of view.

4.3. Human ventral tongue leukoplakia imaging

With the efficacy of our algorithm validated via both numerical simulation and phantom
experiments, we applied it to clinical OCT data. Figure 5(a) is an OCT image of normal ventral
tongue mucosa collected from of a 24-year-old healthy volunteer in vivo. Figure 5(b) is an ex
vivo OCT image of a leukoplakia tissue section harvested from the ventral tongue mucosa of a
63-year-old male patient. Noise floor of both images has already been truncated according to the
same aforementioned 5dB criterion. Corresponding attenuation images obtained by using the
method developed in this article are shown in Figs. 5(c) and 5(d), respecively, and corresponding
µ̂-images constructed by the method proposed in Ref. [20] in Fig. 5(e) and 5(f).
We first delineate the epithelium (EP) layer based on both intensity and attenuation images.

While the lower boundary of EP layer is more clear in the attenuation images (Figs. 5(c) and 5(d)),
its upper boundary is hardly discernible there, but has to be inferred from the corresponding
intensity images (Figs. 5(a) and 5(b)), reflecting the benefits gained from leveraging these two
complementary contrast mechanisms simultaneously. Compared with normal epithelium of the
healthy volunteer (Figs. 5(a) and 5(c)), the lower portion of EP layer that is invaded by dysplasia
exhibits stronger scattering (Fig. 5(d)), while the more superficial, normal-looking part of EP
layer remains low scattering as the normal EP layer. The difference between the dysplasia region
and the remaining uninvaded EP layer is more distinct in the attenuation image (delinated by
a red dash curve, Fig. 5(d)) than in the intensity image (Fig. 5(b)), underscoring the resolving
power of our estimation algorithm. Apart from increasing the attenuation coefficients, dysplasia
invasion also thickens the EP layer here, resulting in a peak thickness of ∼650 µm (double arrow,
Fig. 5(d)), compared with a maximal thickness of ∼400 µm in the normal EP layer (double arrow,
Fig. 5(c)).
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Fig. 5. OCT images and the corresponding attenuation images of normal ventral tongue
mucosa and a resected leukoplakia tissue sample. a. Normalized OCT image of normal
ventral tongue mucosa. b. Normalized OCT image of resected leukoplakia tissue from
ventral tongue mucosa. c, d. Corresponding µ-images calculated with our algorithm of a
and b respectively. The upper and lower boundaries of the epithelium layer (EP) are marked
by yellow dash curves, while the dysplasia-invaded portion of EP is delineated with a red
dash curve in d. e, f. µ̂-images calculated with the algorithm by Liu et al. [20] of a and b
respectively. Bright (dark) striped artefacts representing over- (under-) estimation bias are
indicated by red (yellow) arrowheads. All OCT images shown are 5 mm width in the lateral
direction.

While comparable structural and attenuation information can also be extracted from corre-
sponding µ̂-images (Figs. 5(e)–5(f)), as we have seen in the cases of TiO2 phantoms, the lower
part of both µ̂-images are afflicted with irregularly distributed extra dark (yellow arrowhead,
Figs. 5(e)–5(f)) and extra bright (red arrowheads, Figs. 5(e)–5(f)) striped artifacts near the lower
boundary, suggesting that the accuracy of µ̂(z) estimation is sensitive to the fitted boundary
attenuation coefficients µ[N], while the method proposed in this article is more robust (see
Discussion for details).

5. Discussion

Both the algorithm by Liu et al. [20] and our algorithm require the lower boundary attenuation
coefficient µ[N] as an input parameter (or boundary conditions). With the incident beam decays
monotonically inside a scattering medium like biological tissue, the signal-to-noise ratio of
OCT signal from deeper locations is generally inferior, and therefore the estimation of boundary
µ[N] is subject to over- or under-shooting error. How such initial error at the boundary affects
the overall accuracy of attenuation estimation determines the robustness and subsequently the
applicability of the algorithm to practical biological imaging. From estimation results above,
we have seen that our algorithm turns out more robust than the method by Liu et al. [20], as
manifested by the better uniformity (especially at the bottom portion of phantom images) of
µ-images. To gain further insight into this observation, we attempt a theoretical analysis on how
initial error propagates for both algorithms.
Assume a noise-free OCT A-line profile complying with the single-scattering model and the

initial estimation of µ[N] deviates from its true value, denoted by µ∗[N], by a ratio (or percentage)
of p, i.e. µ[N] = (1 + p)µ∗[N]. Note that the two algorithms converge under this noise-free setup,
so the true attenuation values µ∗[n] for n = 1, . . . , N are the same for both algorithms; in the
following we focus on how µ̂[n] − µ∗[n] given by Liu et al.’s algorithm and µ[n] − µ∗[n] given
by the reported algorithm evolve over depth.
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First, following Eq. (2), the error in Liu et al.’s algorithm ends up

µ̂[n] − µ∗[n] =
A2[n]

2δ ·
∑N

n+1 A2[m] + A2[N]
µ∗[N] ·

1
1+p

−
A2[n]

2δ ·
∑N

n+1 A2[m] + A2[N]
µ∗[N]

= µ∗[n] ·
A2[N]
µ∗[N] ·

p
1+p

2δ ·
∑N

n+1 A2[m] + A2[N]
µ∗[N] ·

1
1+p

.

(12)

In reality the magnitude of 1/µ∗[N] is on the same order of scattering mean free path, which
is typically several hundred microns for the near-infrared wavelength region adopted in OCT
imaging, while the pixel size of OCT image δ is typically several microns. As a result, for
locations close to the lower boundary where δ(N − n) � 1/µ∗[N], the deviation µ̂[n] − µ∗[n] is
dominated by the A2[N]/µ∗[N] term, which leads to

µ̂[n] − µ∗[n] ≈ µ∗[n] · p. (13)

This implies that the initial error ratio p, be it over- or under-estimation, will persist over a
considerable depth range immediately above the boundary. Since whether the initial boundary
attenuation coefficient µ[N] is under- or over-estimated, i.e. the sign of p, is random, this explains
the irregularly distributed bright or dark stripe artifacts appearing at deep locations (or layers)
of µ̂-images (Figs. 3–5). Furthermore, as the calculation proceeds toward upper depths, with n
decreasing and

∑N
n+1 A2[m] growing monotonically, the effect of initial error ratio p gradually

diminishes, which matches the improved performance of this algorithm at shallower depths.
Then for our algorithm, the error evolves as

µ[n] − µ∗[n] =
A2[n]

2δ ·
∑N

n+1 A2[m]

[
e−2δ ·

∑N
n+1 µ

∗[m] − e−2δ ·
∑N

n+1 µ[m]
]

= µ∗[n] · e−2δ ·
∑N

n+1 µ
∗[m] ·

1 − e−2δ ·
∑N

n+1(µ[m]−µ
∗[m])

1 − e−2δ ·
∑N

n+1 µ
∗[m]

.
(14)

Again, for locations close to the lower boundary where δ(N − n) � 1/µ∗[N], the fraction term
can be simplified via Taylor expansion as

µ[n] − µ∗[n] ≈ µ∗[n] · e−2δ ·
∑N

n+1 µ
∗[m] ·

∑N
n+1(µ[m] − µ

∗[m])∑N
n+1 µ

∗[m]
(15)

≈ µ∗[n] · e−2δ ·
∑N

n+1 µ
∗[m] · p. (16)

Note that the further approximation made in Eq. (16) above follows from applying Eq. (15)
iteratively and noticing that the exponential index α[n] = 2δ ·

∑N
n+1 µ

∗[m] grows slowly as n
decrements. From Eq. (16) one can see that, while the initial error percentage p in µ[N] estimation
also propagates to upper depths, its effect is suppressed progressively by an exponential decaying
term. This explains the improved robustness of our algorithm as manifested by the improved
uniformity of µ-images and mean µ(z) profiles shown above.
The reported attenuation estimation procedure can be further optimized in several aspects.

For example, while the model for confocal parameters estimation we adopted here is widely
used and yields satisfactory results, new automatic methods that determine confocal parameters
from two OCT B-frames at different focal planes or incident angles can further improve the
estimation accuracy [28,29]. Second, similar to existing methods, our algorithm is essentially
derived from the single-backscattering model of OCT signal [19]. Extending depth-resolved
attenuation calculation to account for multi-scattered (incoherent) component in general OCT
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signal warrants further investigation [12,27]. Further, as in most OCT-based attenuation profiling
algorithms, the physical thickness of scattering tissues or phantoms was converted from optical
path length by assuming a constant refractive index, therefore the attenuation coefficients were
evaluated essentially against the optical path length. Integrating our algorithm with novel OCT
imaging configurations that can retrieve refractive index information [30–32] and thus extract
physical depth-based attenuation information can potentially yield new insights into quantitative
tissue scattering characterization for biomedical research and clinical applications. Finally, it is
noteworthy that attenuation images obtained with our algorithm can help highlight boundaries
between tissue (sub)layers, thus offering a valuable feature dimension for automatic tissue layer
segmentation in OCT images of various tissues [33–37].

6. Conclusion

In summary, we proposed an accurate and robust depth-resolved attenuation estimation algorithm
that remedies the inherent under- and over-estimation bias of existing methods, thereby enabling
depth-dependent attenuation calculation for general OCT A-line data containing incomplete decay
and noise floor, and allowing consistent attenuation estimation accuracy for various scattering
samples over the effective OCT imaging depth. Compared with other algorithms, our method
demonstrates improved numerical robustness, as experimentally observed and theoretically
confirmed. Results from both numerical simulations, phantom experiments and human tissues
verified the excellent performance of this new algorithm and its universal applicability.
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