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Abstract. Daily travel distance (DTD), the distance an animal moves over the course of the day, is an important
metric in movement ecology. It provides data with which to test hypotheses related to energetics and behaviour,
e.g. impact of group size or food distribution on DTDs. The automated tracking of movements by applying GPS
technology has become widely available and easy to implement. However, due to battery duration constraints,
it is necessary to select a tracking-time resolution, which inevitably introduces an underestimation of the true
underlying path distance. Here we give a quantification of this inherent systematic underestimation of DTDs
for a terrestrial primate, the Guinea baboon. We show that sampling protocols with interval lengths from 1 to
120 min underestimate DTDs on average by 7 to 35 %. For longer time intervals (i.e. 60, 90, 120 min), the relative
increase of deviation from the “true” trajectory is less pronounced than for shorter intervals. Our study provides
first hints on the magnitude of error, which can be applied as a corrective when estimating absolute DTDs in
calculations on travelling costs in terrestrial primates.

1 Introduction

Spatial information is crucial for many questions in ecologi-
cal and behavioural research, e.g. species or resource distri-
bution, habitat utilisation and estimates of home ranges or
daily travel paths. The application of a satellite-supported
global positioning system (GPS) has improved the collec-
tion and accuracy of spatial data (Kays et al., 2015), provid-
ing ecologists and behavioural biologists with opportunities
to determine spatial patterns and test spatially explicit hy-
potheses. Similarly, the use of GPS has become more preva-
lent in primate field studies (Osborne and Glew, 2011; Ster-
ling et al., 2013). Beside the determination of geograph-
ical positions of ecological objects or structures within a
primate’s home range – such as sleeping and resting sites,
feeding patches or seed-dispersal events – spatial data have
been used to estimate home ranges (position, shape and
size), habitat utilisation, and daily travel paths and travel dis-

tances. In primatology, the application of GPS collars indi-
cated great potential particularly for semi-terrestrial primates
in (semi-)open habitats (Markham and Altmann, 2008), but
also for arboreal species (Stark et al., 2017).

Either animals can be equipped with a GPS device, and the
respective positions will be collected automatically at pre-
programmed intervals, or a researcher follows an animal and
determines the positions using a handheld device (e.g. see
Table 1). The GPS device consumes energy for every loca-
tion fix, and thus battery life limits the number of position
attempts or fixes a device can do. Programming fewer GPS
fixes results in longer battery life but at the price of lower
data density. It might not be a big problem if one is inter-
ested in the area an animal uses within a year, which one
can probably estimate fairly well with just 2 or 3 fixes day−1

(Cagnacci et al., 2010). However, it can be problematic if one
is interested in daily travel distance (DTD), where, optimally,
a quasi-continuous recording of the travel path would be best,
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Table 1. A selection of GPS fixing intervals applied in primate and non-primate studies.

Species Sampling interval Device Reference

Papio anubis “Continuously” at 1 Hz Collar Strandburg-Peshkin et al. (2015)
Chlorocebus 15 min Collar Isbell and Bidner (2016)
Papio ursinus 20 min Collar Hoffman and O’Riain (2012)
Papio ursinus 1 h Collar Pebsworth et al. (2012a, b)
Papio cynocephalus 1 h Collar Markham and Altmann (2008)
Macaca fuscata 1 h Collar Sprague et al. (2004)
Nasalis concolor 1 h Collar Stark et al. (2017)
Papio ursinus 3 h Collar Hoffman and O’Riain (2012)
Rhinopithecus bieti 2–5 fixes day−1 Collar Ren et al. (2008)
Rhinopithecus bieti 2–5 fixes day−1 Collar Ren et al. (2009)
Gorilla beringei 30 s Handheld Wright et al. (2015)
Papio cynocephalus 5 min Handheld Johnson et al. (2015)
Papio ursinus Average 9 min Handheld Bonnell et al. (2015)
Chiropotes sagulatus Average 10 min Handheld Gregory et al. (2014)
Papio ursinus 20 min Handheld Hoffman and O’Riain (2012)
Macaca silenus 30 min Handheld Santhosh et al. (2015)
Rhinopithecus bieti 30 min Handheld Grueter et al. (2008)
Hoolock leuconedys 30 min Handheld Sarma and Kumar (2016)

Equus caballus 5 s for 6.5 days Collar Hampson et al. (2010)
Panthera tigris 1–3 h Collar Naha et al. (2016)
Capra hircus 2 h Collar Chynoweth et al. (2015)
Elephas maximus 8 h Collar Alfred et al. (2012)
Canis lupus 0.25, 1.5, 2, 6, 12 h Collar Mills et al. (2006)

e.g. 1 fix s−1 (1 Hz). In many studies, a trade-off between
long battery life for collecting data over a longer time pe-
riod to estimate annual home ranges and a high data density
to estimate DTD is sought. In particular the number of fixes
per day used to estimate DTDs can influence the accuracy of
the estimates and can make comparative studies within and
between species difficult (e.g. Johnson et al., 2015).

Uncertainties in animal movement data, owing e.g. to sam-
pling frequency, may strongly influence interpretations of
tracking data (Bradshaw et al., 2007; Harris and Blackwell,
2013; Laube and Purves, 2011). As expected, in a number
of studies it was shown that, as sampling intervals increase,
the uncertainty of the behaviour between fixes increases; e.g.
DTDs estimated from low sampling frequencies were signif-
icantly shorter than those based on higher sampling frequen-
cies (Laundré et al., 1987; Mills et al., 2006; Reynolds and
Laundré, 1990; Rowcliffe et al., 2012; Edelhoff et al., 2016).
How, if at all, this effect can be corrected statistically or by
modelling is an open question (Blackwell et al., 2016; Flem-
ing et al., 2014a, b, 2016; Shamoun-Baranes et al., 2011).
One way to mitigate these effects can be an empirical es-
timation of the magnitude of error one yields by applying
different sampling frequencies.

In a study on range use of Guinea baboons (Papio pa-
pio) in the Niokolo-Koba National Park (Parc National du
Niokolo-Koba, PNNK), Senegal, we equipped baboons with
Tellus ultra-light GPS remote ultra-high-frequency (UHF)

collars (Televilt, TVP Positioning AB, Lindesberg, Sweden;
nowadays Followit AB). Since the main purpose of the ap-
plication of GPS collars was to estimate home ranges of the
baboons rather than an analysis of DTDs and since battery
longevity was limited, we programmed the collars to take
only 10 fix day−1 (seven fixes between 06:00 and 18:00 at 2 h
intervals, and three fixes at night at 21:00, 00:00 and 03:00)
but over a longer period (on average 10 months). Even with
a sampling interval of 2 h and thus just seven location points
per day (the night-time fixes were not used since the baboons
remained mainly stationary during the night), it was possible
to approximate DTDs which could at least be used for inter-
individual comparisons within the same population, given
that the error in estimating DTDs was similar for all collared
baboons. However, absolute DTDs were expected to be much
longer than those approximations based on just seven loca-
tion points (Fig. 1), making estimations on actual travelling
costs unreliable and comparisons of DTDs with other studies
problematic.

In our study we therefore aimed to estimate the magni-
tude of error when determining DTDs for Guinea baboons
(Papio papio) by applying various sampling intervals instead
of continuous tracking. For this we compared “true” DTDs
with DTDs estimated by using 1, 2, 5, 10, 15, 30, 60, 90
and 120 min sampling intervals. The true DTD derived from
direct, quasi-continuous GPS tracking of focal baboons; i.e.
a baboon was followed by a researcher carrying a handheld
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Figure 1. Example of a baboon track line (black) over 4 h and esti-
mated travel distances if sampling is done applying different inter-
val lengths (respective red lines).

GPS device recording a continuous track. Further, one can
expect that if a baboon moves more or less in a straight
line the error might be smaller than in cases when the ba-
boons meander a lot (e.g. Postlethwaite and Dennis, 2013).
We therefore explored which particular travel behaviours of
the baboons resulted in a greater or smaller deviation from
the true DTD.

2 Methods

2.1 Study site and subjects

The study was carried out in the Niokolo-Koba National Park
at the research station of the German Primate Center in Si-
menti (13◦01′34′′ N, 13◦17′41′′W). The habitat consists of a
forest–savannah mosaic with seasonally flooded grassland,
dry deciduous forest and gallery forest along the Gambia
River. The climate is characterised by a dry season from
November until May and a rainy season from June until Oc-
tober.

The baboon community in Simenti comprises 350–400 in-
dividuals. They live in a multi-level society consisting of one-
male units (OMUs), parties and gangs (Patzelt et al., 2014;

Goffe et al., 2016). The baboons were habituated to human
observers, so that observations and follows could be done
from less than 5 m distance.

We selected four males from different parties, and one of
us (Langhalima Diedhiou) followed on foot one individual
baboon at a time, keeping a distance of 5 m to the respec-
tive focal animal. The follows were repeated several times
for each male (Table 2). The respective tracks were recorded
with a handheld Garmin GPSMAP 62. Tracing set-up was
“auto-normal”. In sum we recorded 56 2 h tracks. In nine
cases we experienced gaps in the continuous recording of
the respective tracks (leg time> 60 s). We deleted these nine
tracks from our analyses.

2.2 Statistical analysis

2.2.1 Deviation from true travel distance

Using a GPS device, even a continuous track consists of a
number of fixes, optimally with a very short sampling inter-
val or leg time. Leg time is the delta between the time stamps
of the two fixes bounding the leg (e.g. 1 s if the sampling fre-
quency is 1 Hz). However, since conditions are not always
optimal, the real leg time varies and is most often larger than
the targeted 1 s leg time. As a result, when we overlaid the
continuous track with a 1 min sampling interval, for instance,
the respective 1 min time stamps did not necessarily match
with a fix from the GPS device. For instance, the closest time
stamps can be at 57 or 62 s instead of 60 s. Therefore we had
to interpolate the tracks and re-discretise them.

We artificially re-discretised the original tracks with reg-
ular sampling intervals of 1, 2, 5, 10, 15, 30, 60, 90 and
120 min (shown on the x axis of Figs. 3 and 4) by using
linear interpolation between coordinates from the original
tracks where necessary. This was achieved using the func-
tion “redisltraj” in the “adehabitatLT” R package (Calenge,
2006). The deviation from the original travel distance is the
difference between the original travel distance and the travel
distance of the re-discretised version.

To get to a relationship between the deviation from the
original travel distance and the re-discretisation sampling in-
terval duration, we fitted a Bayesian multilevel log-normal
regression model using the Stan-based (Stan Development
Team, 2015) R add-on package brms (Bürkner, 2017), with
track index as grouping factor γi . The conditional mean of
the deviation from the original travel distance y across the re-
discretisation sampling interval duration range of t ∈ [1,120]
was modelled as a y

−15 transformed response (log-normally
distributed, therefore with a loge link function) on the ba-
sis of the linear predictor β0+β1 · t+β2 · loge (t)+γi , which
leads to an improved expected predictive accuracy (based on
the leave-one-out information criterion; Vehtari et al., 2016)
in comparison to a set of other potential non-linear transfor-
mations, including a linear relationship, and power transfor-
mations of higher order. Section S1 in the Supplement gives
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Table 2. Temporal distribution of tracking periods. Tracking periods were either 4 or 2 h long. ID: individual baboon males; numbers in
first horizontal line indicate hours of the day. T: tracking periods included in analysis; t: tracking periods excluded, because of gaps in the
continuous tracking larger than 60 s.

ID Date (dd.mm.yyyy) 5 6 7 8 9 10 11 12 13 14 15 16 17 18

MST 08.09.2013 T T T T T T
MST 09.09.2013 T T t t T T
SNE 10.09.2013 T T
JKY 14.09.2013 T T T T
OSM 15.09.2013 T T
MST 16.09.2013 T T
SNE 18.09.2013 T T T T
JKY 19.09.2013 t t
MST 20.09.2013 t t T T T T
SNE 21.09.2013 t t T T
OSM 23.09.2013 T T T T
OSM 25.09.2013 T T T T
JKY 26.09.2013 t t T T
SNE 27.09.2013 T T t t
JKY 28.09.2013 T T T T
OSM 06.10.2013 t t T T
JKY 07.10.2013 T T T T
JKY 19.10.2013 T T T T
MST 20.10.2013 T T T T
OSM 21.10.2013 T T T T
SNE 22.10.2013 T T T T
JKY 23.10.2013 T T T T T T
OSM 24.10.2013 T T T T T T
MST 25.10.2013 t t T T T T
SNE 26.10.2013 t t T T T T
JKY 27.10.2013 T T T T T T

more details on the applied statistical approach, as well as
posterior mean and credible interval estimates for β0β1β2.

2.2.2 Hidden Markov model

To be able to further quantify how the deviation from
the original travel distance is related to moving velocity
and turning-angle states, we fitted a hidden Markov model
(Michelot et al., 2016). As an example, we performed this
for a re-discretisation duration of 5 min, which enables us
to classify the underlying moving states on the basis of this
coarsened information. This grid is still short enough – and
therefore close enough to our original quasi-continuous sam-
pling – to allow for making statements about the bias within
these re-discretised intervals (too-long intervals would lead
to mixing of underlying states; too-short intervals do not
leave us with enough deviation from the original travel dis-
tances). We based this on the three following states: resting
(no movement, state 1), slow velocities with uniformly dis-
tributed turning angles (state 2) and higher velocities with
a higher likelihood for more straight movements (state 3).
The parameters underlying these three states were fitted by
a maximum-likelihood approach as implemented in the R

package “moveHMM” (Michelot et al., 2016). We then com-
pared the deviation from the original travel distance in me-
tres per minute as introduced by re-discretisation of the origi-
nal tracks on the 5 min grid, conditional on the reconstructed
states by using the “Viterbi algorithm” on the basis of the
hidden Markov model’s results. Section S2 contains details
on the states’ parameterisations.

Ethical approval

All research adhered to the legal requirements of the coun-
tries from which samples were obtained. The study was car-
ried out in compliance with the principles of the American
Society of Primatologists for the ethical treatment of non-
human primates (https://www.asp.org/society/resolutions/
EthicalTreatmentOfNonHumanPrimates.cfm). No animals
were sacrificed or harmed for this study.

3 Results

3.1 Distances travelled

The database comprised 47 2 h tracks with 18 073 fixes, re-
sulting in 18 026 legs. In 80.7 % of cases the GPS device was
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Figure 2. Inter- and intra-individual variation in distance travelled
within 2 h. Median as thick solid horizontal line; 1st quartile Q1
and 3rd quartile Q3 as upper and lower box boundaries, respec-
tively; whiskers calculated as upper whisker=min(max(x) , Q3+
1.5·IQR) and lower whisker=max(min(x) , Q1−1.5·IQR), where
IQR= |Q3−Q1|; and mean as black cross. Kruskal–Wallis
test: H [3,N = 47] = 10.924; p = 0.012; NJKY = 15; NMST = 12;
NOSM = 11; NSNE = 9.

able to fix a position in less than 30 s. In only 0.6 % of cases it
took between 45 and 60 s. Two-hour tracks lasted on average
2:00:06 h (n= 47; SD= 5 s; min: 2:00:00 h; max: 2:00:18 h).
Average leg time was 18.8 s (N = 18 026; SD= 11.0 s; min:
1 s; max: 60 s). Within each leg the average distance covered
by the baboons was 5.1 m (N = 18 026; SD= 5.5 m; range:
0–37.0 m).

The baboons travelled 1921 m within a 2 h track (median;
range: 183–3691 m; N = 47). However, among and within
each subject there was considerable variation in speed of
travelling and hence in distance covered within 2 h tracks
(Fig. 2).

3.2 Deviation from true distance

The deviation from the real distance covered within a 2 h
track increased the longer the sampling interval was (Fig. 3).
If we applied a 1 min sampling interval, we already underes-
timated the distance by 6.3 % on average (median). The de-
viation from the true distance increased to 32.3 % (median)
if we used 2 h sampling intervals. Considerable variation in
underestimating the distance could be observed, which can
reach in the extreme case more than 80 % at 2 h sampling
intervals.

There is strong support that the expected deviation from
the true distance follows an exponential function (Fig. 4), in-
dicating that the relative error increase is larger at shorter
sampling intervals, as can be seen in Fig. 4 by the estimated
expected error levelling off with increasing re-discretisation
interval duration.

Figure 3. Deviation from original travel distance covered within
2 h (box plots illustrate the same descriptive statistics as described
in the caption for Fig. 2), as revealed by applying different sampling
intervals.

Figure 4. Expected deviation from the original travel distances (in
%) conditional on re-discretisation interval duration (in minutes).
The solid green line shows the estimated expectation (the functional
form is described by the function as given on the top right of the
figure); the green area shows a point-wise 99 % uncertainty interval
for this estimated conditional expectation.

3.3 Impact of states on deviation

The movement behaviour of the baboons – here categorised
in three states: resting (no movement, state 1), slow velocities
with uniformly distributed turning angles (state 2) and higher
velocities with a higher density for more straight movements
(state 3) – had a clear impact on the magnitude of error in es-
timating travel distances (Figs. 5 and 6). The deviation from
true distance was of course smallest if the baboons did not
move (stage 1) and largest if the baboons moved fast in a
more or less straight direction. This appears counterintuitive
at first glance but is explained by the much stronger conse-
quences of even small turning angles at intervals with fast
movement than at intervals with slow movement.
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Figure 5. Results of the hidden Markov model estimation. Blue lines on the left and middle plots illustrate the densities for the “resting”
state 1, dark grey lines show densities for state 2 (slow velocities, i.e. small step lengths per 5 min interval, approximately uniform distributed
turning angles) and red lines illustrate the densities for state 3 (higher velocities and higher density for straight movements). The dashed
histograms show the overall empirical distributions. The right figure shows the 47 tracks, coloured according to the states to which the
Viterbi algorithm (based on the hidden Markov model results) categorised them (x and y axes are scaled such that each track can be seen in
the maximal graphical solution; i.e. they are not equally scaled across the 47 plots).

4 Discussion

Results of our analysis of the DTD of Guinea baboons met
the general expectation: the higher the frequency of posi-
tions, the more trustworthy the movement paths (Nathan
et al., 2008). The absolute average underestimate of DTDs
was found to be less than 7 % for 1 fix min−1 and less than
35 % for 1 fix/120 min. However, it can reach up to a max-
imum of 30 and 90 % if respective sampling frequencies of
1 fix min−1 or 1 fix 120 min−1 are applied. The increase of
deviation from true DTDs followed an exponential function,
indicating that the average relative error increase is larger at
shorter sampling intervals than at larger ones, which is in
agreement with findings from Rowcliffe et al. (2012). For in-
stance, whether, in the case of the Guinea baboons, we use
a 90 or a 120 min sampling interval would not make a rele-
vant difference in underestimating DTDs. At least for Guinea
baboons we now have a reliable estimate of average underes-
timation of DTDs, which we can, for example, use as a cor-
rection when calculating absolute travel costs. We assume
that similar magnitudes of underestimation of DTDs apply
for other terrestrial primates, such as other baboon species.

The magnitude of error, however, is also dependent on the
behaviour of the individuals under consideration. In the ex-
treme, if an animal does not move over a long period, the true
travelled distance is 0 and the deviation from the true value

Figure 6. Deviation from original travel distance by the artificial
5 min sampling scheme, conditional on the states as estimated by
the Viterbi algorithm applied on the hidden Markov model results
shown in Fig. 5. Box plots illustrate the same descriptive statistics
as described in the caption for Fig. 2, with values of the median con-
ditional deviations given directly in the figure, and also illustrated
by crosses.

also becomes 0, irrespective of the length of the sampling in-
terval. Similarly, it is very likely that the error remains small
if an animal moves relatively slowly in a straight direction,
whereas one can expect a large deviation if the animal moves
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quickly with a lot of meandering. In our study, we analysed
the impact of movement behaviour exemplarily at a 5 min
sampling interval. As expected, in state 1 (mainly resting)
the deviation was minimal, whereas it increased minimally
if the animal moved slowly (state 2) and increased more if
it moved quickly (state 3). Since the spatial behaviour of ba-
boons and other animals is often influenced by ecological
condition (e.g. temporal and spatial distribution of food), one
can expect season might affect step length and path tortuosity
(Calenge et al., 2009; Owen-Smith et al., 2010).

Moreover, the time of day might play an additional role
in shaping the characteristics of a travel path. In Chacma ba-
boons (Papio ursinus), for example, Noser and Byrne (2010)
found that their study group used two different strategies
over the course of the day to exploit available fruit trees. In
the early morning, the baboons showed a more goal-directed
travel behaviour with linear travel routes and high movement
speeds, whereas the baboons travelled more opportunistically
(slower and less directly) during the rest of the day. DTDs
can also vary among seasons if the spatial distribution of re-
sources changes and forces individuals to adapt their DTDs
(Hemingway and Bynum, 2005). If such temporal patterns in
movement behaviour are significant in a species, the estima-
tion of error in DTDs needs to be adapted to these patterns.

We were able to determine underestimations of DTDs in
a terrestrial primate, the Guinea baboon, when applying dif-
ferent sampling intervals. The values of underestimation can
be used as a corrective in estimations of absolute DTDs and
travelling costs, which can make comparisons among differ-
ent primate groups more reliable. Our analysis also showed,
at least for terrestrial primates such as baboons, that there is
no significant increase of underestimation beyond a sampling
interval of 60 min (60, 90, 120 min). As shown in Fig. 4, this
mainly results from a weaker increase in underestimation for
larger interval durations, and less from an increase in estima-
tion uncertainty. Such a priori knowledge on underestima-
tions of DTDs is important to inform researchers conduct-
ing GPS remote telemetry studies. Based on analyses such
as ours, researchers can choose the “appropriate” sampling
intensity in order to optimise the trade-off between sampling
density and battery longevity.

We think that the overall magnitude of error, as found
in our baboon study, will provide an estimate transferable
also to other terrestrial or semi-terrestrial primate species.
However, if the respective species show largely deviating
movement behaviour, the magnitude of error will most likely
change.
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