Skip to main content
. 2020 Feb 6;12(3):2428–2439. doi: 10.18632/aging.102752

Table 2. Univariate analyses for the potential factors associated with hemorrhagic transformation by Logistic regression.

Model1 Model2 Model3
P OR 95% CI P OR 95% CI P OR 95% CI
Age <0.01 1.04 1.018-1.066 Age <0.01 1.04 1.02-1.07 Age <0.01 1.04 1.02-1.07
SBP <0.01 0.97 0.961-0.986 SBP <0.01 0.97 0.96-0.99 SBP <0.01 0.97 0.96-0.98
TB 0.05 1.03 0.999-1.069 TB 0.06 1.03 1.00-1.07 TB 0.28 1.02 0.98-1.06
AST 0.49 1.02 1.000-1.041 AST 0.05 1.02 1.00-1.04 AST 0.12 1.02 1.00-1.04
GH 0.54 0.95 0.808-1.119 GH 0.55 0.95 0.81-1.12 GH 0.81 0.98 0.82-1.16
NIHSS <0.01 11.92 5.198-27.356 NIHSS <0.01 11.82 5.14-27.22 NIHSS <0.01 1.32 1.22-1.44
N+L 0.81 1.73 0.02-157.94 N/L 0.03 1.12 1.01-1.25

Note: Logistic regression analysis found that patients’ Age, SBP, and HIHSS are independent risk factors for HT. On this basis, we have established three models, and Model 2 and Model 3 add two variables, N+L and N/L, respectively.

Abbreviation: SBP: Systolic blood pressure; N/L: Neutrophil/ Lymphocyte; N+L: Neutrophil + Lymphocyte; AST: Aspartate aminotransferase; GH: Glycated hemoglobin; TB: Total bilirubin.