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Abstract

Purpose: To directly compare diffusion metrics derived from multiband (MB) imaging 

sequences to those derived using a single-band acquisition.

Methods: In this work, diffusion metrics from DTI and mean apparent propagator MRI derived 

from a commercial MB sequence with an acceleration factor of 3 are compared with those derived 

from a conventional diffusion MRI sequence using a novel bootstrapping analysis scheme on 

oversampled diffusion MRI data. The average parameter values for fractional anisotropy and mean 

diffusivity derived from DTI, as well as propagator anisotropy and return to origin probability 

derived from mean apparent propagator MRI, are compared.

Results: Fractional anisotropy and propagator anisotropy are very similar when computed from 

data collected with and without MB, but show minor differences at low and high values of 

fractional anisotropy/propagator anisotropy. Mean diffusivity values are generally lower in the 

MB-derived maps, and return to origin probability is generally higher. The coefficient of variation 

of each parameter is shown to be slightly higher on average from the maps derived from MB 

versus single band when the TR is short, and slightly lower when the TR of the MB and single-

band experiments is equal.

Conclusion: These results demonstrate that the MB sequence tested in this work provides very 

similar results to a conventional diffusion MRI sequence. The MB sequence is affected minimally 

by the slight decrease in SNR associated with the parallel reconstruction and reduced TR, and 

there are relaxation effects associated with the reduced TR.

Keywords

diffusion; DTI; MAP; multiband

Correspondence: Theodore Trouard, 1657 E. Helen Street, Room 131A, University of Arizona, Tucson, AZ 85721-0240. 
trouard@email.arizona.edu. 

SUPPORTING INFORMATION
Additional supporting information may be found online in the Supporting Information section at the end of the article.

HHS Public Access
Author manuscript
Magn Reson Med. Author manuscript; available in PMC 2020 August 01.

Published in final edited form as:
Magn Reson Med. 2019 November ; 82(5): 1796–1803. doi:10.1002/mrm.27833.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



1 | INTRODUCTION

Simultaneous multislice MRI, also known as multiband (MB) imaging, is able to greatly 

reduce long scan times associated with diffusion MRI (dMRI) experiments.1–4 By exciting 

and collecting data from multiple slices in a single repetition, total acquisition time can be 

reduced by several orders, and can make complex diffusion experiments clinically feasible. 

Diffusion tensor imaging (DTI)5 requires a minimum of 7 measurements with at least 6 

noncollinear directions, but typically at least 30 directions6 are required to reliably estimate 

the diffusion tensor. For high angular resolution diffusion imaging methods, such as q-ball 

imaging7 and constrained spherical deconvolution,8 a minimum of 45 directions are 

recommended,9 but more than 60 are generally collected. For diffusion propagator imaging 

methods, such as q-space imaging and mean apparent propagator MRI (MAP-MRI),10 100 

or more directions are required with multiple b-values. Using non-slice-accelerated diffusion 

imaging, or single-band (SB) imaging, the scan times for these more advanced diffusion 

imaging methods far exceed those required for clinical imaging. Multiband not only makes 

advanced diffusion imaging more practical in both research and clinical settings, but it also 

reduces the likelihood of significant motion and subject discomfort.

Although the time-saving benefits of using MB in dMRI are obvious, it is critical to 

quantitatively compare the results of MB and SB acquisitions to establish what differences, 

if any, MB and SB acquisitions impart to dMRI results. In previous work using a bootstrap 

analysis,3 it was demonstrated that primary and secondary fiber orientations, as determined 

by q-ball imaging, are similar, although the fiber orientations estimated from the MB data 

suffered from increased uncertainty (measured as an increase in the 95% confidence 

interval). In the same work, orientation distribution functions and tractograms produced 

from both MB and SB sequences were compared and shown to be qualitatively similar. The 

bootstrap analysis used in that work was not used to compare scalar indices such as the 

fractional anisotropy (FA) or mean diffusivity (MD), however, nor were other scalar metrics 

from other diffusion analysis techniques, such as MAP-MRI, considered. Instead, a region of 

interest–based analysis was used to demonstrate that the FA derived from MB and SB 

experiments were not statistically different. In other work, Duan et al11 examined the test–

retest reliability of DTI-based metrics, as well as tractography-derived connectivity metrics,
12 and demonstrated moderate to good repeatability in MB-derived DTI parameters, but did 

not compare MB results to SB results. Yet another study13 investigated the effects of a MB 

sequence on diffusion parameters derived from data collected on a 1.5T system with a 12-

channel head coil. It reported that the results from the MB sequences with large acceleration 

factors3,4 did not reliably reproduce FA, MD, or tractography results.

Here, a novel bootstrapping-based analysis is performed to provide a more detailed, voxel-

wise comparison of dMRI parameters derived from SB and MB acquisitions. This 

bootstrapping scheme allows for the analysis of large diffusion data sets with a more 

reasonable acquisition time by subsampling a single, oversampled data set collected during 1 

imaging session. In this way, the impact of misalignment of data due to registration errors is 

minimized when performing a direct, voxel-by-voxel comparison of dMRI-derived metrics, 

and multiple, long acquisitions are not necessary. In addition, a controlled analysis on the 

effects of reduced TR on dMRI metrics is included in the context of MB imaging. 

Bernstein et al. Page 2

Magn Reson Med. Author manuscript; available in PMC 2020 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Furthermore, a multiple q-shell acquisition scheme with a large number of non-collinear 

diffusion-sensitizing gradients has been used to allow an analysis of the effects of MB 

techniques on higher-order models of diffusion, namely MAP, which has not been 

considered previously. Briefly, MAP-MRI is a technique that efficiently estimates the full, 

3D diffusion probability distribution (or propagator) of water diffusion in complex media, 

such as tissue. By finding an analytic approximation of the 3D propagator, many different 

microstructural parameters can be estimated, such as the return to origin probability (RTOP), 

which provides a metric related to the average compartment size within a given voxel, or the 

propagator anisotropy (PA), which provides a measure of tissue anisotropy, similar to FA, 

but accounts for the increased complexity of the 3D propagator when compared with the 

simpler diffusion tensor.10

2 | METHODS

2.1 | Data acquisition

Two healthy volunteers were scanned with approval from the institutional review board at 

the University of Arizona. All data were collected on a 3T Skyra MRI scanner (VE 11A; 

Siemens Medical Solutions, Erlangen, Germany) using a commercial 32-channel head coil 

for reception. A T1-weighted data set (MPRAGE parameters: TR = 2530 ms, TE = 3.3 ms, 

TI = 1000 ms, resolution = 1 × 1 × 1 mm, matrix = 256 × 256) was acquired for anatomical 

reference. The standard SB dMRI experiment used pulsed gradient spin-echo Stejskal-

Tanner EPI with TR/TE = 10 700/115 ms; matrix size = 128 × 128 and 69 slices; FOV = 256 

× 256 mm; 2-mm isotropic resolution; in-plane GRAPPA factor of 2; 6/8 partial Fourier; and 

14 b = 0 s/mm2 images, 20 b = 1000 s/mm2 images, 32 b = 2000 s/mm2 images, and 64 b = 

3000 s/mm2 images, sampled evenly around the sphere using a multishell electrostatic 

repulsion scheme similar to that described by Caruyer et al.14 This produced a direction set 

that was both evenly distributed on each shell and noncollinear between shells. In addition, a 

single b = 0 s/mm2 was collected with the phase encoding direction reversed for use in 

distortion correction. Two MB data sets were also collected with identical parameters except 

for the TR and a 3-times MB acceleration factor. The first MB data set used the minimum 

TR possible (3700 ms), whereas the second used a TR = 10 700 ms to match the SB data set. 

Each MB data set also included a matching b = 0 s/mm2 with the phase-encoding direction 

reversed. The diffusion acquisition was designed to provide more than enough 

measurements to fit DTI (minimum 6 directions, 2 b-values) as well as MAP-MRI 

(minimum 22 measurements across multiple q-values for an order 4 fit) after subsampling 

the data sets when performing statistical comparison.

2.2 | Data preprocessing

Gibbs ringing correction was first performed on the original dMRI images using the method 

described by Kellner.15 Echo planar imaging distortion correction was then performed using 

FSL’s TOPUP algorithm using all b = 0 s/mm2 images collected.16 Eddy current and motion 

correction was then performed using FSL’s eddy algorithm,17 and the diffusion-encoding 

directions were rotated to adjust for head motion. In this step, all images were registered to 

the first b = 0 s/mm2 in the SB data set, to correct for intrascan and interscan motion. Next, 

local principal component analysis was used to denoise the data set.18
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2.3 | Bootstrapping

Each of the 3 dMRI data sets were randomly sampled 100 times to generate 100 unique 

subsets of the data with 2 b = 0 s/mm2 images, 10 b = 1000 s/mm2 images, 19 b = 2000 

s/mm2 images, and 39 b = 3000 s/mm2 images. These numbers were selected to provide 

enough measurements to fit the data to higher-order diffusion models, while avoiding 

significant overlap of the measurements in each subsampled data set. Although each of the 

100 subsampled sets has a unique set of directions, the directions are identical across the 3 

sets of data.

2.4 | Microstructure processing

Diffusion tensor imaging fitting for each set of subsampled data was carried out using 

weighted linear least squares fitting, and FA and MD were estimated from the derived 

eigenvalues using in-house Python code.5 The MAP was also estimated for each subsampled 

set using the Laplacian-regularized linear fitting technique described in Fick et al,19 using 

basis functions up to order 4 (22 coefficients). Propagator anisotropy (PA) and RTOP were 

estimated from the fit MAP coefficients as described by Özarslan et al,10 using in-house 

Python code.

2.5 | Analysis

The results of the DTI and MAP fits were compared on a voxel-wise basis. Using the 100 

unique samples of DTI and MAP parameters, voxel-wise probability distributions were 

estimated. The mean and the coefficient of variation (CV, σ/μ) were calculated for each 

measured parameter distribution, in which σ is the SD of each estimated parameter, and μ is 

the mean. The CV provides a comparable measure of variation in the presence of differences 

in mean values. The mean and CV for each parameter derived from both MB experiments 

were then compared with the mean and CV for each parameter derived from the SB 

experiment, which served as the “gold standard” for this work. Voxel-wise difference maps 

were computed for each parameter’s mean and CV. Additionally, the T1-weighted image was 

segmented into white matter, gray matter, and CSF using FSL’s FAST routine,20 to perform 

tissue type–specific analysis.

3 | RESULTS

Figure 1 shows dMRI parameter maps derived from both DTI and MAP-MRI, using MB or 

SB sequences. Each image displays the average of the estimated probability distributions for 

each parameter, which appear qualitatively very similar. Patterns of high and low anisotropy 

are maintained in both the FA (Figure 1A–C) and PA (Figure 1G–I) maps across all 

acquisition schemes. The inverse relationship between MD (Figure 1D–F) and RTOP 

(Figure 1J–L) is also maintained and apparent in the images displayed. In regions where 

diffusion is highly restricted, such as at the genu of the internal capsule, the MD is low and 

the RTOP is high. The RTOP also demonstrates high contrast between white and gray 

matter, and this contrast is preserved in images from both MB and SB sequences.

The scatter plots in Figure 2 plot the average value of a dMRI parameter derived from the 

SB sequence in a particular voxel versus the average of the same parameter for that voxel 
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derived from the MB sequence. Voxels from the entire brain are included in each plot and 

have been categorized as gray matter, white matter, and CSF with different colors. If the 

parameters generated from the MB data were identical to those generated from the SB data, 

they would lay perfectly along the dashed line. Any consistent deviations from the dashed 

line are indicative of a bias, and the larger the spread about the dashed line, the larger the 

variability when estimating a given parameter.

Figure 2A shows that there is very little bias in the estimation of FA when using MB with a 

short TR relative to a SB sequence. The FA in CSF is slightly overestimated (on average) by 

the short TR MB sequence, and is very slightly underestimated on average in the white 

matter. These small biases are almost completely gone in the data from the TR-matched MB 

sequence (Figure 2B). The largest, most obvious bias comes from the estimation of MD in 

the CSF when using the short-TR MB sequence (Figure 2C). Here, the MB sequence 

underestimates the MD relative to the SB sequence. The bias is also present in gray and 

white matter, but to a much smaller extent than that found in the CSF. When the TR of the 

MB sequence is matched to that of the SB sequence, the bias is reduced (Figure 2D). When 

using the short-TR MB sequence, the PA measured in CSF is overestimated in general, and 

that of white matter tends to be very slightly underestimated relative to the SB values 

(Figure 2E). Although the slight white matter bias does not appear to change when the TR of 

the MB sequence is matched to the SB sequence, the bias of the CSF goes away (Figure 2F). 

Finally, the RTOP estimated by the fully accelerated MB sequence is almost always 

overestimated in the CSF, but is normalized when the TR of the MB sequence is set to match 

that of the SB sequence (Figure 2G,H). A slight bias appears for white matter and gray 

matter in the matched TR data sets in which the MB value is slightly lower than that of the 

SB.

Looking at the averages demonstrates potential biases caused by collecting diffusion data 

with 1 scheme or the other, but it does not provide any information about the uncertainty in 

the data. To quantify the variability, we performed a similar analysis using the CV. Figure 3 

shows maps of the CV for all of the derived parameter maps from each acquisition scheme. 

As shown, the FA (Figure 3A–C) has the highest CV, followed by the PA (Figure 3G–I), the 

MD (Figure 3D–F), and finally the RTOP (Figure 3J–L). For FA and PA, the CV is lowest in 

the white matter, and highest in the CSF. For MD and RTOP, however, the CV appears to be 

higher in the central portion of the image, and lower on the periphery, without any obvious 

relationship to tissue type.

Finally, Figure 4 shows a difference map between the CV of parameters derived from MB 

and SB sequences. Figure 4A demonstrates that in white matter, the short-TR MB sequence 

estimates the FA with higher uncertainty than the SB sequence. Furthermore, the effect 

appears to be greater in the anterior portion of the image than the posterior. This effect is 

more pronounced when the TRs are matched between the MB and SB sequences (Figure 

4B), in which the variability of the FA measurement is lower in the MB image than in the 

SB image at the posterior portion of the image. In fact, this pattern of higher uncertainty in 

the anterior portions of the image and lower uncertainty in the posterior of the image can be 

seen in the MD and RTOP difference maps as well. The variability in the MD estimates does 

not appear to be dependent on tissue type, but more by location within the FOV of the image 

Bernstein et al. Page 5

Magn Reson Med. Author manuscript; available in PMC 2020 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(Figure 4C,D). The CV is lower in the TR-matched MB image than in the SB MD image 

almost everywhere. This is also the case in the TR-matched RTOP image (Figure 4H). An 

analysis of the SNR in raw dMRI images produced from MB and SB acquisitions is 

presented in the Supporting Information.

4 | DISCUSSION

In this study, the similarities and differences of several dMRI parameters estimated using 

MB and SB imaging sequences are compared using a bootstrapping analysis. This 

bootstrapping analysis was designed to accommodate the comparison of multiple diffusion 

MR analysis techniques (DTI and MAP-MRI) without the need for repeated scans, which 

could take several hours and be susceptible to significant subject motion. In addition to DTI-

derived parameters, analysis has been extended to include diffusion parameters derived from 

MAP-MRI, which more completely characterize the diffusion propagator. Finally, T1 effects 

were studied by collecting MB data with both a minimal TR and a TR that matches the 

required TR of the SB data set. In this way, differences in estimated values between the MB 

and SB data sets can be attributed to either T1-related effects and/or MB scheme-related 

effects.

Overall, there is very high degree of agreement between the parameters derived from MB 

and SB sequences, as visualized in Figure 1. However, there are measurable differences that 

are worth noting. First, there is a slight increase, in general, in the CV of parameters derived 

from the fully accelerated MB sequence when compared with those derived from the SB 

sequence. If this increased uncertainty was due to the MB pulse sequence and parallel 

reconstruction alone, the same increase in CV would be expected in the MB sequence with a 

matched TR, which is not the case. The increased uncertainty may be due, at least in part, to 

the slightly reduced SNR associated with the reduced TR. When the TR is decreased, signal 

from tissues with a long T1 do not recover as much and are decreased. In fact, when the TR 

is matched between the MB and SB sequences, the CV is generally smaller for the MB-

derived parameters. The CV also tends to be further increased in the center of the FOV in the 

MB-derived parameter maps when compared with the SB-derived parameter maps, as shown 

in Figure 4, which is particularly evident in the CV difference maps of the MD. This pattern 

tends to follow the pattern seen in the g-factor maps discussed by Setsompop et al.3 It makes 

sense that increased acceleration will lead to an increased g-factor penalty, and we believe 

that this can largely explain the spatial dependence of the CV.

Second, some of the dMRI parameters tend to be slightly biased when estimated from the 

MB data, particularly the short-TR data, which can also be explained by a combination of T1 

effects and SNR differences. It has been reported previously21 that in instances of low SNR, 

low values of FA tend to be artificially increased, and high values of FA tend to be 

artificially decreased. This is the pattern displayed by the FA and PA data in this study, 

suggesting that the MB sequence itself may not be responsible for the slight biases in FA 

and PA, but rather the slightly decreased SNR is causing minor deviations in FA and PA.

The bias displayed by the estimation of MD by the accelerated MB sequence appears to be 

explained, in large part, by T1 effects. Voxels with a significant volume fraction of CSF 
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show decreases in MD when estimated with the accelerated MB sequence relative to the SB 

sequence. With a short TR, CSF cannot fully relax between RF excitations. The signal 

fraction of tissue with shorter T1 values (which also have lower MDs) is therefore increased, 

and the MD of those voxels is decreased overall. Interestingly, the bias in MD and RTOP 

does not completely disappear when the TRs are matched, so there are likely other 

mechanisms at play.

One of the challenges of this study was developing a bootstrapping scheme that allowed for 

the comparison of dMRI parameters derived from both DTI and MAP-MRI that did not 

require multiple acquisitions of the same data sets. In the bootstrapping scheme used, each 

subsampled data set contains a different set of diffusion directions than all of the other 

subsampled data sets. This subsampling scheme likely adds another source of variation to 

the derived parameter maps. This variation, however, is consistent across the SB and MB 

acquisitions, and thus does not affect the final interpretation of the results. Other 

bootstrapping strategies, such as the residual and wild bootstrap, were considered, but 

ultimately rejected as the results are model-dependent. Thus, a separate bootstrapping must 

be completed for both DTI and MAP-MRI, making it difficult to harmonize the results 

across multiple dMRI fitting techniques.

The results of the current work suggest that dMRI data of very similar quality can be 

expected when using a MB sequence compared with that collected using a traditional SB 

sequence. Furthermore, dMRI parameter maps generated from MB and SB sequences are 

very similar. Although there are biases introduced in several parameters by the shorter TR 

and the resulting reduction in SNR afforded by accelerated MB acquisitions, they are small 

and consistent. These differences may lead to issues if trying to directly compare dMRI 

parameter values derived from data acquired with MB sequences to those estimated from SB 

data, but they should not be an issue when comparing data collected using only MB.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
Visualization of the average parameter maps derived from DTI and mean apparent 

propagator (MAP) MRI for 3 different collection schemes. The top row displays the maps 

derived from the minimum TR (i.e., 3.7 seconds) 3-times multiband (MB) sequence, 

followed by the 10.7-second TR 3-times MB sequence, and finally the parameter maps 

derived from the standard single-band (SB) sequence with minimum TR (10.7 seconds) for 

full-brain coverage. The first and second column show fractional anisotropy (FA) and mean 

diffusivity (MD, mm2/s) derived from DTI analysis. The third and fourth column show 

propagator anisotropy (PA) and return to origin probability maps (RTOP1/3, mm−1) derived 

from the MAP-MRI analysis
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FIGURE 2. 
Scatter plots of MB-derived parameter values plotted against SB-derived parameter values 

on a voxel-by-voxel basis for the entire brain. Voxels are categorized as either gray matter 

(red), white matter (blue), or CSF (green). The black, dashed line has a slope of 1.0 and is 

plotted for reference. The top row shows parameters derived from the MB sequence using a 

minimal TR (3.7 seconds) plotted against the same parameters derived from the SB 

sequence. The bottom row shows the parameters derived from the MB sequence using a 

matched TR (10.7 seconds) plotted against the same parameters derived from the SB 

sequence. The range for both the x-axis and y-axis is 0–1 for FA, 0–0.003 mm2/s for MD, 0–

1 for PA, and 0–100 mm−1 for RTOP1/3
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FIGURE 3. 
Maps of the coefficient of variation (CV) of the parameter maps derived from both DTI and 

MAP for all 3 collection schemes. The top row displays the maps derived from the minimum 

TR simultaneous multislice sequence, followed by the 10-second TR simultaneous 

multislice sequence, and finally the parameter maps derived from the standard SB sequence 

with minimum TR for full-brain coverage
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FIGURE 4. 
Difference maps between the CVs of parameters derived from MB and SB acquisitions. The 

top row displays the CV of the short TR MB (TR = 3.7 seconds)–derived parameter values 

subtracted from the CV of the SB-derived parameter values. The bottom row shows the CV 

of the TR-matched MB (TR = 10.7 seconds)–derived parameter values subtracted from the 

CV of the SB-derived parameter values. All CV maps are plotted on the same scale, where 

red and yellow indicate that the MB CV is lower than the SB CV, and blue indicates that the 

MB CV is larger than the SB CV
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