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Introduction
  The role of pharmacokinetic (PK) and pharmacodynamic (PD) 
modeling and simulation is expanding in almost all drug devel-
opment processes, from non-clinical to different phases of clini-
cal trials.[1] The number of regulatory decisions, including new 
drug approval and labeling, that were effected by pharmacomet-
ric analysis increased from 45 submissions between 2000 and 
2004 to 87 submissions between 2007 and 2008.[2,3] The popu-
lation approach or pharmacometric analysis based on com-
putational methods is being applied to bridging studies, proof 
of concept studies for go/no-go decision, simulation for dose 
selection or study design, and extension to other indications 
(drug repositioning), among many others.[1] PK/PD modeling 
and simulation is also used for individualized pharmacotherapy 
based on relevant demographic factors including race, age, sex, 
weight, height and genotype.[4,5]
  Pharmacometric analysis usually relies on non-linear mixed 
effect models to explain and quantify time-varying PK/PD pa-

rameters, disease progression, and their relationships based on 
population data. Pharmacokinetic models describe the change 
of drug concentration over time and pharmacodynamic models 
quantify the relationship between concentration and effect. PK/
PD models link PK models to PD models using direct effect 
models, effect compartment models, or indirect response mod-
els.[6,7] This mathematical method is also used for constructing 
disease progression models comprising the natural history of a 
disease and drug effect.[8] Emax models play important roles in 
describing excitatory or inhibitory exposure-response relation-
ship. Sigmoid Emax models, also known as Hill equations, have 
successfully explained pharmacodynamics of many drugs with 
Hill coefficients determining sigmoidicity or sensitivity between 
exposure and response.[9] However, drug exposure often does 
not cover the higher range of values required to estimate maxi-
mum effect (Emax) since higher concentrations can either result 
in toxicity or the testing doses in dose escalation study have little 
information on dose-response surface. This leads to potentially 
biased or imprecise PD parameter estimates or overly-simplified 
models such as linear or log-linear models that are not useful 
for extrapolation. 
  The purpose of this simulation study is to explore the limita-
tion of the population PK/PD analysis using data from a clinical 
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study and to help to construct an appropriate PK/PD design 
that enable precise and unbiased estimation of both fixed and 
random PD parameters in PK/PD analysis under different doses 
and Hill coefficients.

Methods 

PK/PD Simulation and Estimation
  In this simulation study, seven doses of virtual drugs with 
equal potency and efficacy but different Hill coefficients were 
used for generality of interpretation and comparison among 
virtual drugs and for easy application to PK/PD modeling and 
simulation of various drugs in clinical use or development. The 
seven doses were 12.5, 25, 50, 100, 200, 400, and 800 mg, where 
each succeeding dose was double the preceding dose. The Hill 
coefficients were 0.5, 1, 2, 5 and 10. Single and multiple-dose 
studies were simulated with each of the doses and Hill coeffi-
cients. A total of 70 (=7 x 5 x 2) scenarios each with 100 subjects 
were simulated and then estimated 100 times using SSE (Sto-
chastic simulation and estimation) of PSN (Perl-speaks-NON-
MEM, version 3.7.6, http://psn.sourceforge.net)  and first order 
conditional estimation with interaction (FOCE-I) method in 
NONMEM (version 7.2, ICON Development Solutions, Ellicott 
City, MD, USA). Pharmacokinetic and pharmacodynamic data 
were simultaneously simulated and estimated using the same 
model. A one-compartment model with first-order absorption 
and elimination was used as the PK simulation model. The true 
values (θ) of the structural PK parameters for ka, CL/F and V/
F were: θka = 1 hr-1, θCL/F = 5 L/hr, θV/F = 100 L, where ka, CL/F 
and V/F was absorption rate constant, clearance and volume of 
distribution, respectively. 

where C is drug concentration, ke is elimination rate constant, 
obtained by CL over V, F is bioavailability and D is dose, respec-
tively. The approximate values of the Tmax (the time at which 
the maximum concentration was observed) for single- and 
multiple-dose study were 3.15 and 2.78 h, respectively and the 
half-life was around 13.9 h. The blood sampling time points for 
dense sampling schedules were 0 (predose), 0.25, 0.5, 0.75, 1, 
2, 3, 4, 5, 6, 8, 12, 24, and 48 h after drug administration. The 
samples at 24 and 48 h were not included for multiple-dose sce-
narios. The PD measurement time points were equal to those of 
PK.
  A sigmoid Emax model was used for PD simulation based on an 
assumption that plasma concentration is directly linked to the 
drug effects, as below. 

where E is drug effect. The true values (θ) of PD parameters for 

baseline (E0), efficacy (Emax), potency (EC50) and Hill coefficients 
(γ) were: θE0 = 1000, θEmax = 10000, θEC50 = 1000 ng/mL, and θγ = 
0.5, 1, 2, 5 or 10, respectively. The coefficient of variation (CV%) 
of random effect for inter-individual variability (IIV) and re-
sidual variability (RV) were set at 30% for all PK/PD parameters 
and 20% for PK/PD observations, respectively. An exponential 
error model for IIV and RV was applied as follows:

where θi is the ith individual PK/PD parameter, θ is the popu-
lation mean value, ηi is an instance of a normally distributed 
random variable η with mean zero and variance of ω2 which 
represent IIV, γij is the observed concentrations or effect for the 
ith subjects at time j,  is the individual predicted observations 
for the for the ith subjects at time j, and εij is an instance of a nor-
mally distributed random variable ε with mean zero and vari-
ance of σ2 which represents RV. 
  The simulated effect versus concentration plots were used 
to explore the relationship between concentration and EC50 
and whether Emax was attained in each study or not. Simulated 
concentrations were normalized by true EC50 (=1000 ng/mL) 
to identify the generalized exposure-response relationship and 
then “EC50” was used as a unit to express normalized concentra-
tions.[10,11]
  To evaluate the estimation performance for PD parameters 
at each dosing scenario, the median values and ranges of nor-
malized maximum concentration (Cmax) (normalized by EC50) 
for single-dose study and normalized steady-state minimum 
concentration (Cmin,ss) and Cmax,ss for multiple-dose study at 
each dose level at all values of γ were obtained using individual 
predicted values, which were calculated from the parameter 
estimates from 100 simulated subjects and the simulation time 
points in each scenario. 
  To evaluate the estimation performance for PD parameters 
at each dose, the following statistics were obtained using indi-
vidual predicted values.

1) �Median values and range of normalized maximum concen-
tration (Cmax) (normalization using EC50) for single-dose 
studies

2) �Normalized steady-state minimum concentration and 
Cmax,ss for multiple-dose studies at each dose level at all val-
ues of gamma.

  Individual predicted values were calculated from the param-
eter estimates from 100 simulated subjects and simulated time 
points in each scenario. 

Bias and Precision of Parameter Estimates
  The bias and precision of the parameter estimates in each sce-
nario were assessed using relative bias and relative root mean 
square error (RMSE) (instead of bias and RMSE) to compare es-
timation performance between parameters with different scales.
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where Pest is the fixed or random effect parameter estimate and 
Psim is the true fixed and or random effect parameters (θ, ω2, σ2) 
value used for each simulation. The criteria for accuracy and 
precision were less than or equal to 15% and 35%, respectively.
[10-12]

Results
  Eight scenarios out of total seventy scenarios failed stochastic 
simulation and estimation (SSE), in spite of numerous attempts. 
The failed scenarios were: four scenarios of 12.5 and 25 mg at 
high Hill coefficients (γ = 5, 10) in single-dose study and four 
scenarios of 100, 200, 400 and 800 mg at low Hill coefficients (γ 
= 0.5) in multiple-dose study. Among the remaining sixty two 
scenarios which were successful, one scenario in single-dose 
studies had 1 failure and eight scenarios in multiple-dose stud-
ies had 1 to 3 failure(s) during 100 simulations and estimations 
for each scenario. 

PK simulation and estimation
  For the single-dose studies, all the PK parameters (θ and ω2) 
for ka, CL/F and V/F were unbiased and precise (Fig. 1a), while 
ωka

2 was considerably biased and imprecise for the multiple-
dose studies (Fig. 1b). The CL/F was estimated at best and V/
F was the next in the multiple-dose scenarios (Fig. 1b). The 
relative bias and RMSE of σ2 for the PK observations were less 
than 0.8% and 5% for single-dose study and 1.4% and 5.1% for 
multiple-dose study, respectively. 
  The median ratios of the individual predicted Cmax and Cmax,ss 
to EC50 represented, respectively, near two-fold increases from 
0.11 to 6.8 EC50 units for the single-dose studies and from 0.25 
to 16 EC50 units for the multiple-dose studies with the increase 
in doses. The median ratio of the individual predicted Cmin,ss to 
EC50 for the multiple-dose studies also increased to double from 
0.16 to 10 EC50 units (Table 1).

PD simulation and estimation 
  In single-dose studies, Emax was not attained at γ of 0.5 and 1, 
while it was attained at higher doses with γ of 2, 5 and 10. In 
case of multiple-dose studies, only a small part of a full sigmoid 
Emax curve was obtainable (Fig. 2).
  For the single-dose scenarios (Table 2, Fig. 3), estimated θEmax 
and ωEmax

2 were mostly biased at lower doses, while most of 
them were unbiased and precise when the doses and the Cmax 
were, respectively, more than or equal to 100 mg and 0.42 EC50 
units, except for the biased ωEmax

2 at 100 mg doses (Cmax = 0.42 
EC50 units) with γ of 5 and 10 and the imprecise ωEmax

2 at 100 
mg doses (Cmax = 0.42 EC50 units) with γ of 2, 5, and 10. θEC50 

and ωEC50
2 were reliably estimated at more than or equal to 100 

mg doses with γ of 2 and 5 except the imprecise ωEC50
2 at 100 

mg dose with γ of 2. The scenarios with γ of 0.5 and 1 resulted 
in poor estimates of EC50 in most doses, while estimates of θEC50 
were reliable at more than or equal to 200 mg doses or Cmax of 
0.85 EC50 units with γ of 1. With regard to E0, the parameter es-
timates from all single-dose scenarios were precisely estimated 
with little bias. Parameter estimates of θγ were mostly accurate 
and precise except for those at 12.5 mg dose (Cmax=0.11 EC50 
units) with γ of 2 and 800 mg dose (Cmax=6.8 EC50 units) with 
γ of 10, whereas the parameter estimates of ωγ2 were reliably 
estimated only when the doses were 50 mg (Cmax=0.21 EC50 
units) with γ of 0.5 and 1 or 100 (Cmax=0.85 EC50 units) and 
200 mg (Cmax= 1.7 EC50 units) with all γ except for 100 mg dose 
(Cmax=0.85 EC50 units) with γ of 0.5 and 200 mg (Cmax= 1.7 EC50 
units) dose with γ of 10. The relative bias and RMSE of σ2 for 
the PD observations were less than 0.9% and 5% for single-dose 
study, respectively.
  For the multiple-dose scenarios (Table 3, Supplementary Fig. 1), 
it was very difficult to estimate accurate and precise PD param-
eters. The estimates of θEmax and ωEmax

2 met the acceptance crite-
ria of bias and precision when the doses were within the range 
of 50 (Cmin=0.63 and Cmax=0.99 EC50 units) and 200 mg (Cmin=2.5 
and Cmax=3.9 EC50 units) and γ was either 5 or 10. This was not 
true, however, for 50 mg dose (Cmin=0.63 and Cmax=0.99 EC50 
units) with γ of 5 and 200 mg dose (Cmin=2.5 and Cmax=3.9 EC50 
units) with γ of either 5 or 10. Estimates corresponding to these 
doses resulted in high imprecision. With regard to the estimates 
of θEC50 and ωEC50

2, the results from designs at 100 mg dose 50 
(Cmin=1.3 and Cmax=2.0 EC50 units) with γ of 5 and 50 mg dose 
(Cmin=0.63 and Cmax=0.99 EC50 units) with γ of 10 were reliable. 
Contrary to the results of single-dose studies, the performance 
of estimating E0 represented considerably poor accuracy and 
precision. θE0 and ωE0

2 were estimated with accuracy and preci-
sion, when the doses were in the range of 12.5 and 50 with γ of 
5 and 10, except for the imprecise ωE0

2 at 50 mg dose (Cmin=0.63 
and Cmax=0.99 EC50 units) with γ of 5. Some θγ were estimated 
with accuracy and precision, while most ωγ

2 were unreliable. 
The relative bias and RMSE of σ2 for the PD observations were 
less than 0.9% and 5.1% for multiple-dose study, respectively.

Discussion
  This simulation study assumes a typical human pharmacology 
study design where plasma concentration and effect are fre-
quently measured in order to characterize PK and/or PD. Dense 
sampling strategies are used in all phases of clinical trials for 
changing dose, indication, or target population as well as phase 
1 clinical trials in new drug development, and pharmacometric 
analyses are frequently done for these studies. However, not all 
analyses are successful and the quality of population approach 
depends on the quality of study design as well as the quantity 
of data. Therefore, this study aims to specifically investigate the 
estimation performance of PD parameters based on different 
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data properties given the same quantity of data. In case of sparse 
sampling, it is natural that parameters are poorly estimated. 
  Ette et al. suggested a data supplementation (PK/PD knowl-
edge creation or discovery) method to characterize an unknown 
target region of the response surface, which is very useful in 

finding appropriate new doses in a completed clinical study 
with limited information on exposure-response relationship.[13] 
Dutta et al. found that Emax, EC50, and γ of sigmoid Emax model 
were poorly estimated if the maximum concentration was not 
attained up to 95% of Emax applying clinical data simulation. 

(a)

(b)

Figure 1. Relative bias (upper) and relative root mean square error (lower) of pharmacokinetic parameters estimates for the single-dose scenarios 
(a) and the multiple-dose scenarios (b).
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Seven escalating Cmax levels with five different Hill coefficients 
(γ=0.2, 0.5, 1, 2 or 5) were used in simulations. The number of 
blood samples was ten in each scenario. However, the concen-
trations were derived from sigmoid Emax curve and pharmaco-
kinetics was not considered.[14] The parameter estimation of 
sigmoid Emax model is an important part in dose-finding study. 
Dragalin et al. found that the adaptive designs with the selected 
dose applying Fisher information matrix were superior in find-
ing target dose compared to the common designs with the doses 
allocated by equal interval.[15] Wang et al. also compared the 
performance of the adaptive design to the uniform design.[16] 
The purpose of these two studies was to show the performance 
of adaptive optimal designs for dose-finding studies, (corre-
sponding to phase 2 clinical studies) and pharmacokinetics was 
not considered. On the other hand, the next two studies used 
pharmacokinetic sampling designs to investigate pharmacody-
namic parameter estimation, as is done in this study. Girgis et 
al.[10] found that the accuracy and precision of the PD param-
eter estimates got worse as the number of subjects decreased 
from 100 to 25 with sparse sampling design. Pai et al.[11] per-
formed a series of studies that evaluated the effect of octreotide 
on the insulin-like growth factor-1and the effect of remifentanil 
on electroencephalogram, which were successfully described 
using sigmoid Emax model with moderate sigmoidicity (γ=2.51) 
and simple Emax model (γ=1), respectively, while the previous 
study of theophylline-induced eosinopenia was described using 
a model of high sigmoidicity. The latter study investigated the 
change in bias and precision in relation to Hill coefficient using 
100 subjects in each scenario and 4 to 5 sparse samplings based 
on the former study and found that the plasma concentration 
of two to three times EC50 was needed to get reliable parameter 
estimates if the drug exhibited high Hill coefficient, and that 
the plasma sampling near EC50 was important with simple Emax 
model. In the two studies, all the estimated ωγ

2 were biased and 
imprecise, whereas ωγ

2 of 10 scenarios, including doses of 50 
(Cmax=0.42 EC50 units) and 100 mg (Cmax=0.85 EC50 units) with γ 

of 0.5, 50 to 200 mg with γ of 1, 100 and 200 mg with γ of 2 or 5 
and 200 mg (Cmax=1.7 EC50 units) with γ of 10, among 31 single-
dose scenarios were accurately and precisely estimated in this 
study with dense sampling design. 
  In this study, the number of subjects was set to 100 in each 
scenario and dense sampling design was adopted based on the 
results of the previous studies to investigate the estimation per-
formance with regard to differing concentration and Hill coeffi-
cients while fixing the number of subjects and sampling points. 
Using virtual drugs with different Hill coefficients and ratios 
of concentration to EC50 would facilitate general interpretation 
and easy application to the real drugs. 
  For the single-dose studies, the SSE processes failed when the 
doses were 12.5 (Cmax=0.11 EC50 units) and 50 mg (Cmax=0.42 
EC50 units) and γ was either 5 or 10, because the simulated con-
centrations were located at lower flat area of the sigmoid Emax 
curve (Fig. 2). The accuracy and precision of θEmax and ωEmax

2 
were getting better with the increase in dose, regardless of γ, 
while those of θEC50 and ωEC50

2 gradually improved with increase 
in both dose and γ (Fig. 3). In single-dose studies, since the 
baseline of effects before dosing was measurable, all the θE0 and 
ωE0

2 were estimated with accuracy and precision. The estimated 
θγ showed various trends at different values of γ. The absolute 
values of relative bias for θγ were represented by a U-shaped 
curve when γ was 0.5, 5 or 10, while they grew with increase in 
dose when γ was either 1 or 2 (Fig. 3). The relative RMSE for θγ 
and the relative bias and relative RMSE for ωγ

2 also represented 
U-shape trends regardless of γ (Fig. 3), because the bottom area 
of the effects were measured with lower doses and the ceiling 
area were measured with higher doses. Sampling enough con-
centrations corresponding to the whole range of the effect curve 
must be crucial to estimate reliable θγ and ωγ

2 (Fig. 2). 
  The estimation capabilities of the PD parameters except for θE0 
and ωE0

2 with different Hill coefficients (γ) in single-dose sce-
narios are as follows (Fig. 3). For the γ of 0.5, all the estimates of 
θEmax and ωEmax

2 were reliable when the dose was at least 50 mg 

Parameter estimation for sigmoid Emax models

Table 1. Normalized Cmin and Cmax by EC50 at each dose scenario

*, the median values and ranges of normalized maximum concentration for single-dose study, †, the median values and ranges of normalized mini-
mum concentration for multiple-dose study, ‡, the median values and ranges of normalized maximum concentration for multiple-dose study.

Dose (mg)
Single dose Multiple Doses

Cmax/EC50 (Range) * Cmin,ss/EC50 (Range) † Cmax,ss/EC50 (Range) ‡

12.5 0.11  (0.10 - 0.11) 0.16  (0.14 - 0.18) 0.25  (0.23 - 0.26)

25 0.21  (0.20 - 0.23) 0.32  (0.28 - 0.35) 0.49  (0.46 - 0.53)

50 0.42  (0.39 - 0.45) 0.63  (0.57 - 0.71) 0.99  (0.92 - 1.1)

100 0.85  (0.78 - 0.91) 1.3  (1.1 - 1.4) 2.0  (1.9 - 2.1)

200 1.7  (1.5 - 1.8) 2.5  (2.3 - 2.8) 3.9  (3.7 - 4.2)

400 3.4  (3.1 - 3.6) 5.1  (4.6 - 5.6) 7.9  (7.4 - 8.4)

800 6.8  (6.3 - 7.2) 10  (9.1 - 11) 16  (15 - 17)



Vol. 25, No.2, Jun 15, 2017
79

TCP 
Transl Clin Pharmacol

or Cmax was more than 0.42 EC50 units. The estimates of θγ and 
ωγ

2 were accurate and precise only under doses of 50 (Cmax=0.42 
EC50 units) and 100 mg (Cmax=0.84 EC50 units). However, θEC50 
and ωEC50

2 were poorly estimated in all dosing scenarios. The 

Sangmin Choe and Donghwan Lee

Figure 2. Effects versus concentrations/EC50 plots relevant to each simulation scenario for the single-dose scenarios (a) and the multiple-dose sce-
narios (b).

(a)

(b)
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(a)

(b)

Figure 3. Relative bias (a) and relative root mean square error (b) of pharmacodynamic parameters estimates for the single-dose scenarios.
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reason seemed that the range of concentration-effect relation-
ships was not enough to describe whole shape of sigmoid Emax 
model as shown in the multiple-dose scenarios. The effect-
concentration profiles obtained from various doses seem to be 
needed to estimate accurate and precise θEC50 and ωEC50

2. For the 
γ of 1, all the estimates of θEmax and ωEmax

2 were reliable when the 
dose was at least 100 mg or Cmax was more than 0.85 EC50 units. 
θEC50 was accurately and precisely estimated when the dose was 
at least 100 mg (Cmax=0.84 EC50 units), while ωEC502 was hardly 
estimated, as shown in a previous study.[11] The estimates of θγ 
and ωγ

2 were accurate and precise when the doses were within 
the range of 50 to 400 mg (Cmax=0.42 to 3.4 EC50 units). This was 
not true, however, for 800 mg dose (Cmax=6.8 EC50 units) owing 
to lack of information on sigmoidicity in concentration-effect 
relationship. For the γ of 2 to 10, all the parameter estimates for 
Emax and EC50 met the acceptance criteria of bias and precision 
when the doses were more than or equal to 200 mg (Cmax=1.7 
EC50 units). This is a relatively smaller value than the result form 
a study which reported that the 2 to 3 EC50 region is needed to 
get an unbiased and precise estimate of ωEmax

2, when γ was 6.22 
and blood sampling was sparse.[10] A dense sampling design is 
recommended to get a precise ωEC50

2, because it was impossible 
with sparse sampling design.[11]
  Both the θγ and ωγ

2 met the criteria for accuracy and precision 
at 100 (Cmax=0.84 EC50 units) and 200 mg (Cmax=1.7 EC50 units) 
with γ of 2, 100 to 400 mg (Cmax=0.84 to 3.4 EC50 units) with γ of 
5, and 200 mg (Cmax=1.7 EC50 units) with γ of 10. On the other 
hand, Girgis et al. found that all θγ and ωγ

2 were biased and im-
precise when the Hill coefficient was high (γ=6.22), 4 to 5 blood 
samples were gathered[10] and Pai et al. also reported similar 
results from spare sampling design, when γ were 1 or 2.51.[11] 
These results suggest that dense sampling design may be essen-
tial to get accurate and precise estimates of θγ and ωγ

2. 
  These results can be applied to clinical trials and PK/PD 
modeling of resultant data. When a clinical study is performed 
to evaluate the PK/PD of an investigational product with Hill 
coefficients of 2, an investigator can use 200 mg (Cmax=1.7 EC50 
units) to get the best results of parameter estimation or 100 mg 
(Cmax=0.84 EC50 units) to get useful parameter estimates with 
less toxicity. On the other hand, an investigator can interpret 
the reliability of the results from PK/PD modeling based on the 
results of this study.
  For the multiple-dose studies (Table 3, Supplementary Fig. 1), 
the parameter estimation performance was not good. In this 
simulation setting, the accumulation index was 2.22 with the 
half-life of 14 hours and 12 hour dosing interval. The concentra-
tion-effect profile obtained from this setting could not include 
the whole range of effects and resulted in poor performance. If 
the dosing interval was longer than 12 hours or the drug had 
lower accumulation rate than 2.22, wider range of concentra-
tion-time profiles could be gathered. The worse performance 
of PK parameter estimation in multiple-dose settings than in 
single-dose settings might play a role in the poor estimates of 

PD parameter. On the other hand, errors in PD parameter esti-
mates might have negatively affected PK parameter estimation, 
and this is hinted from different levels of bias and precision with 
different combinations Hill coefficients and doses, although the 
Hill coefficient had no relation to pharmacokinetics. If PK/PD 
modeling is performed with data from multiple-dose studies, 
the sampled concentrations may include at least 0.63 EC50 and 
at most 3.9 EC50 corresponding to the doses of 50 to 200 mg in 
this study. 
  This study has some limitations. Since the PK profiles were 
simulated under the assumption of dose proportionality, the 
relationship between dose and EC50 units might change if in-
vestigational drugs have nonlinear PK properties. However, the 
exposure-response relationship can be easily understood and 
applied, if concentrations are normalized by EC50. Another limi-
tation is that only one dosing interval was used for simulation 
in the multiple-dose scenarios. Since a different dosing interval 
may yield a different steady-state fluctuation, the parameter es-
timation performance can be better or worse than this study ac-
cording to the dosing interval. A further limitation stems from 
the limited range of variability parameters of this study. Since 
all CV% of IIV and RV were set at moderate values of 30% and 
20%, respectively, prediction of exposure-response relationship 
of a drug with larger variability might show deviations from 
our findings. Simultaneous modeling of PK/PD is one of the 
causes of poor IIV estimation, and certain types of sequential 
approaches may result in better performance.[17]
  This simulation study demonstrated the effect of the relative 
range of sampled concentrations to EC50 and sigmoidicity (or 
sensitivity) between exposure and response on the parameter 
estimation performance using dense sampling design. In single-
dose studies, most PD parameters of sigmoid Emax model were 
accurately and precisely estimated when the Cmax was more 
than 0.85 EC50 units, except for typical value and IIV of EC50 
which were poorly estimated at low Hill coefficients (γ=0.5 and 
1) regardless of doses. The PK/PD modeling results using only 
steady-state data may be carefully interpreted. This study can be 
useful in designing a clinical study to evaluate PK/PD relation-
ship for new drug development or drug repositioning. 
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