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UK Biobank Whole-Exome Sequence Binary Phenome
Analysis with Robust Region-Based Rare-Variant Test

Zhangchen Zhao,1,2 Wenjian Bi,1,2 Wei Zhou,3,4,5 Peter VandeHaar,1,2 Lars G. Fritsche,1,2

and Seunggeun Lee1,2,*

In biobank data analysis, most binary phenotypes have unbalanced case-control ratios, and this can cause inflation of type I error rates.

Recently, a saddle point approximation (SPA) based single-variant test has been developed to provide an accurate and scalable method to

test for associations of such phenotypes. For gene- or region-based multiple-variant tests, a few methods exist that can adjust for unbal-

anced case-control ratios; however, these methods are either less accurate when case-control ratios are extremely unbalanced or not scal-

able for large data analyses. To address these problems, we propose SKAT- and SKAT-O- type region-based tests; in these tests, the single-

variant score statistic is calibrated based on SPA and efficient resampling (ER). Through simulation studies, we show that the proposed

method provides well-calibrated p values. In contrast, when the case-control ratio is 1:99, the unadjusted approach has greatly inflated

type I error rates (90 times that of exome-wide sequencing a ¼ 2.53 10�6). Additionally, the proposedmethod has similar computation

time to the unadjusted approaches and is scalable for large sample data. In our application, the UK Biobank whole-exome sequence data

analysis of 45,596 unrelated European samples and 791 PheCode phenotypes identified 10 rare-variant associations with p value< 10�7,

including the associations between JAK2 and myeloproliferative disease, HOXB13 and cancer of prostate, and F11 and congenital coag-

ulation defects. All analysis summary results are publicly available through a web-based visual server, and this availability can help facil-

itate the identification of the genetic basis of complex diseases.
Introduction

With the decreased cost of sequencing, big biobanks

have started to whole-exome or whole-genome sequence

large numbers of participants to identify the role of rare

variants in complex diseases.1–3 By combining rich

phenotypic information in electronic health records

(EHRs),4 these sequence data will illuminate the phe-

nome-wide association patterns of rare variants. Since

most diseases and symptoms have low prevalence, the

binary phenotypes in biobanks generally have unbal-

anced case-control ratios (1:10 or 1:100, for example).5

For example, in the UK Biobank data, nearly 99% of

PheCode-based binary phenotypes have case-control ra-

tios less than 1:10.6 Substantial challenges are posed

when analyzing the associations between rare variants

and unbalanced phenotypes.

Since single-variant tests are underpowered for identi-

fying disease-associated rare variants,7 gene- or region-

based multiple-variant tests, including the burden test,8,9

SKAT,10 and SKAT-O,11 are commonly used to identify

rare-variant associations. To evaluate the association sig-

nals in multiple variants, these methods aggregate

single-variant score statistics. However, as shown in our

simulation studies and elsewhere,12–14 these methods suf-

fer from the inflation of type I error rates when case-con-

trol ratios are unbalanced. For single-variant tests, the

recently developed saddle point approximation (SPA)

based approach provides accurate p values under such a
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case-control imbalance.5,15 Although a few methods exist

that adjust for unbalanced case-control ratios for gene- or

region-based tests, including moment-based adjustment

(MA)16 and efficient resampling (ER),16 these methods

are not scalable or accurate for biobank data. When the

case-control ratio is extremely unbalanced, MA can still

have inflated type I error rates. ER is computationally

expensive when minor allele counts (MAC) are moderate

or large.

To address these problems, we propose a robust region-

based test that adjusts single-variant score statistics

through the use of SPA and ER and then aggregates the

adjusted statistics. The SPA and ER help to precisely calcu-

late the reference distribution of the single-variant score

statistics, thereby properly controlling for type I error

rates. The computation cost of the proposed approach is

comparable to those of unadjusted tests, and the proposed

approach can thus be applied to large biobank data. Using

extensive simulation studies, we demonstrate that our

robust burden, SKAT, and SKAT-O tests have proper type

I error rates even when the case-control ratio is 1:99

and our tests exhibit larger power compared to the unad-

justed burden, SKAT, and SKAT-O test. In addition, this

method can be applicable not only to rare-variant tests

but also to the joint association test of common and

rare variants.

The UK Biobank resource2 completed the first tranche

of whole-exome sequencing (WES) data for 49,960 par-

ticipants.1 We performed robust gene-based rare-variant
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tests of 45,596 unrelated European samples on 791 phe-

notypes with at least 50 cases, and we identified 10 rare-

variant associations with p value < 10�7, including the

associations between JAK2 (MIM: 147796) and myelo-

proliferative disease (MIM: 254700), HOXB13 (MIM:

604607) and prostate cancer (MIM: 610997), and F11

(MIM: 264900) and congenital coagulation defects

(MIM: 134520). These results anticipate the discoveries

we can make with the full 500,000 WES samples, which

will be available in the near future. In addition, the anal-

ysis results can be used as a community resource and

facilitate the identification of the genetic basis of com-

plex diseases.
Material and Methods

Gene- and Region-based Rare-Variant Tests for Binary

Traits
Assume n individuals are sequenced in a region, which has m rare

variants. For the i-th individual, let yi denote a binary phenotype,

Gi ¼ ðgi1; gi2; .; gimÞ0 the hard call genotypes ðgij ¼ 0;1;2Þ or

dosage values of them genetic variants in the target gene or region,

and Xi ¼ ðXi1;Xi2;.;XisÞ0 the covariates, including the intercept.

To model a binary outcome, the following logistic regression

model can be used:

logitðpiÞ¼X
0
iaþ G

0
ib;

where pi is the disease probability for the i-th individual, a is an

s31 vector of regression coefficients of covariates, and b is anm3 1

vector of regression coefficients of genetic variants. Suppose Sj ¼Pn
i¼1gijðyi � bpi Þ is the score statistic for the variant j, where bpi is

the estimated disease probability under the null hypothesis of

no association (i.e., b ¼ 0Þ. Burden and SKAT test statistics can

be written as

QB ¼
 Xm

j¼1

ujSj

!2

;Qs ¼
Xm
j¼1

u2
j S

2
j ;

where wj is the weight for each variant.10 In the simulation and

real data analysis, we used beta(1,25) weights, which upweight

rarer variants.10 The SKAT-O method combines the burden test

and SKAT with the following framework:

Qr ¼ð1� rÞQB þ rQs;

where r is a tuning parameter with range [0,1]. Since the optimal

r is unknown, SKAT-O applies theminimump values over a grid of

r as a test statistic.

Under the null hypothesis, S ¼ ðS1;.; SmÞT asymptotically fol-

lows the multivariate normal distribution, MVN 0;V
1
2CV

1
2

� �
,

where C is the correlation matrix among m variants and V is a di-

agonalmatrix where the diagonal elements are the asymptotic var-

iances of S. In the presence of a case-control imbalance, however,

the distribution of score statistics is skewed, which causes the

inflation of type I error rates. To address this problem, we will uti-

lize SPA and ER to adjust the variance matrix V.

SPA and ER
SPA is a statistical method for calculating the distribution function

through the use of the cumulant-generating function (CGF). Since
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it utilizes all the cumulants, SPA is more accurate than normal

approximation, which only uses the first two cumulants (mean

and variance). From the work of Dey et al.,5 suppose KjðtÞ is the

CGF of the score statistic Sj, which can be derived based on the

fact that Yi � BernoulliðpiÞ under the null. Then the distribution

function of the score statistic Sj can be approximated by

Pr
�
Sj < s

�¼ ~FðsÞ ¼ €O

�
dþ1

d
log
�v
d

��
;

where d ¼ sgnðbt Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðbt s� Kjðbt ÞÞq

, v ¼ bt ffiffiffiffiffiffiffiffiffiffiffiffi
K

00
j ðbt Þq

, bt is the solution

to the equation K
0
jðbt Þ ¼ s; and €O is the distribution function of

the standard normal distribution.5

Although SPA performs better than normal approximation,

because it is still an asymptotic-based approach, SPA can result

in inaccurate p values whenMAC is very low. To address this issue,

we use ER for low-MAC variants. ER is a resampling method that

resamples the case-control status of individuals with a minor allele

at a given variant and disease risk pi instead of permuting case-

control status across all individuals. This is done because only in-

dividuals with minor alleles contribute to the score statistics S.

Because ER is resampling-based, it can provide an accurate p value

for a very rare variant. When MAC is low (ex. MAC % 10), ER can

rapidly calculate the exact p value by numerating all possible con-

figurations of case-control statuses. The detailed derivations of ER

can be found in Lee et al.16
Robust Burden Test, Robust SKAT and Robust SKAT-O
For each variant j, when the score statistic Sj lies within two stan-

dard deviations of the mean, the normal approximation generally

performs well.5 Otherwise, due to the skewed distribution, the

normal approximation causes inflated type I error rates. Hence,

when Sj is beyond two standard deviations of the mean, we apply

SPA (when MAC > 10) or ER (when MAC % 10) to calculate the p

value ~pj, which will be used to calibrate the variance of Sj.

Let S2j =
bVj be a square-standardized test statistic in which bVj is

the estimated variance of S2j . When Sj follows the normal distribu-

tion, S2j =
bVj follows the chi-square distribution with one degree of

freedom. We adjust the variance so that the p value is the same as
~pj, in which the adjusted variance is

~Vj ¼ S2j

.
c2
quantile

�
1� ~pj

�
;

where c2
quantile is the quantile function of the chi-square distribu-

tion with one degree of freedom. Note that if Sj lies within two

standard deviations of the mean, ~Vj ¼ bVj. Suppose ~V ¼
ð~V1; ~V2;.; ~VmÞT , then the p value of the region can be calculated

based on the assumption that

S � MVN

	
0; ~V

1
2C~V

1
2



:

These adjustments overcome the inflated type I error rates

for common variants, but they are insufficient to address the infla-

tion issue for rare variants (4.87 times of exome-wide alpha ¼
2.5 3 10�6 when the case-control ratio is 1:99). Details can be

found in Table S1. We apply additional adjustment by using

the fact that the burden test can be presented as a single-marker

test with collapsed variants, and SPA performs very well for

single-marker tests. From the above equation, the variance

estimate of the burden test is ~Vburden ¼ wT ~V
ð1=2Þ

C~V
ð1=2Þ

w, where

w ¼ ðw1;.;wmÞT is an m31 vector of the weight. Suppose

gburdeni ¼ Pm
j¼1wjgij, and then the burden test statistic (i.e., QB) is
0



identical to S2burden, where Sburden ¼ Pn
i¼1g

burden
i ðyi � bpi Þ, and the p

value �pSburden of Sburden can be calculated from SPA. Using the similar

approximation as above, we estimate the variance Sburden as �Vsum ¼
S2burden=c

2
quantileð1��pSburdenÞ. Suppose r ¼ ~Vsum=�Vsum. In order to con-

trol type I error inflation, we suggest utilizing a more conservative

variance. Let ~r ¼ minð1; rÞ; then

S � MVN

0@0;

 
~V

~r

!1
2

C

 
~V

~r

!1
2
1A:

With this formula, robust burden, SKAT, and SKAT-O tests can be

performed.
Extension to the Joint Test of Common and Rare

Variants
Our robust method can be extended to the joint test of common

and rare variants. Consider the following model

logitðpiÞ¼X
0
iaþ G

0
1ib1 þ G

0
2ib2:

For the individual i, pi is the disease probability; Xi is the vector

containing all the covariates, including the intercept;

G1i is the genotype vector of rare variants with length mr ; and G2i

is the vector of commonvariantswith lengthmc. To test thehypoth-

esis of no genetic effectsH0 : b1 ¼ 0;b2 ¼ 0, the test statisticQf can

be written as

Qf ¼ð1�fÞQrare þ fQcommon

¼ ð1�fÞS0
1W1W

0
1S1 þ fS

0
2W2W

0
2S2;

where S1 and S2 are the vectors of score statistics for rare and

common variants, respectively, and W1 andW2 are diagonal

weight matrices for rare and common variants.

Under the null, S ¼ ðS1; S2Þ � MVN
�
0; V

1
2CV

1
2

�
. Using the

approach described in the previous section, we apply SPA and ER

to calibrate variance estimates in order to perform a robust SKAT

method.
Numerical Simulations
We conducted extensive simulation studies to evaluate the perfor-

mance of the proposed methods for dichotomized traits. The

sequence data of mimicking European ancestry over 200 kb re-

gions were generated using the calibrated coalescent model.17

We randomly selected regions with lengths of 1, 2, and 3 kb and

tested for associations in all simulation settings. On average,

each simulated dataset had 16.33 (SD: 4.05), 32.69 (SD: 5.65),

and 49.05 (SD: 6.71) rare variants for 1, 2, and 3 kb regions, respec-

tively, when the sample size was 50,000.

We generated datasets with sample size 50,000.We included two

covariates for the analysis. The first one followed a Bernoulli distri-

bution with p ¼ 0:5 and the other followed the standard normal

distribution, corresponding to the gender and normalized age.

Four case-control ratios were considered, 1:1, 1:9, 1:49, and 1:99,

and the binary phenotypes were simulated from

logitðpiÞ¼g0 þ g1X1i þ g2X2i þ b1g1i þ.þ bmgmi;

where b1 ¼ b2 ¼ . ¼ bm ¼ 0; g1 and g2 were chosen to let the

odds ratio (OR) ofX1 andX2 equal 1.2 and 1.5, respectively, and g0

was chosen based on disease prevalence. Seven different methods

were applied to each of the generated datasets. For all variants in
The
the region, we applied the unadjusted and robust joint test of com-

mon and rare variants. For rare-variant tests (minor allele fre-

quency [MAF] % 0.01), we applied (1) burden test; (2) robust

burden test; (3) SKAT; (4) robust SKAT; (5) SKAT-O; (6) robust

SKAT-O; and (7) the hybrid method. The hybrid method,16 devel-

oped by Lee, selects a method among ER, quantile adjusted

moment matching (QA), and moment matching adjustment

(MA) based on MAC and the degree of case-control imbalance. A

total of 107 phenotypes were generated, and type I error rates

were estimated based on the proportion of p values smaller than

the given a level divided by given a:

For power simulations, 30% of variants were randomly selected

as causal. Two settings were considered: (1) 80% causal variants

were risk-increasing variants and 20% were risk-decreasing vari-

ants; and (2) all causal variants were risk-increasing variants. For

each setting, 10,000 datasets were generated, and the power was

estimated as the proportion of p values smaller than the empirical

a level, which was calculated in the type I error simulation.
Analysis of WES Data in the UK Biobank
We analyzed the first tranche of UK BiobankWES data with 49,960

participants.1 Due to the quality issues in the Regeneron pipe-

line,18 we analyzed genotype data processed from the functional

equivalence (FE) pipeline.19 The details of sample selection and

QC procedures are described elsewhere.1We excluded one individ-

ual in each related pair (up to second-degree relatives) to identify a

set of unrelated individuals. To preserve cases, we first selected a

maximal set of unrelated cases, then removed controls that were

related to the unrelated cases and kept a maximal set of unrelated

controls. Because of the missing values in the phenotypes, the in-

dividuals included in the analysis varied across phenotypes. We

performed gene-based tests on 45,596 independent European par-

ticipants whose phenotype data were available in the UK Biobank.

Following a previously published scheme,20 we defined disease-

specific binary phenotypes by combining hospital ICD-9 codes

into hierarchical PheCodes, each representing a specific disease

group. ICD-10 codes were mapped to PheCodes through the use

of a combination of maps available through the Unified Medical

Language System, manual review, and other sources. Study partic-

ipants were labeled with a PheCode if they had one or more of the

PheCode-specific ICD codes. ‘‘Cases’’ were defined as all study par-

ticipants with the PheCode of interest, and ‘‘controls’’ were

defined as all study participants without the PheCode of interest.

Gender checks were performed so that PheCodes specific for one

gender could not be assigned to the other gender by mistake.15

There were 791 binary phenotypes with at least 50 cases based

on PheCodes, in which 551 phenotypes had case-control ratios

smaller than 1:99. Because our robust methods would cause a

certain inflation for extremely unbalanced case-control ratios

(Table S1), and usingmore controls than those from a case-control

ratio of 1:99 would not improve power (Figure S1), we did match-

ing on these 551 traits by using the first four genotype principal

components. Specifically, for each case, we found the closest

controls in Euclidean distance to make the case-control ratio be

1:99. We used principal components calculated by UK Biobank,

which were calculated from 147,551 LD-pruned SNPs with

missing rate < 0.015 and MAF > 0.01.21

We focused on the rare variants (MAF% 0.01) of the nonsynon-

ymous and splicing variants in the exon and neighboring regions.

In particular, we used annotation of frameshift deletion, frame-

shift insertion, nonframeshift deletion, nonframeshift insertion,
American Journal of Human Genetics 106, 3–12, January 2, 2020 5



Table 1. Type I Error Rates of Unadjusted and Robust Versions of Burden, SKAT, and SKAT-O and Hybrid Method

Case: Control Burden Robust Burden SKAT Robust SKAT SKAT-O Robust SKAT-O Hybrid SKAT-O

a ¼ 10�2

1:1 1.00 1.00 0.99 0.99 1.11 1.11 1.09

1:9 0.99 1.00 1.01 1.01 1.13 1.13 1.09

1:49 1.02 0.95 1.44 1.22 1.44 1.23 1.27

1:99 1.07 0.91 1.92 1.41 1.82 1.33 1.53

a ¼ 10�4

1:1 1.02 1.00 0.99 1.03 1.27 1.32 1.27

1:9 1.12 0.99 1.39 1.14 1.65 1.40 1.52

1:49 2.43 0.97 6.31 1.65 6.16 1.79 4.54

1:99 3.95 1.02 13.48 2.13 12.77 2.17 8.89

a ¼ 2:5310�6

1:1 1.11 1.03 1.24 1.54 1.38 1.38 1.40

1:9 1.29 0.77 2.47 1.45 2.51 1.49 2.23

1:49 6.88 1.06 28.27 1.91 23.70 1.98 16.69

1:99 16.34 0.90 89.53 1.81 71.32 1.60 42.59

A total of 107 datasets of 1 kb regions were generated to estimate type I error rates. Each cell represents an empirical type I error rate divided by significance level a.
The sample size was 50,000.
nonsynonymous SNV, splicing, stopgain, and stoploss from

ANNOVAR (Version built on 2018-04-16) with refGene database

(hg38).22 A total of 18,360 genes were used for the analysis. The

number of variants in genes ranged from two to 7,439 and the

distribution was highly skewed (Figure S2). The six methods dis-

cussed in the simulation study, unadjusted, and robust versions

of the burden test, SKAT, and SKAT-O methods were applied to

the data. Age, gender, and the first four principal components

were used as covariates to adjust for population stratification.
Results

Type I Error and Power Simulation Results

We generated 107 datasets to compare type I error rates of

the proposed approaches (robust burden, SKAT, and SKAT-

O), unadjusted approaches (burden, SKAT, and SKAT-O)

and a hybrid approach for SKAT-O.16 The hybrid approach

applies several adjustmentmethods based onMAC. Table 1

shows that the unadjusted approaches had substantial

inflation of type I error rates when the case-control ratio

was unbalanced and the region length was 1 kb. In

contrast, the robust approaches controlled type I error rates

much better and had only a slight inflation when the case-

control ratio was 1:99. Interestingly, the existing hybrid

approach showed substantially inflated type I error rates

when case-control ratios were extremely unbalanced

(case-control ratio ¼ 1:49 and 1:99). This may be due to

the fact that the MAC-based method selection rule in the

hybrid approach does not perform well under extremely

unbalanced case-control ratios. When the case-control ra-

tios were more extreme than 1:99, the robust SKAT and

SKAT-O showed some inflation of type I error rates (Table
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S1). Simulation studies with 2 and 3 kb regions show

that empirical type I error rates of robust SKAT-O are gener-

ally similar regardless of region length (Table S2). Addition-

ally, when testing both common and rare variants, robust

SKAT can control type I error rates well compared with

unadjusted SKAT (Table S3). Overall, the type I error simu-

lation results confirmed that the proposed robust ap-

proaches provide substantially improved type I error rates

compared to the unadjusted and existing hybrid

approaches.

Figure 1 shows the empirical powers of the hybrid, un-

adjusted, and robust versions of SKAT-O methods, when

80% of causal variants were risk-increasing variants and

20% were risk-decreasing variants. The empirical powers

of unadjusted and robust versions of the burden tests

and SKAT can be found in Figure S3. Because unadjusted

and hybrid methods had severely inflated type I error

rates, for the fair comparison, we used the empirical sig-

nificance level estimated from type I error simulation

studies. Assuming that the type I error rates could be

properly controlled for all methods, robust SKAT-O had

similar power to that of unadjusted SKAT-O in balanced

and moderately unbalanced case-control ratios (1:1 and

1:9) and was more powerful than unadjusted SKAT-O in

extremely unbalanced ratios (1:49 and 1:99). Robust

burden tests had the same power as unadjusted burden

tests across all four case-control ratios. Robust SKAT

had similar power to that of unadjusted SKAT in balanced

ratios and was more powerful than unadjusted SKAT in

unbalanced ratios. If the number of cases was fixed,

more controls (1:49 and 1:99) increased power greatly

compared to case-control ratio 1:1 for all three robust
0
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Figure 1. Empirical Power Estimates for
the Unadjusted and Robust Versions of
Skat-O, and Hybrid Method
Power was calculated at the empirical a

levels estimated from Type I error simula-
tions with adjusting type I error rate at
2.5 3 10�6. A total of 10,000 datasets
were generated with region length 1kb.
30% of variants were causal variants, and
80% of causal variants were risk-increasing
while 20% were risk-decreasing. The sam-
ple size was 50,000. The x axis represents
the genetic effect odds ratio, and the y
axis represents the empirical power.
methods (Figure S1). In addition, we found that 1:99 had

slightly more power than 1:49, where we could infer that

1:99 is sufficient to achieve the maximum power and

more controls can hardly increase the power. The power

simulation results with different region lengths

(Figure S4) and power simulation results with all causal

variants being risk-increasing variants (Figure S5) were

quantitatively similar.

In summary, the robust methods had similar or more

power than the unadjusted methods in all scenarios.

Among the three robust methods, robust SKAT-O generally

performed better than robust SKATand robust burden tests

because robust SKAT-O combined the two tests (Figure S6).

Comparison of Computational Times

To compare the computation times, we generated 1,000

datasets (Figure 2). Because SKAT-O combines the burden

and SKAT tests, we only considered the SKAT-O test. As

the sample sizes increased, the computation time of ER

increased and required �16.1 CPU h for analyzing 1,000

genes for 50,000 individuals. In contrast, unadjusted

methods required 1403 less computation time

(�6.7 min), and the computation times barely changed

based on sample size (5,000–100,000 individuals). Our

robust method performed similarly to unadjusted SKAT-O

(�8.5 min). Because the hybrid approach selects its

methods based on MAC and case-control ratios, the

computation cost of the hybrid approach is not deter-
The American Journal of Hum
mined by the sample size. Overall,

the hybrid approach was slower than

the proposed method. The computa-

tion time for analyzing UK Biobank

data of 791 binary phenotypes with

robust SKAT-O was 453 CPU days,

i.e., �13.7 CPU h per one phenotype.

Analysis of WES Data in the UK

Biobank

We applied six methods (unadjusted

and robust versions of burden,

SKAT, and SKAT-O) to the analysis

of WES data in the UK Biobank.

We restricted our analysis to the
rare nonsynonymous and splicing variants with

MAFs < 0.01 in exon regions. A total of 18,360 genes

were analyzed based on 45,596 independent European

samples across 791 binary phenotypes with at least 50

cases each. For phenotypes with case-control ratios more

extreme than 1:99, we identified the ancestry-matched

control samples to make the case-control ratios 1:99 (see

Material and Methods).

With the cutoff of a ¼ 2:5310�6, unadjusted SKAT-O de-

tected 73,723 significant associations, most of which

would be false positives, while our robust methods de-

tected 34 significant associations for the burden test, 99

for SKAT, and 111 for SKAT-O (Table S4). Because we were

testing many phenotypes, the usual exome-based cutoff

of 2:5310�6 could have produced spurious associations.

Following Hout et al.,1 we used a more stringent level a

¼ 10�7, and we identified that 10 gene-phenotype pairs

had robust SKAT-O p values smaller than 10�7 (Table 2).

Among 10 phenotype-gene pairs, only two had a single

SNP p value < 5 310�8; this result indicates that gene-

and region-based approaches are more powerful than sin-

gle-variant analyses. For each gene, the top three smallest

p value variants are reported in Table S5, and single-variant

p values are presented in Figure S7. Quantile-quantile

(Q-Q) plots for those 10 phenotypes show that unadjusted

SKAT-O had greatly inflated type I error rates, but our

robust approach provided relatively well-calibrated results

(Figure S8).
an Genetics 106, 3–12, January 2, 2020 7
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Time of Unadjusted, Hybrid, ER, and
Robust Approaches for SKAT-O
The rare-variant region-based tests were
performed on randomly selected 1 kb re-
gions of 1,000 resamples. The x axis repre-
sents the sample size and the y axis repre-
sents the run time of 1,000 resamples.
Rare-variant associations between JAK2 andmyeloprolif-

erative disease (number of cases ¼ 94),23 and HOXB13

(MIM: 604607) and prostate cancers (MIM: 610997) (num-

ber of cases ¼ 741)24 have been previously reported, which

demonstrates that our analysis can replicate known

signals even when the number of case samples is very

small. A PheWAS plot of HOXB13 shows that there is an

additional association signal between HOXB13 and Cardi-

tis (p value ¼ 9.18 3 10�6) (Figure 3), and this may be due

to the fact that Carditis is a complication of prostate cancer

biopsy and treatment.25

Among other genes, P3H1 (MIM: 610339), also known as

Prolyl 3-Hydroxylase 1, was observed to be associated with

other aneurysm (p value ¼ 5.76 3 10�8) and possibly asso-

ciated with abdominal aortic aneurysm (p value ¼ 5.79 3

10�5). P3H1 is involved in collagen metabolism and was

found to be present in the pulmonary artery.26 F11

(MIM: 264900), also known as Coagulation Factor XI,

was observed to be associated with congenital coagulation

defects (p value ¼ 6.13 3 10�8), and this observation is

consistent with the fact that Factor XI participates in blood

coagulation as a catalyst in the conversion of factor IX to

factor IXa in the presence of calcium ions.27 SLC46A1

(MIM: 611672), which encodes a transmembrane folate

transporter protein, is associated with congenital anoma-

lies of great vessels (p value ¼ 9.38 3 10�8), and this is

consistent with the role of folate in cardiovascular dis-

ease.28 PheWAS shows the close association between
8 The American Journal of Human Genetics 106, 3–12, January 2, 2020
SLC46A1 and two other blood dis-

eases: cardiac congenital anomalies

(p value ¼ 9.16 3 10�7) and cardiac

and circulatory congenital anomalies

(p value ¼ 1.44 3 10�6).

We carried out conditional analysis

to evaluate whether the rare-variant

association signals were independent

of the nearby common variant associ-

ation signals (5100 Kbp up and down

stream) (Table S6). To identify most

significant nearby variants, we used

SAIGE single-variant analysis results

of the UK Biobank imputed datasets

of 400,000 British samples.15 All 10

associations remained significant af-

ter the conditional analysis (Table 2).

We have generated summary statis-

tics for all gene-phenotype associa-

tion results by using our robust
approach, and we have made those summary statistics

available in a PheWEB-like visual server (see Web

Resources).

Discussion

In this paper, we present a robust approach that can

address case-control imbalance in region-based rare-

variant tests. The proposed approach uses recently devel-

oped ER and SPA to calibrate the variance of single-variant

score statistics to accurately calculate region-based p

values. The computation cost of the proposed approach

is similar to that of the unadjusted approach; this makes

our approach scalable for large analysis. Simulation studies

show that unadjusted methods suffer severe inflation of

type I error rate in unbalanced case-control ratios but

also show that robust methods can successfully address

it. The UK Biobank exome data analysis shows that the

method provides calibrated p values and contributes to

the identification of true association signals.

The proposed robust methods combine SPA and ER

to recalibrate variances of single-score statistics. SPA can

be thought of as a higher-order asymptotic approach

with error bound Oðn�3=2Þ,5 where n is the sample size,

which is much smaller than the error bound of normal

approximation, Oðn�1=2Þ. However, SPA is still asymp-

totic-based and cannot perform well when MAC is small.

Because ER is a resampling-based approach and can



Table 2. Significant Gene-Phenotype Associations in the UK Biobank WES Data

Phenotype
(PheCode)

Gene
Name

Case:
Control

Number
of SNPs

Case
MAC

Control
MAC

Robust
SKAT-O p
Values

Lowest P
SNP

Conditional
p Value
(SKAT-O)

p Value of the
Most
Significant Nearby
Variant

Myeloproliferative
disease (200)

JAK2 94:9,306 73 27 442 1.36E-33 1.81E-41 1.06E-35 2.30E-17

Unspecified
monoarthritis
(716.2)

OGG1 1728:41,060 117 118 1643 7.73E-09 4.67E-04 7.79E-09 4.28E-04

Menopausal and
postmenopausal
disorders (627)

NFE2L3 1345:21,226 171 145 1358 2.54E-08 2.72E-05 3.94E-08 2.14E-04

Cancer of
prostate (185)

HOXB13 741:18,940 37 18 154 3.00E-08 5.24E-08 2.50E-08 1.17E-04

Other
aneurysm (442)

P3H1 164:16,236 110 17 497 5.76E-08 1.71E-05 4.03E-07 1.22E-03

Heartburn
(530.9)

USP45 189:18,711 103 24 649 6.34E-08 5.39E-05 1.46E-09 4.08E-02

Fracture of hand
or wrist (804)

GSDMC 382:37,818 109 25 761 7.12E-08 8.17E-05 1.49E-07 1.84E-02

Congenital
coagulation
defects (286.1)

F11 76:7,524 38 8 84 7.40E-08 4.52E-05 4.09E-08 6.30E-03

Congenital
anomalies
of great vessels
(747.13)

SLC46A1 134:13,266 28 11 255 9.38E-08 1.86E-08 3.87E-08 2.29E-03

Peptic ulcer (excl.
esophageal) (531)

LMNB2 773:44,818 171 24 508 9.89E-08 3.83E-06 9.54E-08 1.31E-03

Lowest P SNP means the lowest p value of all single variants contained in the gene-phenotype association. Conditional p value (SKAT-O) means the robust SKAT-O p value after conditioning on the most significant nearby
common variant (5100 Kbp up- and downstream). p value of the most significant nearby variant was from SAIGE single-variant analysis results15 of the UK Biobank imputed datasets of 400,000 British samples.
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Figure 3. PheWAS Plots of 10 Rare-Variant Associations with p Value < 10�7

The x axis represents 791 binary traits, and the y axis represents the negative log10 p values. The dashed line represents the cutoff of
0.05/791 ¼ 6.32 3 10�5.
calculate the exact p value when MAC is small, it can

complement SPA.

Our UK Biobank WES data analysis of 45,596 European

samples and 791 binary phenotypes has identified 10

rare-variant associations with p value < 10�7, including

the replication of two known signals. Currently UK Bio-

bank is carrying out WES for 500,000 individuals. Our

analysis presents an early snapshot of the discoveries that

can be made with full UK Biobank samples.

All the UK Biobank analysis summary statistics are pub-

licly available and so can be a useful community resource

to show detailed results of the UK Biobank. Due to the large

scale of the data, for labs not specialized in big data anal-

ysis, it is very challenging to analyze UK Biobank exome

data. The analysis results will make the data more acces-
10 The American Journal of Human Genetics 106, 3–12, January 2, 20
sible and facilitate the identification of the genetic bases

of complex diseases. For example, researchers could utilize

our results for meta-analysis to combine samples from

different studies. Our results can also be used to validate

novel signals from other studies.

There are several limitations to the proposed method.

Currently, the robust methods require that all individuals

are unrelated. Restricting analysis to unrelated samples re-

duces sample size and case counts in many situations.29

For example, some rare phenotypes within a health system

may be clustered in a few families. Analysis based on inde-

pendent samples may significantly decrease the power.

When there are related individuals, generalized linear

mixed model (GLMM) based approaches15,30 should be

used to incorporate the relatedness. Recently Chen et al.
20



developed an efficient mixed-effect model approach for

gene-based tests,31 and Zhou et al. expanded scalable sin-

gle-variant GLMM to gene-based tests that can handle

the full size of the UK Biobank data of 500,000 sam-

ples.32 Since thesemethods are also based on single-variant

score statistics, the robust approach can be applied to them

with modifications for GLMM. We leave it for a separate

work. Second, when the case-control ratios are more

extreme than case: control ¼ 1:99, the method suffers

type I error inflation. Because of this, our UK Biobank

exome analysis used the matching scheme in which, if

the case-control ratios are more extreme than 1:99, we

use the matching to reduce the number of controls. Third,

novel findings are not validated from independent data-

sets, so we cannot rule out the possibility that they are false

positives. Lack of replication can be alleviated as more

sequencing studies are conducted in biobanks.

In summary, we have proposed a robust region-based

method and showed that the method can accurately

analyze UK Biobank exome data. With the continuous

decrease of sequencing cost and a growing effort to build

large biobanks and cohorts,33 rare-variant association anal-

ysis will be increasingly applied to binary phenomes. Our

method will provide accurate results for binary phenome

analysis and contribute to identifying the role of rare vari-

ants in complex diseases.
Supplemental Data

Supplemental Data can be found online at https://doi.org/10.

1016/j.ajhg.2019.11.012.
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