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A Robust Method Uncovers Significant
Context-Specific Heritability
in Diverse Complex Traits

Andy Dahl,1,2,* Khiem Nguyen,2 Na Cai,3,4 Michael J. Gandal,5 Jonathan Flint,6 and Noah Zaitlen1,2,*

Gene-environment interactions (GxE) can be fundamental in applications ranging from functional genomics to precisionmedicine and

is a conjectured source of substantial heritability. However, unbiased methods to profile GxE genome-wide are nascent and, as we show,

cannot accommodate general environment variables, modest sample sizes, heterogeneous noise, and binary traits. To address this gap,

we propose a simple, unifying mixed model for gene-environment interaction (GxEMM). In simulations and theory, we show that

GxEMM can dramatically improve estimates and eliminate false positives when the assumptions of existing methods fail. We apply

GxEMM to a range of human andmodel organism datasets and find broad evidence of context-specific genetic effects, including GxSex,

GxAdversity, and GxDisease interactions across thousands of clinical and molecular phenotypes. Overall, GxEMM is broadly applicable

for testing and quantifying polygenic interactions, which can be useful for explaining heritability and invaluable for determining

biologically relevant environments.
Introduction

Many examples of gene-environment interaction (GxE)

have been documented in humans at the level of individ-

ual genetic variants. In functional genomics, variants can

have effects on expression that depend on external

context,1–5 age,6 tissue,7 or cell type.8,9 In complex traits,

some genetic variants are known to interact with air pollu-

tion,10 microbe exposure,11 or sex.12–15 Variants can also

interact with medical interventions and can render certain

treatments ineffective.16–18

GxE tests can explain novel biology along two distinct,

complementary axes. First, GxE can identify unappreciated

genetic effects that elude linear models, which can increase

genome-wide association study (GWAS) power and has

recently received attention as a partial answer to themissing

heritability question.19–21 Second, GxE tests can demon-

strate that an environmental measurement is biologically

trait relevant and quantify its impact, which can be impor-

tant for public health and can illuminate intrinsic trait

biology. More generally, genetic interaction tests can be

used to assess the biological significance of any sample strat-

ification, including (putative) phenotypic subtypes, quanti-

tative covariates like age, or even other genetic variants.

However, investigation of GxE in nominally unrelated

humans has been limited by the fact that individual

variant effects are typically small. In the additive model

context, genome-wide Genomic Restricted Maximum

Likelihood (GREML) has been an invaluable complement

to variant-based tests, powerfully characterizing aggregate

polygenic effect sizes without attempting to resolve causal

variants.22 Here, we propose an analogous mixed model
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for GxE, GxE Mixed Model (GxEMM), to characterize the

aggregate polygenic contributions of GxE. Relative to

single-variant GxE tests, GxEMM has higher power (for

polygenic traits) but lower resolution, a tradeoff thatmakes

it particularly useful for characterizing the biological rele-

vance of environmental measures.

While complex in some settings, GxEMM is easily visu-

alized for discrete environments (Figure 1). GxEMM incor-

porates three key, interpretable models. First, the Hom

model is equivalent to standard GREML and models only

the mean effects of the environment. We call the second

model IID, as it allows environment-specific genetic vari-

ance and noise but assumes that these values are constant

across every environment. We call the final model Free,

because it allows the genetic and noise levels to freely

vary between environments. We propose these three core

models as a parsimonious, biologically informative repre-

sentation of possible GxE models.

Although GxEMM is simplest in the case of two discrete

environments, GxEMM extends naturally to accommo-

date arbitrary environmental covariates. This is important

because previous approaches require discrete environ-

ments (e.g., MV-GREML20) or univariate environments

(e.g., MRNM23). A second significant component of

GxEMM is the ability to model binary traits, like case/

control disease studies. Third, GxEMM accommodates

modest sample sizes, which can be important for applica-

tions like functional genomics. To obtain this flexibility,

we implement three methods to estimate GxEMM param-

eters, each extending an existing approach to GREML:

REML, for large sample sizes and continuous traits; pheno-

type-correlation-genotype-correlation (PCGC), for binary
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Figure 1. The Three Key GxEMM Models
in the Case of Two Discrete Environments
Entry shading indicates absolute value.

Hom (top) fits homogeneous genetic (h2
g )

and noise (s2e ) levels and is equivalent
to GREML. IID (middle) adds a common
effect for environment-specific heritability

(h2
het , orange), pictured as a block-diagonal

matrix with each block corresponding to
samples from one environment. Free (bot-
tom) allows environment-specific genetic
(vk) and noise (wk) levels.
traits;24,25 and Haseman-Elston regression (HE), for modest

sample sizes, e.g., hundreds of samples.26

We also make three important theoretical contributions.

First, we demonstrate that noise heterogeneity must be

modeled to avoid false positive GxE (Appendix A). Second,

we provide a formally identified model description, which

is essential for clear inference and future extensions (Ap-

pendix B). Third, we correct a misconception that G-E cor-

relation generally causes GxE bias in the polygenic setting

(Appendix C).

In this paper, we first provide a broad overview of

GxEMM and the concept of polygenic interaction and

then describe the details of the GxEMM method, our simu-

lation study, and the three real datasetswe analyze. Next, we

perform a series of simulations and theoretical analyses that

demonstrate that GxEMM is broadly reliable.We then apply

GxEMM to study sex-specific heritability in 115 outbred rat

traits and find strong, widespread signals of genetic and

non-genetic heterogeneity, especially in bone and glucose-

tolerance traits. Next, we find significant polygenic interac-

tions with several stress indices and quantitative environ-

ments for major depression. Finally, we analyze RNA-seq

data frompostmortembrain andfind strong evidence for bi-

polar- and schizophrenia-specific cis-heritability, both on

average over the transcriptome and in nine known SCZ-

associated genes. We conclude with a discussion on impor-

tant caveats as well as future applications and extensions.
Material and Methods

Overview of GxEMM
GxEMM builds on GREML, an additive polygenic model that esti-

mates heritability distributed across the genome. GxEMM addi-

tionally captures the GxE-based heritability due to polygenic

gene-environment interactions. Assuming discrete environments,

the model for phenotype yi in environment k (i.e., zi ¼ k) is:
yi
��zi ¼ k e X

q

Xiqaq þ shom

X
s

Gisbs þ

Covariate Hom G
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In this model, X are covariates with fixed effects a, like age or ge-

netic PCs. G is the genotype matrix, with additive effects b. As in

GREML, we assume that b and the noise, e, are i.i.d. standard

normal, and the heritability is determined by the genetic and

noise variances, s2hom and s2e . GxEMM additionally captures SNP-

environment interaction effects, g, which are also assumed i.i.d.

standard normal. Further, GxEMM allows environment-specific

genetic (vk) and noise (wk) variances. Although we have assumed

that z is discrete to simplify Equation 1 and Figure 1, GxEMM ex-

tends to general z, e.g., quantitative environments or proportional

membership across discrete environments (see LMMs for Poly-

genic Interaction Effects (GxEMM)).

To unpack the model, imagine studying genetic effects on

height across males and females. A SNP s that equally increases

height in both sexes has a homogeneous effect ðbs > 0Þ but has
no sex-specific effects ðgsf ¼ gsm ¼ 0Þ, so s contributes to s2hom but

not vf or vm. Conversely, a SNP s0 that increases height only in fe-

males has bs0 ¼ 0 and gs0f > gs0m ¼ 0, so s0 contributes to vf but not

s2hom or vm. Finally, wf > wm means that females have higher non-

genetic height variance.

We consider three distinct models for v: Hom, where all vk ¼ 0;

IID, where vk ¼ h2
het for all k; and Free, where v is unconstrained.

We use the samemodels for w, although the IIDmodel is not iden-

tified in the case of discrete z. In the sex-height example, the IID

model allows sex-specific genetic effects but assumes that, on

balance, male- and female-specific sizes are identical; the Free

model eliminates this assumption. In this paper, we assume that

the genetic effects are exchangeable across environments, i.e.,

we assume that gsk and gsk0 are independent for ksk0. We also

theoretically describe a Full model allowing arbitrary correlations

between environment-specific effects, which is richer but statisti-

cally and computationally challenging (see LMMs for Polygenic

Interaction Effects (GxEMM)).

Of the many possible statistical tests available for GxEMM, we

focus on a parsimonious set of biologically meaningful tests to

characterize polygenic GxE:

d Hom versus Null (i.e.: h2
g ¼ 0?) tests whether there is any

heritability.
ffiffiffiffiffi
vk

p X
s

Gisgsk þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wk þ s2

e

q
ei

GxE Noise

(Equation 1)
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Table 1. Recent LMMs for GxE Heritability

Publication GxE IxE Binary y Allowed Z Notes

GCTA27 IID unbiased no discrete –

iSet28 full unbiased no discrete design-specific

MetaSex29. free unbiased no discrete not MLE

MV-GREML20 full unbiased no discrete –

StructLMM21 IID unbiased no general L ¼ 1 SNP

RNM23 free biased no bivariate models G-E corr.

MRNM23 IID unbiased no univariate models G-E corr.

GxEMM (us) free unbiased yes general –

GxE gives the richest fitted genetic heterogeneity model, and IxE indicates whether the method is biased under noise heterogeneity (Appendix A). Methods
without specific notes are displayed with dash (–).
d IID versus Hom (i.e.: h2
het ¼ 0?) tests polygenic GxE under

homoscedasticity.

d Free versus Hom (i.e.: vk ¼ 0?) tests polygenic GxE allowing

heteroscedasticity.

We implement both LR and Wald tests.

In the Free model with discrete z, each environment can have

different levels of heritability and total variance. Assuming the

kinship matrix is normalized, the heritability in environment k is:

h2
k : ¼ s2

hom þ vk
s2
hom þ vk þwk þ s2

e

(Equation 2)

Most previous approaches for polygenic GxE in unrelated sam-

ples assume discrete environments (Table 1). The GCTA GxE

model fits an IID v.27 The MV-GREML model fits Full v and Free

w (and low-rank, polynomial sub-models, called RR-GREML).20

iSet fits a similar model and can even fit Full w in the case that

all samples are measured in all environments.28 MetaSex fits the

Hom model independently in each of two discrete environments,

which implicitly resembles Free v and w.29 Finally, StructLMM

allows general (and potentially high-dimensional) environments,

but only fits the IID model and a single SNP.21 Complementary to

GxEMM, StructLMMpowerfully identifies specific SNPs with envi-

ronment-dependent effects but has low resolution to determine

the biological significance of specific environments.

Most recently, Ni et al.23 developed a Freemodel for v andw that

allows gene-environment (G-E) correlation. In practice, Ni et al.23

implement simpler submodels, and particularly focus on RNMand

MRNM. RNM can fit up to two environments but ignores G-E cor-

relation and noise heterogeneity (Appendix A). MRNM can fit

only one environment, where the IID and Free models coincide.

These constraints resolve computational and statistical limitations

common to all GREML-based approaches, including GxEMM. The

constraints also resolve non-identification issues specific to the

model formulation in Ni et al.23 By contrast, the formal model un-

derlying GxEMM is well identified and naturally accommodates

multivariate environments and genetic correlations between envi-

ronments (Appendix B). For completeness, we extend the GxEMM

model to accommodate G-E correlation in theory (see LMMs for

Polygenic Interaction Effects (GxEMM)). Nonetheless, we theoret-

ically demonstrate that this is unlikely to cause bias for GxEMM

(Appendix C); moreover, no evidence to date has shown that poly-

genic G-E correlation causes GxE bias or test inflation in practice,

in contrast to the single-variant case.30
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Overview of GxEMM with Binary Traits

Continuous trait models are inappropriate for binary traits like dis-

ease status. To address this, generalized linear models assume the

binary trait is driven by an underlying quantitative liability. Binary

trait heritability is then naturally defined as the heritability of this

liability. To our knowledge, no other method has been developed

to estimate polygenic GxE for binary traits.

One prominent approach to binary trait heritability estimation

is to treat the 0/1 binary label as continuous in REML and

then rescale post hoc. This transformation is exact without

covariates31 and approximately extends to mild case ascertain-

ment.24,32,33 We attempt to extend this idea to GxE and evaluate

the variance components both with and without rescaling (see

GxEMM for Binary Traits).

Another method for binary trait GREML, phenotype-correlation-

genotype-correlation (PCGC), usesmoment-matching.When cova-

riates are absent, PCGC amounts to comparing phenotypic and

genotypic correlations, similar to HE regression for quantitative

traits. PCGC extends this to incorporate covariates and preferential

case ascertainment using an analytic approximation.24,25 We can

directly fit GxEMM with PCGC as it allows multiple relatedness

matrices.
LMMs for Polygenic Effects (GREML)
The standard linear mixed model (LMM) for GREML assumes a

quantitative trait measured on N samples, y˛RN . We allow Q back-

ground covariates in a matrix X˛RN3Q and L SNPs that we collect

into the genotype matrix G˛RN3L. The homogeneous LMM is:

y¼XaþGbþ e (Equation 3)

bj�iidN
�
0;s2

g

.
L
�
; ei �iid N

�
0; s2

e

�
(Equation 4)

We assume Q � N and estimate a as a fixed effect. In contrast, we

allow L[N andmodel b as a random effect. This can bemotivated

as a genuine prior that all SNPs have small, nonzero, i.i.d. effects,

but GREML accurately estimates heritability under more realistic

architectures.34,35 Columns of G are demeaned and scaled based

on some assumed relationship between MAF and effect size.36,37

Marginalizing out b gives a simpler and equivalent (or almost

equivalent, according to Steinsaltz et al.38) formulation of GREML:

y � N
�
Xa;h2

gKþ
�
1�h2

g

�
IN
�

(Equation 5)
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defining IN as theN-dimensional identity matrix and K :¼ 1
LGG

T as

the N3N kinship matrix, a natural estimator of genetic similarity.

Equation 5, and most expressions in this paper, assume the total

phenotypic variance is 1, so that s2g ¼ h2
g and s2e ¼ 1� h2

g .

The GREML model in Equation 5 is commonly fit by restricted

maximum likelihood (REML), which projects out X from K and

y and then fits variance components by maximum likelihood.

However, moment-matching methods are increasingly common,

especially LD score regression39 for very large N or meta-ana-

lyses—where implementing REML becomes challenging—or HE

regression40 for small N—where REML is biased35 and computa-

tionally unstable.26

LMMs for Polygenic Interaction Effects (GxEMM)
We now assume a matrix of P environmental variables, Z ˛ RN3P.

As for X, we allow arbitrary binary and/or continuous variables in

Z and assume P � N. The GxE mixed model (GxEMM) adds envi-

ronment main effects, polygenic interactions, and environment-

specific noise to GREML:
yi ¼
X
q

Xiqaq þ
X
s

Gisbs þ
X
s;p

GisZipgsp þ
X
p

Zipdip þ ei

Fixed
Effects

Hom:
Genetics

Gene�x�E
Interaction

Noise�x�E
Interaction

Hom:
Noise

(Equation 6)
X should include the main effect of Z. We define gsp as the inter-

action effect of SNP s and environment p, and dip is the noise

contributed by environment p to person i.

We assume b and e are random, as in Equation 4, and alsomodel

g and d as random effects:

gs;�iidN
�
0;

1

L
V

	
; di; �iid N

�
0;

1

N
W

	
(Equation 7)

The interactions are independent between SNPs, as in b.

For b, this means entries are independent, and for g it means

rows are independent. However, V allows the interaction

effects to correlate across environments. Intuitively, s2hom cap-

tures the homogeneous effects (b) and Vpp captures the

environment p-specific effects ðg;pÞ. Off-diagonal terms, Vpp0 , ac-

count for genetic effects shared between environments p and

p0 in excess of the homogeneous sharing across all environ-

ments, s2hom.

W is interpreted analogously, whereWpp indicates environment

p-specific noise and Wpp0 indicates covariance between the noise

contributed by environments p and p0. In discrete environments,

Wpp0 is not identified and the Wpp can be assumed zero mean

WLOG (Appendix B).

The model in Equation 6 can be simplified using *, the column-

wise Khatri-Rao product:

y¼Xaþ Gbþ ðG �ZÞgþ ðIN �ZÞdþ e (Equation 8)

Just as the random b and e can be marginalized for additive LMMs,

giving Equation 5 from Equation 4, the random b, g, d, and e in the

GxEMM model in Equation 8 can be marginalized:

y � N �Xa; s2
homKþ �ZVZT

�
+Kþ �ZWZT

�
+ IN þ s2

e IN
�

(Equation 9)
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The GxE variance component nicely decomposes into the Hada-

mard product ð+Þ of environmental similarity (ZVZT) and genetic

similarity (K).

Equation 9 defines a complex likelihood. But commuting the

matrixmultiplications in ZVZTand ZWZT through the (linear) Ha-

damard product simplifies the expression:

y �N
 
Xa; s2

homKþ
X
p;q

Vpq

h�
Z;pZ

T
;q

�
+K
i

þ
X
p;q

Wpq

h�
Z;pZ

T
;q

�
+ IN

i
þ s2

e IN

! (Equation 10)

This phenotypic covariance matrix is easily visualized for

discrete environments (Figure 1, with vp ¼ Vpp and wp ¼ Wpp).

Since K and Z are known, Equation 10 is a standard

variance component estimation problem. We typically fit the

model with REML using LDAK.37 For small sample sizes we

also use HE regression, which is computationally stabler and

unbiased.
Interestingly, this marginalization from Equations 8, 9, and 10

holds if and only if g has the covariance in Equation 7 (under large

N or randomG, Appendix D). Thismatters because it links the sim-

ple visual intuition (Figure 1) underlying the variance component

model in Equation 10 to the concrete linear model in Equation 8;

prima facie, distinct linear models could give equivalent variance

component models. This bridge also enables GxEMM to naturally

generalize to arbitrary environments, as they are seamlessly

accommodated by the linear regression model in Equation 3.

Conversely, the pictorial representation in Figure 1 does not easily

adapt to general environments, nor do models that directly start

from variance components rather than the underlying linear

model.

We useWald and LR tests for GxEMM, with asymptotic standard

errors derived from the information matrix and the delta method.

We allow negative variance component estimates to reduce bias—

which is important for aggregating estimates across traits38—and

because non-negative total heritability does not imply either

that s2homR0 or that V is positive definite. We test individual HE

model fits using permutations. In psychENCODE, we permute

within-disease to mitigate violations due to non-exchangeability

across individuals by preserving any noise heterogeneity across

the disease groups.41,42

In this paper, we do not fit GxEMMwith a general VorW (which

we call the Full model) because it has OðP2Þ parameters, which is

computationally and statistically difficult for the range of N where

basic REML methods are computationally feasible. Instead, we

consider several restricted models for V (and W): Hom, where V ¼
0; IID, where V ¼ h2

het IP; and Free, where V ¼ diagðv1;.;vPÞ. Both
IID and Free ignore correlation between genetic effects across envi-

ronments (beyond the homogeneous sharing captured in s2hom),

which will perform well when environments are approximately

exchangeable rather than structured, e.g., city or hospital
020



indicators, but not discretized height. IID further assumes that

genetics explain equal variance in each environment.

Ni et al.23 develop twomodels similar to Free GxEMM, RNM and

MRNM. For computational and statistical reasons, they are

implemented only for special cases. RNM only fits bivariate

environments and assumes Hom noise (which is unreliable,

Appendix A). MRNM fits only univariate environments, where

the Free and IIDmodels coincide (Appendix B). A distinct strength

of MRNM is modeling gene-environment correlation. In our

model, this can be phrased as learning correlations between the

genetic main and interaction effects (rp :¼ Covðgps;bsÞ for each

SNP s). In the future, we will investigate G-E correlation with

GxEMM by adding terms like rpK+ð1NZ
T
p Þ to our model in Equa-

tion 10.

Nonetheless, G-E correlation simulations in Ni et al.23 suggest

the bias is not likely to be severe in practice for GxEMM. Specif-

ically, GxE estimates were unbiased in simulations so long as Z

was adjusted as a fixed effect—which is well known, and GxEMM

always includes Z as a fixed effect. Ni et al.23 do observe that ad-

justing for Z changes the homogeneous variance components es-

timates, but this is entirely expected—cf. the distinction between

‘‘Marginal’’ and ‘‘Conditional’’ variances in Weissbrod et al.25

Overall, generally fitting Full GxEMM with G-E correlation would

be useful in large datasets, but this remains computationally and

statistically unrealized in unrelated samples. Randomized

methods may address this gap in the future.43,44
GxEMM for Binary Traits
We extend two binary trait heritability estimation methods from

the GREML context to GxEMM. The first uses REML and treats

the 0/1 disease label as a quantititative trait, and then rescales

the REML estimates post hoc:

bh2
: ¼ K2ð1� KÞ2

Pð1� PÞ½fðFð1� KÞÞ�2
~h
2

(Equation 11)

where ~h
2
˛f~h2

g ;
~h
2

hom;
~h
2

het ;
~h
2

kg is any of the REML-based GxEMM

heritability estimates; K is the disease prevalence in the population

and P is the sample prevalence; and f and F are the standard

Gaussian density and distribution functions. This scaling

approach is well established for the Hom model31 and works

well when covariates and ascertainment are modest,32 but other-

wise can fail badly.24

The second approach to fit GREML for binary traits, PCGC,

directly models the binary nature of the trait and estimates param-

eters with the method of moments. PCGC incorporates covariates

and ascertainment (approximately), making it far more robust

than the REML rescaling approach for the Hom model.24 We

directly fit PCGC-based GxEMM using its LDAK implementation.

We estimate standard errors using resampling25 and the delta

method.

The LDAK implementation discards on-diagonal entries in the

variance component moment estimating equation. Although

this is efficient for standard genetic similarity matrices, which

have near-constant diagonals, this ignores important information

for Free noise. A subtler and more significant problem, though, is

that this off-diagonal approach treats the homogeneous noise

variance component asymmetrically, as it captures both s2e and

the residual moment estimating error. This caused estimates of

w based on including K � 1 noise heterogeneity matrices to

behave strangely, with the implicit component (the K-th, say) be-
The Am
ing upward biased relative to the other K � 1 as it combines both

wK and the overall PCGC approximation error. To mitigate this

issue and enforce symmetry across environments, we use all K

environmental noise similarity matrices in PCGC, which has a

unique method-of-moments solution, enforces symmetry, and

provides identified estimates of wK by formally defining s2e ¼ 0.

We note this issue is relevant only for discrete environments

(Appendix B).
Simulation Details
We tested GxEMM with simulations using real genotypes from

CONVERGE (see CONVERGE Data). For each simulation, we

randomly choose S ¼ 1,000 SNPs to have both additive and inter-

action effects. Because causal SNPs are chosen uniformly at

random, we use the standard GRM (the Grammatrix ofG after col-

umn centering and scaling) inside GxEMM in these simulations.

We do not use the causal relatedness matrix because it is unknown

in practice. We independently draw 200 datasets per parameter

set, except for the N ¼ 1,000 simulations where we draw 500 data-

sets. We note that REML failed for a small number of simulations.

We define Z by assigning each sample to one of two discrete en-

vironments uniformly at random. We define X to include Z and

the CONVERGE fixed effects (see CONVERGE Data) and draw aq

i.i.d. Gaussian with mean zero and variance such that X explains

10% of the variation in the raw phenotype (note, however, that

a is irrelevant after residualizing in X in HE and REML). We scale

columns of X and G to mean zero, variance one so that the effect

sizes are easily interpretable.

We vary s2hom, v, and w depending on the simulation setting,

with different choices corresponding to either the Hom, IID, or

Free GxEMM models. We always set the homogeneous noise level

so that the phenotype has (residual) variance 1:

s2
e :¼ V eð Þ ¼ 1� s2

hom �
X
k

vk
N
kZ;kk2

� �
�
X
k

wk

N
kZ;kk2

� �
Given these parameter and data choices, we draw traits from the

GxEMM model in Equation 6 (Figure 2).

To simulate binary traits, we treat the generated quantitative

trait, yð0Þ, as a disease liability and then threshold to generate

the disease label:

yi ¼


1 if yð0ÞRt80
0 if yð0Þ < t80

where t80 is the 80th percentile of yð0Þ so that y represents a disease

with prevalence 20%.

We also perform a specific simulation study of large-effect cova-

riates on binary traits (Figure 3, left). Rather than choose a

randomly, we set all its entries to 0 except for the main effect of

environment 1, i.e., the entry in a corresponding to Z;1. This

term, m1, controls the relative prevalence of the binary trait be-

tween environments. We also assess a variant where the disease

has low population prevalence but a 50/50 case/control cohort is

ascertained by preferentiallymeasuring diseased samples (Figure 3,

right), setting m1 ¼ :4. In these simulations, we simulate a popula-

tion of size 500,000 and then ascertain 5,000 cases and controls;

this strategy is computationally limited to modest population

prevalences, e.g.,z1%. We draw random SNPs i.i.d. with 50% fre-

quency in these ascertainment simulations.

Finally, we performed simulations specifically designed to

compare GxEMM to RNM (Figure S1). To mirror the simulations

in Ni et al.,23 we assume a continuous, centered, and scaled
erican Journal of Human Genetics 106, 71–91, January 2, 2020 75



A C E G

B D F H

Figure 2. GxEMM Simulations
GxEMM simulations under (A and B) homogeneity, (C and D) IID heterogeneity, (E and F) Free genetic heterogeneity, or (G and H) Free
noise heterogeneity. Results are shown for Hom, IID, and Free GxEMM and, in (G) and (H), the Free GxE model with Hom noise. In the
top panels, the (true or false) positive rates are shown for Wald tests at nominal p < .05. In the bottom panels, mean GxEMM estimates
are shown as points (51 SD), with true generative parameters as background lines.
univariate environment and exclude other fixed effects. We then

define the liability by drawing a 35% heritable trait with variance

1 and then adding the main environmental effect. We vary the

main environment effect, bz, to evaluate a range of realistic

settings. We note that large environmental main effects are plau-

sible in practice (e.g., Peterson et al.19), especially because candi-

date environments for GxE are generally proposed based on their

direct trait relevance.

Rat Data
We studied 1,407 rats with genotype and partial phenotype infor-

mation. We use the same 115 traits that we previously used,45

which were deemed suitable for mixed model analysis in the orig-

inal study.46 We excluded one wound-healing trait where REML

struggled to converge, and 24 traits with<1,000 observed samples.

The studied rats are an outbred mixture of eight inbred strains, a

strategy designed to increase genetic association mapping power.

The outbreeding strategy is not simple to describe, but it is de-

signed to maintain the frequencies of the eight founder alleles at

modest frequencies, avoid extreme inbreeding, and ensure mixing

between founder strains.

Weused the samekinshipmatrix, covariates, and trait transforma-

tions as in Baud et al.,46 which we have summarized in Table S1. In

particular, this involves adjusting for trait-relevant covariates—

always including sex—and using trait-specific transformations.

To be conservative, we do not impute the phenotypes, though

genetics-unaware imputation seems unlikely to substantially bias

GxEMM.

CONVERGE Data
We studied 9,303 samples with genotype and covariate informa-

tion and pairwise kinship <.05, following Peterson et al.19 We

studied 14 binary stressors and 10 quantitative measurements as

environmental covariates (Table S2). Two stress questionnaire

items were very rare and excluded.
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For each choice of environment variable (E), we used an inter-

cept, age, ten genetic PCs (from an LDAK relatedness matrix37),

and E as fixed effects. We also always include the interactions be-

tween these terms and E, which can be important for reducing bias

in GxE testing in large samples.47

When fitting mixed models, we use the GCTA-based genetic

relatedness matrix (GRM) in simulations and the LDAK-based

GRM in real data. We previously found the difference between

the LDAK and ordinary GRMs to be qualitatively minimal.19

To analyze a single quantitative covariate z, we linearly scaled

it to have minimum 0 and maximum 1, and then defined

Z ¼ ðzj1�zÞ˛RN32. This is analogous to the discrete environment

Z matrix: they exactly coincide when z covariate takes only two

values, and in general z can be interpreted as proportional mem-

bership between two stylistic groups, the min and max values

of z. In turn, v1 (w1) describes genetic (non-genetic) variance spe-

cific to low z, v2 (w2) describes the genetic (non-genetic) variance

specific to high z, and s2hom describes heritability that is indepen-

dent of z. This construction of z also allows naturally extending

our definition of discrete environment-specific heritabilities

(Equation 2) to quantitative environments: h2
1 ðh2

2Þ is the heritabil-
ity for samples with the minimum (maximum) observed environ-

mental value. We feel this coding of the environmental effect

makes the interaction random effects more interpretable, but we

emphasize that the simpler model which evaluates only z (instead

of Z) is perfectly valid when its assumptions are met.

For higher-dimensional environments, the per-environment Z

matrices could be concatenated by Z ¼ ðz1j1�z1j/jzP j1�zPÞ.
The environment-specific heritabilities from Equation 2 are not

easily extensible to this setting, however.
psychENCODE Data
We analyzed the processed genotype and prefrontal cortex gene

expression data from Gandal et al.48 and Wang et al.49 These

data have already been adjusted for nonlinearity in raw expression
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measurements and large, non-genetic covariate effects, including

biological factors like age, technical factors like RIN, and latent

confounders as estimated by expression Surrogate Variables.50

We restricted only to measurements from the pre-frontal cortex,

as cerebullum and temporal cortex had much lower sample sizes.

We restricted only to autosomal SNPs and genes, and we only

used SNPs with MAF > 5%, missingness < 10%, and Hardy-Wein-

berg p > .001. We then filtered our samples such that no pair had

genome-wide relatedness above 0.05.22 After these filters, we ob-

tained a sample size of N ¼ 931 with both genotype and gene

expression data.

For each autosomal gene, we extracted cis SNPs, which we

define here as SNPs within 1 Mb of the gene transcription start

or end site. This yielded 24,905 total genes. The median number

of cis-SNPs per gene was 2,189. We then constructed cis kinship

matrices for each gene by centering and scaling each SNP.

For each gene, we performed Hom, IID, and Free GxEMM with

HE, due to the modest sample size. For comparison, we also fit

two REML tools: REML-based GxEMM, and the Hom and IID

models as implemented in GCTA.27 As expected, GCTA and

GxEMM with REML obtained essentially identical estimates

for both Hom and IID (Figure S2). And, as expected, the HE es-

timates were also highly correlated ðr > :64Þ but noisier. We

note that GCTA had substantially higher average h2
g than

REML-based GxEMM (5.8% versus 4.2%), but this was driven

almost entirely by GCTA’s lower rate of convergence: when re-

stricting to genes where both methods converge, the methods

gave similar results (5.8% versus 5.7%). This is redolent of the

bias induced by restricting to genes with positive heritability

estimates.38

We assess significance in HE by using 10,000 permutations of

samples within-disease class (Table S3). Even under noise hetero-

geneity, this approach is an exact permutation test when genetics

are completely null because samples remain exchangeable within-

disease class. More generally, our permutations are in line with

approximate permutation tests used widely (e.g., for FEATHER42

or HE regression26).
Results

Quantitative Trait Simulations

We simulate data from increasingly complex polygenic

interaction models to assess GxEMM and to compare the

Hom, IID, and Free models. We first simulate from the

purely additive Hom model, equivalent to GREML, by

varying h2
hom and fixing the heterogeneity terms to 0, i.e.,

vk ¼ wk ¼ 0. As expected, all GxEMM models performed

well, as illustrated by the roughly unbiased Hom estimates

of h2
g (Figures 2A and 2B, gray points). IID and Free also

gave unbiased estimates for the total heritability, and their

heterogeneity tests were appropriately null (Figure 2A, or-

ange and blue lines).

Second, we draw from the IID model by varying the sin-

gle heterogeneity parameter h2
het and fixing h2

hom ¼ 0. As

expected, fitting the IID model provides roughly unbiased

estimates of both h2
het and h2

hom (Figures 2C and 2D), as does

Free GxEMM. However, the Hom model underestimates

total heritability (gray points, Figure 2D) and also gives
The Am
the false impression that genetic factors are shared be-

tween environments.

Third, we simulate from the Free model by specifying

different levels of genetic variance in each environment,

varying v1˛½0;1� and then setting v2 ¼ 1 � v1; we keep

s2hom ¼ 0 and Hom noise ðw1 ¼ w2 ¼ s2e Þ. For all v1, Free

GxEMM accurately estimates environment-specific herita-

bilities (dark orange and green lines in Figures 2E and 2F),

but Hom GxEMM underestimates total heritability.

Our fourthsettingagaindraws fromtheFreemodel, except

now genetics are homogeneous(s2hom ¼ :1, and v1 ¼ v2 ¼ 0)

and we instead vary the distribution of noise per environ-

ment, taking w1˛½0;1:65� and setting w2 ¼ 1.65 � w1. Free

GxEMM again performs well], correctly avoiding GxE false

positives (Figure 2G, solid blue) and providing unbiased esti-

mates (Figure 2H). Also, note that allowing Free noise in-

creases Hom power (dotted gray, Figure 2G), showing that

GxEMM can be useful even in the absence of GxE.

In this specific simulation, we also evaluate a variant of

the Free model allowing Free GxE but assuming

Hom noise. Related models have been used before.23,51

However, this approach is susceptible to dramatic,

replicating false positives under noise heterogeneity

(Figure 2G, dotted blue lines) as well as severe bias: for

example, consistently estimating a 10% heritable trait to

have 100% heritability (dashed dark orange and green

lines with diamonds, Figure 2H). We provide a theoretical

characterization of this bias in Appendix A. Such GxE

models that do not allow noise heterogeneity should

almost never be used in practice.

We usedWald tests in these simulations, but results were

similar when using LRT (Figure S3). Also, although we used

two discrete environments here for simplicity, simulations

with bivariate quantitative environments gave similar re-

sults (Figure S4). Finally, we also found that the GxEMM

standard error estimates were accurate or slightly conserva-

tive (Figure S5).

We report the runtimes for the three GxEMMmodels on

this simulated dataset, other simulated datasets, and the

three real datasets in Table S4. Broadly, GxEMM runs in

tens of minutes for thousands of samples, with higher

costs for richer models and larger sample sizes.
Binary Trait Simulations

We next examine binary traits by simulating a 20% preva-

lence disease with h2
hom ¼ :35% and a discrete, binary envi-

ronment with a 25%/75% split (Material and Methods),

roughly based on the CONVERGE data (below). We focus

on simulations from the Hom model to assess which ap-

proaches yield calibrated genetic heterogeneity tests. We

compare fitting GxEMM either with REML, using the stan-

dard liability scale adjustment, or with PCGC, which

directly models the binary nature of the trait.

We first assessed the impact of differential prevalence be-

tween environments by varying m1, the mean liability in

environment 1 (Figure 3, left). For m1z0, both estimators
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Figure 3. REML and PCGC GxEMM in Binary Trait Simulations, with Liabilities Drawn from Hom GxEMM with h2
g ¼ 35%

Left plots vary the per-environment disease prevalences through themean liability in environment 1, m1, while fixing m2 ¼ 0. Right plots
vary the population disease prevalence and then ascertain a 50/50 disease cohort. The top panels test for genetic heterogeneity between
environments.
(PCGC and REML) and all GxEMMmodels (Hom, IID, and

Free) perform well. PCGC continued to perform well for all

tested m1, giving calibrated heterogeneity tests and unbi-

ased heritability estimates for the larger group, bh2

2; howev-

er, the heritability in the smaller group, bh2

1, was conserva-

tive (or very noisy at m1 ¼ �:8, as basically no cases are

observed in environment 1).

On the other hand, REML breaks down in several ways for

jm1j > 0. First, the h2
g estimate is downward biased, as ex-

pected.24 Second, h2
het becomes upward biased, and the IID

heterogeneity test becomes inflated. Third, Free GxEMM

gives severely biased environment-specific heritability esti-

mates, and often badly inflated heterogeneity tests.

To assess power, we repeated these simulations under

Free genetic heterogeneity and found that IID GxEMM

had power to detect genetic heterogeneity for both REML

and PCGC (Figure S6, left). However, Free GxEMM had

low power, reflecting the loss of information from the lia-

bility thresholding process. Second, under Hom genetics

and Free noise, PCGC was unbiased or slightly conserva-

tive while REML was again upwardly biased (Figure S6,

right). Third, we performed binary trait simulationsmirror-

ing the quantitative trait simulations in LMMs for Poly-

genic Effects (GREML) to broadly test PCGC-based

GxEMM (Figure S7). PCGC performed similar to REML

for quantitative traits, except power is lower, as expected,

and PCGC performed poorly under extreme variance het-

erogeneity, likely because the underlying first-order

approximation breaks down in extreme settings.

Disease studies often preferentially ascertain disease

cases to increase power. As ascertainment causes bias

in GREML,24 we assessed its impact on GxEMM through

simulations. We fixed m1 ¼ :4 (similar to CONVERGE)
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and ascertained 50/50 case/control cohorts (Material and

Methods). Although GxEMM with REML breaks down

under ascertainment—in particular, Free/IID GxEMM tests

have roughly 50%/25% false positive rate for 1% preva-

lence—PCGC remains calibrated (Figure 3, right).

Finally, we evaluated the RNM model, a recent REML-

based polygenic GxEmodel implemented in theMTG2 soft-

ware package.52 To streamline comparison, we performed

simplifiedversionsof the abovenon-ascertained simulations

with a continuous, univariate environment and no addi-

tional covariates.Consistentwithour above results (Figure 3,

left), we found that PCGC broadly performed well, as did

REML-based GxEMM and RNM when the environment

had no main effect (Figure S1). However, both RNM- and

REML-based GxEMM become biased as the environment

main effect grows. In particular, RNM obtains roughly 90%

false positive rates when the environment explains roughly

50% of the liability-scale phenotypic variation.

In summary, repurposing standard tools for inferring

polygenic GxE for quantitative traits is not viable. On the

other hand, PCGC-based inference provides calibrated het-

erogeneity tests and approximately unbiased GxEMM

parameter estimates. We caution, though, that PCGC esti-

mator variances are large and, in particular, the Free model

adds negligible value beyond the IID model for binary

traits at these sample sizes.
Phenome-wide Sex-Specific Genetics in Outbred Rats

Our first application is to sex-specific genetic effects across

115 phenotypes in 1,407 outbred rats from the Rat

Genome Sequencing and Mapping Consortium46 (Mate-

rial and Methods). These samples have high genetic relat-

edness, which aids mixed model power. Although many

traits are known to be sexually dimorphic, it is not
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Figure 4. GxEMM Estimates Aggregated across p ¼ 115 Traits in Outbred Rats for the Hom, IID, and Free Models
p values marginally test whether variance components are 0.
(A, left) Heritability estimates from each model, with labels for which violins correspond to which GxEMM model.
(A, right) Homogeneous and heterogeneous heritability components in the IID model.
(B) Genetic variance component estimates for the Free model, as well as noise heterogeneity estimates (wF �wM ). Middle table: for each
component of the violin plots, we provide the average across traits as well as the number of traits where the component is significantly
different from zero.
(C and D) Heritability and variance component estimates from GxEMM for two specific traits, bone density and glucose tolerance. Error
bars represent 1 SE; *p < .05, **p < .01, and **p < .001.
generally well known to what extent, and for which traits,

sex differences are driven by autosomal genetic variation.

First, we fit Hom GxEMM and found 105/115 traits were

heritable at p ¼ .05/115, with average bh2

g ¼ 67:3% (gray

violin, Figure 4A). We next fit IID GxEMM, testing for

GxSex interaction and found that the number of heritable

traits increased to 112/115 (rust violin). The average IID

heritability was 73.8%, which is 9.7% larger than the

GREML heritability. The sex-specific component of the

IID model explained 30.3% of trait variance on average

and was Bonferroni significant for 12 traits (gold violin),

including measurements of bone density, hemoglobin,

platelets, serum composition, and glucose trial response

(Figure S8, Table S1).

On average across all traits, the Free heritability esti-

mates were similar, for both sexes, to the IID model (h2
F

orange violin and h2
M green violin, Figure 4A). Nonetheless,

the Free model uncovered many traits with sex-specific ge-

netic variance, including eight that were Bonferroni signif-

icant (orange vF and green vM violins, Figure 4B). All eight

had significant h2
het in the IID analysis, but the Free analysis

more precisely characterizes the genetic heterogeneity. For
The Am
example, 3/8 of these traits have significantly different

genetic effect sizes between sexes (Wald p < .05/115; 7/8

have p < .05): female-specific genetic effects drove two

bone measurements, white blood cell count, and serum

chloride; male-specific genetic effects drove two platelet

traits, glucose response, and serum potassium (Figure S8).

The Free model also found sex-specific noise levels for

5/115 traits (p < .05/115, pink violin), including three of

the genetically heterogeneous traits and an additional

bone density trait.

To further explore the data and illustrate the GxEMM

model, we plot results for two of the traits with sex-specific

heritability. The first is a femur size measurement (distal fe-

mur cortical area, Figure 4C). In Hom GxEMM, this trait

has high heritability, roughly 75%. Nonetheless, heritabil-

ity is increased to roughly 85% by the IID model and,

moreover, the homogeneous component of IID GxEMM

ðh2
homÞ is near zero. Finally, the Free model goes further by

revealing that the sex-specific genetic effects are primarily

active in females. This analysis shows that GxEMM can un-

cover dramatically non-additive genetic architecture even

when ordinary GREML explains substantial heritability.
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Figure 5. GxEMM Stress-Specific Heritability Estimates for Major Depression
p values marginally test whether variance components are 0.
Estimates are shown aggregated over 14 different choices for the binary stress measurement that is used as the environment in GxEMM.
All stress measures are correlated and have less than 50% prevalence in the dataset.
(A, left) Heritabilities from the Hom, IID, and Free models.
(A, right) IID heritability components.
(B) Free variance components.
An approximate mirror image is obtained for a glucose

tolerance trait (area under glycemia curve over baseline

during intraperitoneal glucose tolerance test, Figure 4D):

h2
gz50% is large, yet homogeneous heritability largely

vanishes after accounting for sex-specific heritability in

IID GxEMM, which is in turn revealed by the Full model

to be driven largely by male-specific genetic effects. This

result is consistent with a previously reported sex-APOE

interaction effect for glucose.53 This rich characterization

of sex-specific architecture has clear implications for ge-

netic association studies: power can be maximized by

studying the sex with greater heritability, and associations

can be interpreted in light of known average difference be-

tween sexes.
Polygenic Stress Interaction in Major Depression

We next apply GxEMM to major depression (MD), a

moderately heritable disease that is likely genetically

and environmentally heterogeneous.54 We analyzed the

CONVERGE cohort, which recruited about 10,000 Han

Chinese women between 30 and 60 years old. Women

were chosen because they have higher MD heritability

than men (i.e., 42% versus 29%55), and clinically ascer-

tained MD-affected case subjects were selected for the

same reason.56 This strategy successfully led to replicated

GWAS hits forMD54 and later yielded three SNP effects spe-

cific to people without major lifetime stress.19 Here, we

extend these SNP heterogeneity analyses to the polygenic

level with GxEMM using our robust approach for binary

traits based on PCGC.

We first fit Hom GxEMM with PCGC to MD and foundbh2

g ¼ 38:5% (SE 4.5%) assuming an 8.8% population prev-

alence (Figure 5).19 Importantly, we adjusted for interac-

tions between genetic PCs and the environment, which

can be essential for avoiding bias and false positives.47
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We then fit 14 IID GxEMM models with each of 14

different binary stress measures (CONVERGE Data). IID

modestly increased heritability on average (h
2

IID ¼ 41:2%,

Table S2), broadly supporting polygenic stress interactions.

One stress measure (divorced/separated/widowed status)

was Bonferroni significant (p ¼ 0.0020 < .05/14). This

measure had relatively high prevalence and MD effect

severity, which both increase interaction test power;

more severe measures (e.g., ‘‘Child Abuse’’) were less

frequent, and more frequent measures (e.g., ‘‘Natural

Disaster’’) were less severe. Altogether, the IID model sup-

ports polygenic stress interaction for MD, but large stan-

dard errors and high correlations between measures pre-

vent conclusions about which specific major life stresses

drive the interactions.

The Free model performed reasonably for the non-stress

groups, finding slightly higher heritability relative to IID

(41.2% versus 43.4%) but not finding any nonstress-spe-

cific genetic variance at Bonferroni significance. More

importantly, however, the Free model performed badly in

the smaller stress groups, consistent with simulations

(Figure S6, left). Similarly, differential noise estimates had

large standard errors and none were significantly different

from 0.

Although we primarily focus on stress interactions due

to prior knowledge that they are relevant to MD, we also

investigated polygenic interaction across each of ten quan-

titative environmental measures (Material and Methods).

IID results were qualitatively similar to the results from

the binary stress measures, with average heritability

increasing to h
2

IID ¼ 42:9% (Figure S9) and one measure,

‘‘Cold Mother,’’ that was nearly Bonferroni significant for

polygenic interaction (p ¼ 0.0079 > .05/10; ‘‘Cold Father’’

point estimates were similar and had p ¼ .0198). As for the

binary stress measures, the Free model was not informa-

tive. Overall, IID GxEMM had power in this dataset and
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Table 2. Transcriptome-wide Average GxEMM Heritability Estimates under the Hom (h2
g), IID (h2

IID), and Free Models (h2
BPD, h

2
SCZ , h

2
CTRL)

h2
g h2

IID h2
BPD h2

SCZ h2
CTRL

Mean (%) 4.06 4.12 4.32 4.34 3.82

SE (%) 0.07 0.07 0.08 0.08 0.07

Wald p for h2 > 0 <2 3 10�16 <2 3 10�16 <2 3 10�16 <2 3 10�16 <2 3 10�16

Wald p for h2 > h2
g – 1.15 3 10�11 1.93 3 10�9 <2 3 10�16 1.00

Wald p for h2 > h2
IID – – 3.83 3 10�6 <2 3 10�16 1.00

Because N is modest, we fit GxEMM with HE regression. We compare the models using Wald tests, estimating the standard errors of the transcriptome-wide av-
erages assuming independence across genes. Dash (–) indicates that the comparison is not meaningful.
provided evidence for genetic heterogeneity, but larger

sample sizes seem necessary for Free GxEMM to be useful.

Brain Expression Heterogeneity in Psychiatric Disease

Finally,weapplyGxEMMtobrain gene expressiondata from

psychENCODE48,49 to test for differential genetic and non-

genetic factors governing transcriptional regulation in

psychiatric disease relative to control subjects. In this anal-

ysis, disease state plays the role of the ‘‘environment’’ in

GxEMM. After quality control (Material and Methods), the

data include 931 samples, including 356 schizophrenia-

affected case subjects (SCZ), 158 bipolar disorder (BPD)-

affected case subjects, and 417 control subjects (CTRL),

each measured on 24,905 genes. In this analysis, we focus

on fitting GxEMM with HE regression because REML is

computationally and statistically unstable at smaller sample

sizes, especially for richer models.26 (We note, though, that

REML gave broadly consistent results when it converged

[Figure S2].) For each gene, we estimate local cis-heritability

by using relatedness matrices built specifically from SNPs

within 1 Mb of the gene’s transcription start site.

We first fit Hom GxEMM and found h2
g ¼ 4:06% (SE

0.07%) on average across the genome (Table 2). This is in

line with previous transcriptome-wide heritability estimates

from whole blood.26,57 Here and below, we test transcrip-

tome-wide averages with a Wald test, where standard errors

are calculated assuming each gene is independent, which is

an established approximation (e.g., Hernandez et al.26).

To investigate transcriptome-wide patterns of disease-

dependent genetic architecture, we next fit the IID model.

We estimated transcriptome-wide average heritability of

h2
IID ¼ 4:12%, which slightly (1.5%) but statistically signif-

icantly (p < 2 3 10�16, paired t test) increased heritability

over the homogeneous GREML model. We then fit the

richer Free model, which estimated disease-specific herita-

bilities of 4.32% (SE 0.08%), 4.34% (SE 0.08%), and 3.82%

(SE of 0.07%) for BPD, SCZ, and CTRL, respectively. For

BPD and SCZ, the increase over h2
g is z7% and significant

(both p < 2 3 10�16); the increases over h2
IID are also statis-

tically significant (p ¼ 3.83 3 10�6 and p < 2 3 10�16).

Conversely, h2
CTRL is lower than h2

g , suggesting that GREML

actually overestimates the heritability that is common

across all disease states, consistent with simulations (Fig-
The Am
ures 2D and 2F). Overall, GxEMM shows statistically signif-

icant interaction between psychiatric disease state and ge-

netic control of gene expression in the prefrontal cortex,

and the Free model further suggests an increased role of

genetics specifically active in the disease states.

To confirm that our results were not primarily driven by

confounding from population structure, we performed the

same analysis after restricting our dataset to samples

from the ‘‘European’’ population, which was the most

numerous population in our psychENCODE data (N ¼
872). We found that transcriptome-wide average estimates

were essentially unchanged (Table S5).

We next tested for genetic heterogeneity at individual

genes, which is less powerful but more precise than tran-

scriptome-wide average tests. Based on simulations, we

have low power for genetic heterogeneity tests across all

genes at this sample size (Figure S10). Instead, we test 63

genes with known significant gene-based genetic associa-

tions for SCZ.58 We test for significance using within-dis-

ease group permutations (Material and Methods).

IID GxEMM does not find any gene with significant

polygenic-disease interaction at 25% FDR (Benjamini-

Hochberg, Figure 6A, Table S3). However, Free GxEMM

detects 9 associations across the three subgroup-specific ge-

netic variances (3 are Bonferroni significant). These results

are consistent with our transcriptome-wide average tests,

where we found that the Free model had considerably

higher power than IID.

Figures 6B and 6C show the GxEMM estimates for two of

these nine genes. First, SNX19 is an SCZ-associated protein

coding gene that also has known experimentally validated

functional eQTL that overlap SCZ risk loci.59–63 This gene

has high cis-heritability in the Hom model (roughly

75%). Next, the well-established IID model fails to find

even suggestive genetic heterogeneity. However, the rich

Free model finds substantial heterogeneity that is largely

driven by SCZ-specific genetics. This is consistent with

simulation results showing low power for the IID GxE

test when most of the specific heritability is concentrated

in one group.

The second significant gene we illustrate, FURIN, is

a protease that has been robustly associated with neurode-

velopment in zebrafish and human neural progenitor cell

development in vitro.64 FURIN also has a strong cis-eQTL
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Figure 6. Psychiatric Disease-Specific Heritability in Prefrontal Cortex Gene Expression
(A) IID and Free genetic heterogeneity tests based on permutations across 63 known SCZ-associated genes. Large points have FDR< 25%,
and the horizontal line is Bonferroni-adjusted p< .05. The maximum BPD and CTRL points overlap at p ¼ 1/(1þ10,000), the minimum
possible value after 10,000 permutations.
(B and C) GxEMM results for 2/9 candidate SCZ genes with significant genetic heterogeneity, SNX19 (B) and FURIN (C).
that colocalizes with GWAS-significant SCZ SNPs,65 and

this eQTL was experimentally shown to modify FURIN

expression and, in turn, brain-derived neurotrophic fac-

tor.66 In psychENCODE, we found that FURIN has essen-

tially zero homogeneous or IID heritability, in contrast

with SNX19. On the other hand, the Free model is able

to reveal significant heritability specifically in SCZ. These

stories both support the links between genotype, expres-

sion, and disease and demonstrate how GxEMM can be

used to uncover genetic variants with disease-specific func-

tional genomic effects. We also found Bonferroni-signifi-

cant genetic heterogeneity for CHRNA2, a previously iden-

tified ‘‘high confidence’’ gene supported by association

with SCZ and Hi-C interaction with nearby eQTL.49

Finally, we tested for differential expression variance be-

tween disease groups transcriptome-wide. We find evidence

for pervasive differences in expression variance across dis-

ease states: for example, 2,459 genes (roughly 10%) have

Levene p < .001. This heterogeneity was driven primarily

by higher expression variance in SCZ: of these 2,459 genes,

97.1% had higher variance in SCZ than CTRL. We also note

that 92.2% of genes had higher variance in SCZ than BPD,

but this is at least partially because SCZ has higher sample

size (and thus power). Adding confidence in the Levene

tests, we permuted disease labels and found no evidence

of test inflation (e.g., 10% of genes have Levene p <.099 af-

ter permuting), suggesting disease state truly correlates with

expression variance. Although this test does not establish

genetic heterogeneity, it does show that Free GxEMM is

likely more powerful than IID: in simulations, variance het-

erogeneity increased Free power over IID regardless whether

it was genetic (Figure 2E) or non-genetic (Figure 2G).
Discussion

Gene-environment interactions (GxE) and polygenicity are

separately well documented. We help bring these concepts
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together with a linear mixed model for polygenic GxE

that we call GxEMM. GxEMM consists of three key models:

Hom, IID, and Free. Each pairwise comparison adds biolog-

ical interpretation: comparing Hom to IID can demonstrate

the existence of GxE, and comparing IID to Free can demon-

strate and appropriately adapt to heteroscedasticity across

environments. Finally, comparing Hom and Free models

can add power for detecting GxE over the IID model; for

example, the Free model, but not the IID model, had power

to show GxE for SNX19 and FURIN in psychENCODE.

Generally, GxEMM can be used for any covariate putatively

interacting with the genome, including genetic variants,67

study indicators for meta-analysis68,69 or genotype quality

control,70 or phenotypic subtypes.71

We have introduced several methods to fit GxEMM,

based on REML, HE, and PCGC; all are implemented as

an R wrapper of the LDAK software package. In practice,

only one method is recommended for a given dataset:

HE for small sample sizes, PCGC for binary traits, and

REML for large sample sizes and continuous traits. These

same concepts apply to standard homogeneous heritabili-

ty estimates.

GxEMM unifies, formalizes, and solves several impor-

tant biases in recent approaches to estimate GxE-based her-

itability. In particular, only GxEMM can accommodate

general environments, noise heterogeneity, modest sam-

ple size, and binary traits, which we support with theory

and simulation.

There are several methodological limitations to GxEMM.

First, like most LMMmethods, GxEMM is computationally

intensive, as it fits several variance components to

individual-level data. In special cases, the problem can be

rewritten to roughly reduce the computational complexity

from OðN3Þ to OðNÞ.21,28 In the future, we will investigate

larger sample sizes using randomized method of moments

to fit GxEMM43,44 (Material and Methods).

A second limitation isourassumptionofGaussian random

effects—although the central limit theorem does support
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this forpolygenic effects. Butnon-normality isnotobviously

more salient for GxEMM than for ordinary GREML, and we

usedquantilenormalization inpsychENCODEand trait-spe-

cific transformations for the rat traits to mitigate the impact

of outliers.26,42,72 We note that these normalizations, too,

have downsides, and in particular reduce power for Levene

tests for variance heterogeneity.

A third limitation to GxEMM is that we do not test or

correct for gene-environment (G-E) correlation. This is a

well-known source of bias in the fixed effect case.30 Surpris-

ingly, however, Ni et al.23 did not observe inflation for

polygenic interaction tests in simulations. In fact, we prove

that this is due to a fundamental difference between the

polygenic and single-SNP case (Proposition 3): absent sys-

temic coordination between the main genetic effects on

the environment and trait, the per-SNP biases average

out over the genome. While such coordination would be

intrinsically interesting, it has not been documented in

real data and is not likely to be large in practice, and thus

polygenic G-E is likely not to cause false positives for poly-

genic GxE tests. Nonetheless, we describe how to incorpo-

rate G-E interaction within the GxEMM model framework

in the Material and Methods, for completeness.

Fourth, we did not fit Full GxEMM, which can learn

structured genetic correlations across environments. Such

models are flexible but complex, with many degrees of

freedom and non-trivial identification concerns. However,

at biobank-scale sample sizes, there will likely be sufficient

power to fit the Full model.

A fifth limitation is that GxEMMdoes not currently allow

random effects beyond the core Hom and GxE variance

components. However, in the context of family studies

(e.g., Diego et al.73) or high-dimensional covariates (e.g.,

Moore et al.21), it can be valuable tomodel background con-

founding variables as random effects in GxE tests. In future

work, GxEMM could in principle be easily extended to

accommodate such additional variance components, e.g.,

Zaitlen et al.74 jointly fit pedigree- and additive-relatedness

matrices in the homogeneous setting. Nonetheless, in prac-

tice, we use and recommend standard filters on kinship and

population structure corrections when analyzing natural

populations, as is standard in GREML analyses.22 In the

case of the rat experimental data, we did not perform these

steps because confounding by cryptic relatedness is very un-

likely;45,46 however, additional random effects may still be

helpful, e.g., for cage effects.

The results fromour ratanalysis showswidespreadsex-spe-

cific heritability. The Free model, specifically, has strong sta-

tistical support for several traits even at stringent thresholds.

This power derived from the high levels of genetic related-

ness in these model organisms. Likewise, GxEMM will be

powerful inothermodel organismand family studies,which

can help build broad intuition about causal genetic architec-

ture that can inform human disease studies. This is particu-

larly true for autosome-sex interactions, which may be

important for many complex human diseases.75
The Am
There are several limitations to our analysis of the psy-

chENCODE data. First, our LDAK-based REML approach

often failed to converge, so we used HE regression, which

is robust but less powerful than REML. Second, cell

type proportions are known to vary between people

and disease states, causing bulk differential expression

across disease groups for any gene that is simply

differentially expressed across cell types. In future

work, we will extend GxEMM to partition expression

heritability into cell type proportion effects and within-

cell type effects.

GxEMM may also be useful for GWAS applications. An

IID-based approach has been shown to improve power

and calibration over the standard Hom model in some

cases,47 suggesting that Free GxEMM will likely yield

further improvements when the IID assumption fails.
Appendix A: Unmodelled Heteroscedasticity

Causes Bias in Polygenic Interaction Estimates

In this appendix we quantify the bias under the Free

GxEMM model when environmental heterogeneity is

ignored. We assume discrete environments and that the

modeler fits the similarity matrices fKk; Ig, where Kk is

the kinship matrix K with entries outside of environment

k zeroed out. We assume that tr ðKkÞ ¼ nk for all k. We

also assume that the true variance of y is:

VðyÞ¼
X
k

wkEk þ s2I (Equation A1)

where Ek is the identity matrix with entries outside envi-

ronment k zeroed out—i.e., we assume there is no genetic

variance but that the noise variance may differ across envi-

ronments when wkswj for some j and k. For simplicity, we

also ignore the homogeneous genetic component and

covariates. For identifiability, we assume
P
k

nkwk ¼ 0; under

this constraint, s2 is the average phenotypic variance

across all samples. Finally, we assume approximate inde-

pendence between genetics and environment. It is worth

noting how simple this model is—pure heteroscedastic

noise.

We analytically study the behavior of the HE regression,

which is more tractable than the MLE.

Proposition 1. Assume for all k that nkzn0[1 and that

azVðdiagðKkÞÞ and bzVðoff �diagðKkÞÞ for all k. Under the
pure heteroscedastic noise model (Equation A1), the bias in

the Free genetic heterogeneity estimate with Hom noise is:

EðbvkÞz 1

1þ aþ n0b
wk (Equation A2)

Proof. The moment estimating problem is:

min
v;s2
kyyT �

X
k

vkKk � s2Ik
F
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Figure 7. Bias from HE Regression when
Fitting Free GxEMM with Hom Noise
Estimates are based on the simulations used
in Figures 2G and 2H, which assume Hom
genetics and Free noise. Lines provide the
bias approximation derived above. The
true simulation model has v1 ¼ v2 ¼ 0; the
true values are shown as dotted lines in
the background.
Note that modeling the diagonal terms, rather than regress-
ing only on the strict lower triangular entries, is important

when variance may be heterogeneous across samples.

The OLS solution for the parameters v and s2 is given by:�
D�1 n
nT N

	� bvbs2

	
¼
�

S
yTy

	
where n is the vector of environment-specific sam-

ple sizes, Sk :¼ yTKky, and D is diagonal (because

CKk;KjD ¼ 0 for ksj) with Dkk :¼ dk :¼ ð1 =trðK2
kÞÞ. In

expectation:

E
�
yTy
�¼ trðVðyÞÞ ¼

X
k

nkwk þ s2N ¼ s2N

The last equality derives from our identification assump-

tion on ðw; s2Þ. Likewise, the expected values of the

quadratic forms in S are:

EðSkÞ ¼ trðKkVðyÞÞ ¼ tr

 
Kk

 X
k

nkwkIk þ s2I

!!
¼
X
j

wjtr
�
KkIj

�þ s2trðKkÞ

¼ wktrðKkÞ þ s2trðKkÞ ¼ nk

�
wk þ s2

�
Let s :¼ 1

N � nTDn
¼ 1

N �Pjn
2
j dj

. The expected variance

component estimates are (using block inversion in the sec-

ond equality):

E

  bv
bs2

!!
¼
 
D�1 n

nT N

!�1
0@n+

�
w þ s21N

�
s2N

1A

¼
 
Dþ sDnnTD �sDn

$ s

!0@n+
�
w þ s21N

�
s2N

1A0

EðbvkÞ ¼ dknk

�
wk þ s2

�þ sdknk

X
j

n2
j

�
wj þ s2

�
dj � sdknks

2N

¼ dknk

"
wk �

X
j
n2
j djwjX

j
n2
j dj �N

#
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The last line follows from some algebra and nicely empha-

sizes that the bv are unbiased when wk ¼ 0 for all k, i.e., un-

der noise variance homogeneity.

The dk terms can be simplified assuming that the envi-

ronments are independent of the genotypes and that

each nk[1, so that:

tr
�
K2

k

� ¼ X
i;j˛k

K2
ij ¼

X
i˛k

K2
ij þ

X
isj˛k

K2
ij

¼ nk þ nkVðKii˛kÞ þ nkðnk � 1ÞV�Ki< j˛k
�

znkð1þ aþ nkbÞ

The approximation in the last line uses the assumption

that the same a and b values can be used across k, which

is implied by our assumed gene-environment indepen-

dence and large nk.

To approximate dk, we assume that nk ¼ n0 is constant

across all groups, giving:

EðbvkÞz 1

1þ aþ n0b

"
wk �

1

1þ aþ n0b

X
j
njwj

1

1þ aþ n0b

X
j
nj �N

#

¼ 1

1þ aþ n0b
wk

The last equality derives from our identification assump-

tion on ðw; s2Þ. This approximation could be expanded

to capture modest variability across nj by Taylor approxi-

mation around n0.

,

In the caseofnoisehomogeneity,wk¼0 for allk, hence the

HE estimate is unbiased, as is well known. The bias is also

small in the case where the kinship matrix is very far from

the identity (eitherbecauseoff-diagonalsare large, increasing

b, or because on-diagonals are highly variable, increasing a).

However, in all other settings the expected estimate for envi-

ronment-k-specific heritability vk will be proportional to the

true environment-k-specificnoise (wk), attenuatedbya factor

measuring the distance between K and I.

We show that this bias approximation can be accurate in

practice by evaluating the HE regression model fits from

the quantitative simulations performed in the main text.
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Specifically, we fit HE regression ignoring noise heteroge-

neity to the simulations with homogeneous genetics but

heterogeneous noise (Figures 2G and 2H) and compare

the estimated genetic heterogeneity with our bias approx-

imation (Figure 7). We find that our bias approximation is

accurate even though these simulations include nonzero

heritability and fit a homogeneous genetic variance

component, unlike our simplified theoretical analysis in

this appendix—supporting the practical relevance of our

bias approximation.
Gbþ ðG � ZÞg1Gbþ �1Nm
T
�
bþ ðG � ZÞgþ ��1Nm

T
� � Z�g ðlinearity of Khatri� RaoÞ

¼ Gbþ 1N

�
mTb

�þ ðG � ZÞgþ ZðmatðgÞmÞ ðdirect computationÞ
hGbþ ðG � ZÞg
Appendix B: Identification of V/W and

Standardizing G/Z

Parameter Identification

The Free and IID assumptions resolve an identification

problem that arises for the genetic variance parameters of

the Full model, ðs2hom; VÞ, when Z is discrete. Under the

Full model, any constant l can be passed between s2hom
s2
vK þ K+

��
Z þ 1Nm

T
�
Sv

�
Z þ 1Nm

T
�T� ¼ s2

gK þ K+
�
ZVZT

�
5

K+
��

s2
v � s2

g

�
JN þ 1Nm

TSvZ
T þ ZSvm1

T
N � ZðV � SvÞZT

�
¼ 05�

s2
v þ mTSvm� s2

g

�
1N1

T
N þ 1Nm

TSvZ
T þ ZSvm1

T
N � ZðV � SvÞZT ¼ 05�

s2
v þ mTSvm� s2

g

�
Z1K1

T
KZ

T þ Z1Km
TSvZ

T þ ZSvm1
T
KZ

T � ZðV � SvÞZT ¼ 05

Z
��

s2
v þ mTSvm� s2

g

�
JK � ðV � SvÞ þ 1Km

TSv þ Svm1
T
K

�
ZT ¼ 05�

s2
v þ mTSvm� s2

g

�
JK � ðV � SvÞ þ 1Km

TSv þ Svm1
T
K ¼ 05

Sv þ
�
s2
v þ mTSvm� s2

g

�
JK þ 1KðSvmÞT þ ðSvmÞ1T

K ¼ V
and V without changing the likelihood by ðs2g ;
VÞ1ðs2g �l;V þl1P1

T
P Þ, with 1P a vector of 1 s. Conceptu-

ally, this is equivalent to the fact that the population

mean and the environmental main effects are not

jointly identified in linear regression models with discrete

environments.

Free and IIDGxEMMbreak this symmetry becauseVij and

Vij þ l cannot both be 0 for nonzero l. Intuitively, the Free

and IID models prioritize ðb;gÞ pairs where the mean effect

across environments ðgsÞ is absorbed into bs (so gs ¼ 0). We

also note that some parameters in the model of Ni et al.23

are not identified for this reason, and the problem grows as

the number of environments increases.
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W is also not fully identified for discrete Z. First, off-diag-

onal entries cannot be estimated, so the Full and Free

models are identical. Second, ðs2e ; WÞhðs2e þl; W�lIÞ,
which eliminates a degree of freedom from the diagonal

ofW. In particular, the IID and Hom noise models coincide.

Covariate Scale Identification

Columns of G can be assumed mean zero WLOG because

the restricted likelihood is invariant under the mapping

G1Gþ 1Nm
T for all m˛RL:
where the equivalence is modulo the projection orthog-

onal to the fixed effects, which include 1N and Z (matð$Þ
stacks g into an K 3 L matrix column-wise).

Z, however, cannot be centered without changing the

likelihood, because G is not projected out as a fixed effect.

Mapping Z1Z þ 1Nm
T , now for m ˛RK, the initial covari-

ance parameters ðV ; s2z Þ are equivalent to the the new pa-

rameters ðSv; s
2
v Þ iff
where JK is a matrix of 1 s. So adding m to the columns of Z

comes WLOG if and only if there always exists a s2v such

that the implied Sv above remains in the set of allowed

covariance matrices. In particular, demeaning the columns

of Z comes WLOG only under the Full model, because the

LHS in the final equation is non-diagonal for ms0.

Fundamentally, this asymmetry between Z and G is

because we treat the former’s main effect as fixed (a) and

the latter’s as random (b).

The scale of columns of Z is irrelevant for Free GxEMM

because the feasible set for V is closed under conjugation

by diagonal matrices—multiplying Z;k by l can be counter-

balanced by multiplying row k and column k of V by l�1.
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However, the column scaling of Z can be very important

for IID GxEMM. By default, we do not scale or center Z

when it measures discrete environments in GxEMM. We

do, nonetheless, require that kZk2F ¼ N, which comes

without loss of generality and permits simpler formulas
E yiyj
� � ¼ GiE bbT

� �
GT

j þ Gi5Gið Þ E IL5a½ �E ggT
��a� �

IL5a½ �T
� �� �

Gj5Gj

� �Tþ
E Gi5eið ÞggT Gj5ej

� �T� �
þ GiE bgT IL5a½ �T

� �
Gj5Gj

� �T
2

¼ s2
bGiG

T
j þ Gi5Gið Þ IL5E aSgjaa

T
� �� �

Gj5Gj

� �T þ
X

l1 ;l2 ;l3 ;p

Gil1Gjl2Gjl3E bl1
al2pgl3p

� �
2

for heritability. We note that Moore et al.21 and common

practice in many machine learning tasks centers and scales

columns of Z; when environments are discrete, this corre-

sponds to an assumption that rarer environments harbor

larger specific genetic effects.

In the Full model, the columns of Z become identified

only up to spanðZÞ. This has pros and cons: a benefit is

invariance to linear transformations, but a con is that indi-

vidual elements of V become meaningless. Conversely, in-

dividual elements of the diagonal V fit by Free GxEMM are

meaningful, as the explicit assumption of diagonal V iden-

tifies a basis for spanðZÞ.
Appendix C: Gene-Environment Correlation and

GxE Bias in Polygenic Setting

It is well known that gene-environment (G-E) correlation

can cause bias in gene-environment interaction (GxE) tests

if uncorrected. This is a general statistical issue in fixed ef-

fect regression, and main covariate effects should almost

always be adjusted when testing interactions. This has

been emphasized recently in the GxE literature for testing

individual genetic variants; e.g., Dudbridge and Fletcher30

provide a worked example analyzing the simplest case of a

single causal genetic variant.

Ni et al.23 recently introduced a polygenic GxE model

that incorporates G-E. The motivation for modeling G-E

was by analogy to the fixed effect setting, where the bias

is not in dispute. However, Ni et al.23 provide no reason

this bias would persist in the polygenic setting, nor sim-

ulations where G-E causes false-positive GxE.

Here, we provide a theoretical analysis that answers

these questions. It is possible for polygenic G-E to bias

GxE, but only under a very specific condition that,

to our knowledge, has never been evaluated in reality.

In particular, we feel that G-E correlation is unlikely to

be a significant source of false GxE in the polygenic

setting.

Specifically, the condition for G-E correlation to

bias GxE estimates is that the GxE effects for each
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SNP (g) must correlate with the product of its direct

effect on the phenotype (b) and its effect on the environ-

ment (a):

h : ¼ EðabgÞs0
For example, in the case of GxSmoking for BMI, the fact

that G-Smoking correlation exists ðas0Þ is insufficient to
cause bias. However, the polygenic GxSmoking estimates

will be biased if the interaction of SNPs that both directly

increase smoking likelihood ða > 0Þ and BMI ðb > 0Þ
tend to have a positive interaction ðg > 0Þ, indicating pos-

tive epistasis between main BMI effects and indirect effects

mediated through smoking ðh > 0Þ. If, instead, we retain

a; b > 0 but assume g < 0, then these two pathways to

BMI are instead negatively epistatic, meaning the total

SNP effect is less than the sum of its direct and smoking-

mediated effects.

Intuitively, the bias from G-E correlation on GxE

per-SNP averages out to 0 across all SNPs. For a small

number of causal SNPs, however, the contributions will

not perfectly cancel. In the simplest, most studied

case—a single causal SNP—the problem is at its most

extreme.

Proposition 2. Assume the GxE model with G-E correla-

tion23 defined by:

y¼mþ Zuþ Gbþ ðG �ZÞgþ e

z¼Gaþ e

Assume also that both ðei; eiÞ and ðal; bl;gðlÞÞ are i.i.d., and

also independent of each other, where gðlÞ˛RP are the GxE ef-

fects for SNP l. Then G-E correlation causes false positive

inflation in the HE regression test for polygenic GxE if

and only if:

h : ¼
X
p

Cov
�
a;p +b;gðpÞ

�
¼
X
l;p

E
�
alpblglp

�
s0

where gðpÞ˛RL are the GxE interaction effects for environment

p and glp is the SNP l-by-environment p interaction

effect.

Proof. First, note that the fixed effects m and u are elimi-

nated by residualizing covariates; we do not track the

impact of this finite-sample projection going forward,

however, which is not quite formal but is very standard.

The model simplifies to:
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y ¼ Gbþ ðG � ðGaÞÞgþ ðG � eÞgþ e
¼ Gbþ ðG �GÞð½IL5a�gÞ þ ðG � eÞgþ e

In expectation—over the random variables e, e, a, b, and

g—the quadratic form in y for isj is:

defining Sgja :¼ EðgðlÞgT
ðlÞ
���aÞ and using the notation f(i,j)2

¼ f(i,j) þ f(j,i) for any two-argument term f.

The final term simplifies because the expectation is zero

unless l1 ¼ l2 ¼ l3, giving:X
l1 ;l2 ;l3 ;p

Gil1Gjl2Gjl3E
�
bl1

al2pgl3p

� ¼ X
l;p

GilG
2
jlE
�
blalpglp

�
¼
 X

l;p

GilG
2
jl

!
E

 
bl0
X
p

�
al0pgl0p

�!
0X

l1 ;l2 ;l3 ;p

Gil1Gjl2Gjl3E
�
bl1

al2pgl3p

�½2� ¼ hK1:5
ij L

(Equation A3)

where l0 is an arbitrary dummy index (these terms are i.i.d.

over l0) and where we define K1:5
ij :¼ 1

L

P
l

GilG
2
jl þ 1

L

P
l

G2
ilGjl.

We allow the conditional variance Sgja to depend on a.

But the GxE term EðaSgjaaTÞ is still proportional to IL,

because loci are assumed independent. Each diagonal

entry is:

E
�
al;Sgjaa

T
l;

�
¼ : s2

g;a

Together, these reductions give:

E
�
yiyj
�
¼ s2

bGiG
T
j þ s2

g;a

�
GiG

T
j

�2
þ h

X
l

GilG
2
jl½2�

¼ Ls2
bKij þ Ls2

g;aK
2
ij þ LhK1:5

ij

(Equation A4)

This decomposes the expectation into the appropriate first

two terms, for the homogeneous and GxE effects, and a

third bias term. This bias is clearly zero when h ¼ 0. The

second term, for GxE, also appropriately disappears under

the GxE null—if g is deterministically zero, then Sgja ¼ 0.

,

A large-N argument could likely also be made that K1:5/

0 under certain genotype matrix structures.

h is closely related to the concept of coordinated interac-

tion we are developing in related work. h conceptually

measures the sum of coordinated interactions between

the primary polygenic effect (b) and the indirect pathways

through Z;p (a;p).

Our proposition does not claim unbiasedness in general

for the estimated GxE variance components, nor does it

control any overdispersion of the estimated GxE parameter

due to G-E correlation. Instead, we show that the GxE esti-

mate is unbiased when h ¼ 0 under the null GxE hypoth-

esis (g ¼ 0). This is precisely the criterion used in Dud-

bridge and Fletcher30 to argue that G-E correlation does

cause bias for GxE. Our result differs substantially, howev-
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er, because wemodel the full spectrum of polygenic SNP ef-

fects rather than individual SNPs.

This result also relates to calculations in Sulc et al.,76

which focuses on a related problem where the ‘‘E’’ is un-

measured. However, they assume (1) afb and (2) that

Z˛RN is univariate, which together make the math more

straightforward76 and also do not link their results to the

equivalent assumptions on the SNP effect sizes, which is

crucial for biological interpretation. In particular, it is not

clear from their analysis that significant interaction results

are obtained if and only if there is coordinated interaction

via hs0.

In summary, we provide a necessary and sufficient con-

dition for G-E correlation to bias GxE interaction tests in

the polygenic setting. This demonstrates that the bias is

likely negligible in practice, as well as provides a proper

theoretical characterization of the relationship between

G-E and GxE bias under polygeneicity. This was previously

unknown: for example, Ni et al.23 did not demonstrate

GxE bias in simulations with G-E correlation.
Appendix D: Marginalizing Random Interaction

Coefficients

This section shows that the set of Gaussian GxE coeffi-

cients (g) with covariance D5V (V for the environmental

covariance,D for the SNPs covariance) describes essentially

the same distributions as the set of linear mixed models

with Hadamard kinship matrices ðGDGTÞ+ðZVZTÞ. The

former are the natural model for polygenic GxE; the latter

are intuitive (for discrete environments) estimates for envi-

ronment-specific heritability and easily fit by REML. In

practice, D is usually taken to be the identity matrix.

Proposition 3. Assume that g � Nð0; SÞ˛RP3L, that

G˛RN3L has continuous, random entries, and that Z ˛RN3P

has rank P, with P < N. Write K :¼ GDGT for some

fixed D. Then

VððG �ZÞgÞ¼K+U5ðS;UÞ ¼ �D5W;ZWZT
�
for some W

where * is the column-wise Khatri-Rao product; + is Hada-

mard; and 5 is Kronecker.

Proof. First, note the identity:

ðGi; 5Zi;ÞðD5WÞ�Gj;5Zj;

�T ¼�Gi;DGT
j;

��
Zi;WZT

j;

�
¼ KijUij

Now, right to left is easy:

VððG � ZÞgÞij ¼ðGi; 5Zi;ÞVðgÞ�Gj;5Zj;

�T ¼ KijUij

The other direction assumes decomposition of the vari-

ance into Hadamard products holds, so

ðGi; 5Zi;ÞðD5WÞ�Gj;5Zj;

�T ¼KijUij

¼ ðGi; 5Zi;Þ
X�

Gj;5Zj;

�T
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Using the standard identity ðA5BÞvecðCÞ ¼ vecðBTCAÞ,
where vecð$Þ concatenates columns of a matrix, the above

equality can be written as�
Gj; 5Zj; 5Gi; 5Zi;

�
vecðS�D5WÞ¼0

By assumption, this identity holds ci; j and almost all ge-

notypes Gi;Gj;˛RL. The span of such pure four-way tensors

is RL2P2

, so its kernel has dimension zero and thus S� D5

W ¼ 0.

,

A similar result can be obtained if N grows large with

fixed L.

We note that the easy direction appears implicitly in

many human genetics papers (e.g., Robinson et al.,20 Ni

et al.,23 Yang et al.27). We do not know where to find a clear

proof, however, and are unaware of any discussion of the

other direction.
Supplemental Data

Supplemental Data can be found online at https://doi.org/10.

1016/j.ajhg.2019.11.015.
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