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Abstract

Purpose—To develop an automated cone-beam computed tomography (CBCT) multi-organ 

segmentation method for potential CBCT-guided adaptive radiation therapy workflow.

Methods and materials—The proposed method combines the deep leaning-based image 

synthesis method, which generates magnetic resonance images (MRIs) with superior soft-tissue 

contrast from on-board setup CBCT images to aid CBCT segmentation, with a deep attention 

strategy, which focuses on learning discriminative features for differentiating organ margins. The 

whole segmentation method consists of 3 major steps. First, a cycle-consistent adversarial network 

(CycleGAN) was used to estimate a synthetic MRI (sMRI) from CBCT images. Second, a deep 

attention network was trained based on sMRI and its corresponding manual contours. Third, the 

segmented contours for a query patient was obtained by feeding the patient’s CBCT images into 

the trained sMRI estimation and segmentation model. In our retrospective study, we included 100 

prostate cancer patients, each of whom has CBCT acquired with prostate, bladder and rectum 

contoured by physicians with MRI guidance as ground truth. We trained and tested our model with 

separate datasets among these patients. The resulting segmentations were compared with 

physicians’ manual contours.

Results—The Dice similarity coefficient and mean surface distance indices between our 

segmented and physicians’ manual contours (bladder, prostate, and rectum) were 0.95±0.02, 

0.44±0.22 mm, 0.86±0.06, 0.73±0.37 mm, and 0.91±0.04, 0.72±0.65 mm, respectively.

Conclusion—We have proposed a novel CBCT-only pelvic multi-organ segmentation strategy 

using CBCT-based sMRI and validated its accuracy against manual contours. This technique could 

provide accurate organ volume for treatment planning without requiring MR images acquisition, 

greatly facilitating routine clinical workflow.
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INTRODUCTION

Cone-beam computed tomography (CBCT) has been widely used in image-guided radiation 

therapy for prostate patients to improve treatment setup accuracy. In current clinical practice, 

it is acquired before treatment delivery and provides detailed anatomic information in the 

treatment position. The displacement of anatomic landmarks between CBCT images and the 

treatment planning CT images are then measured to quantitatively determine the error in 

patient setup (Barney et al., 2011).

In recent years, adaptive radiation therapy has been shown as a promising strategy to 

improve clinical outcomes by accommodating the inter-fraction variations (Yan et al., 1997; 

Kataria et al., 2016). In an adaptive radiation therapy workflow, CBCT plays an important 

role in providing the latest three-dimensional information of patient position and anatomy 

(Oldham et al., 2005). More demanding applications of CBCT have been proposed, such as 

daily estimation of target coverage and organs-at-risk (OARs) sparing for real-time CBCT-

based treatment replanning (de la Zerda et al., 2007; Yoo and Yin, 2006).

These potential uses of CBCT require accurate and fast delineation of targets and OARs. 

Experienced physicians are able to manually contour multiple organs on CBCT images, but 

it is impractical in adaptive radiation therapy due to time constraints. Alternatively, it has 

been proposed that contours on planning CT images can be propagated to CBCT images by 

image registration (Thor et al., 2011; Xie et al., 2008). However, large local variations in 

patient anatomy and image content between CBCT and CT images is common, e.g. changes 

in bladder/rectum filling status in prostate cancer patients (Yang et al., 2014a). Such 

variations cannot be handled by rigid image registration, and also not readily by deformable 

image registration because of the lack of exact correspondence of image content between the 

two image sets (Yang et al., 2014b). The suboptimal registration result would lead to 

degraded accuracy of the propagated contours.

Automatic segmentation solely based on CBCT can avoid registration to the planning CT, 

but very few studies have been published. The contrast of some organs, such as prostate, is 

poor on CBCT images, which is further degraded by CBCT artifacts caused by scatter 

contamination (Lei et al., 2019b). In this study, we propose a novel method to automatically 

segment multiple organs on pelvic CBCT for prostate cancer patients. We synthesized 

sMRIs from CBCT images to provide superior soft-tissue contrast, and then used a deep 

attention network to automatically capture the significant features to differentiate the multi-

organ margins in sMRI. With this sMRI-aided strategy, we aim to develop an automated and 

accurate segmentation method benefiting from the high soft-tissue contrast of MR images. 

Our method was evaluated in a retrospective study with 100 patients.

MATERIALS AND METHODS

Our segmentation method consisted of 2 major steps: (1) sMRI synthesis from CBCT 

images; and (2) segmentation on sMRI. Fig. 1, 2 and 3 outline the schematic flow chart of 

the proposed method. First, a CycleGAN was trained to estimate sMRIs from CBCT images 

by introducing an inverse transformation, which is able to enforce the translation from 
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CBCT to MRI to be one-to-one mapping, as is shown in Fig. 1. Second, a deep attention U-

Net (DAUNet) was trained to segment multi organs on sMRIs, as is shown in Fig. 2. A deep 

attention network was introduced to retrieve the most relevant features to identify organ 

boundaries. Deep supervision was also incorporated into this DAUNet to enhance the 

features’ discriminative ability. Third, for a new patient, the contours were obtained by first 

feeding the CBCT image into the trained CycleGAN to generate the sMRI, and then feeding 

sMRI to the trained DAUNet to generate the segmentation, as is shown in Fig. 3.

2.A. sMRI estimation

The first step of our method is to synthesize MRI from CBCT images using 3D CycleGAN. 

In this step, we first trained a CBCT-to-MRI transformation model using pairs of CBCT and 

MRI images from the training patient dataset. Note that the MRIs were deformably 

registered with CBCTs for each training patient using commercial software. The deformed 

MR images were used as the learning-based target of the CBCT images for the proposed 

sMRI-aided strategy. Because the two image modalities have fundamentally different 

properties, training a CBCT-to-MRI transformation model is difficult. To cope with this 

challenge, 3D CycleGAN architecture was used to learn this transformation model (Lei et 
al., 2019a), due to its ability to enforce the transformation to mimic target data distribution 

by incorporating an inverse transformation. Patient anatomy can vary significantly among 

individuals. In order to accurately predict each voxel in the anatomic region (bladder, 

prostate and rectum), we introduced several dense blocks to capture multi-scale information 

(including low-frequency structural information and high-frequency textural information) by 

extracting features from previous and following hidden layers (Lei et al., 2019a). Each 3D 

patch was extracted from paired CBCT and MRIs by sliding the window with overlap to its 

neighboring patches (Yang et al., 2017). This overlap ensures that a continuous whole-image 

output can be obtained and allows for increased training data for the network. The detailed 

3D CycleGAN architecture is introduced in our previous study (Lei et al., 2019a).

2.B. Deep attention network

The second step of our method is to perform automatic segmentation using DAUNet on the 

sMRI generated from the first step. The DAUNet was trained on the sMRIs from the first 

step of training patient dataset, with their binary masks of corresponding manual prostate, 

bladder, and rectum contours of ground truth used as learning-based target. As shown in Fig. 

2, the DAUNet architecture is implemented by introducing additional attention gates (AGs) 

(Mishra et al., 2018) and deep supervision (Wang et al., 2019a; Lei et al., 2019c; Wang et al., 
2019c) on a basic U-Net architecture (Balagopal et al., 2018; Dong et al., 2019; Wang et al., 
2019b). The U-Net architecture consists of an encoding path and a decoding path; the two 

paths were connected by several long skip connections. In our study, the long skip 

connection concatenated the feature maps from the current two decoding deconvolution 

operators and one previous encoding convolution operator by using AGs. Such 

concatenation with AGs encouraged the network to identify the most relevant semantic 

contextual information without a requirement to enlarge the receptive field, which is highly 

beneficial for organ localization (Mishra et al., 2018). We also use deep-supervision to force 

the intermediate feature maps to be semantically discriminative at each image scale (Wang et 
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al., 2019a; Lei et al., 2019c). This helps to ensure that AGs, at different scales, have an 

ability to influence the responses to a large range of prostate content.

2.C. Database

In this retrospective study, we reviewed 100 patients with prostate malignancies treated with 

external beam radiation therapy in our clinic. All of the 100 patients underwent standard 

treatment planning workflow, i.e. CT simulation and at least one set of CBCT images 

acquired during treatment. The CBCT images were acquired using the Varian On-Board 

Imager CBCT system, with imaging spacing of 0.908 mm × 0.908 mm × 2.0 mm. We 

divided the 100 patients into two 50-patient groups. Among the first 50-patient group, the 

corresponding MR images used for fusion with planning CBCT images for prostate 

delineation were also retrieved for sMRI training. The MR images of all patients were 

acquired using a Siemens standard T2-weighted MRI scanner with 3D T2-SPACE sequence 

and 1.0×1.0×2.0 mm3 voxel size (TR/TE: 1000/123 ms, flip angle: 95°). The training MR 

and CBCT images were deformably registered using commercial software, Velocity AI 3.2.1 

(Varian Medical Systems, Palo Alto, CA). Institutional review board approval was obtained; 

no informed consent was required for this HIPAA-compliant retrospective analysis.

In our study, patients with MRI scans have manual contours delineated by physicians first. 

Such MRI was then registered with CBCT images using deformable registration, with the 

contours on MRI also propagated on CBCT images. The physicians then refined the 

propagated contours based on CBCT images to reduce error from registration. Such contours 

delineated on MRI and refined on CBCT were considered as ground truth contours and 

learning-based target in our study. For the deformable registration step, it should be noted 

that it is only performed on training dataset to match the CBCT and MR images. As long as 

the model is trained, deformable registration is no longer involved in segmenting a new 

patient. The new patient does not have MR images, and his sMRI predicted by our model 

shares same anatomy with his CBCT.

2.D. Reliability evaluation of the segmentation algorithm

The automatic segmentation results were compared with the gold standard of physicians’ 

manual contours. Dice similarity coefficient (DSC), sensitivity, specificity, Hausdorff 

distance (HD), mean surface distance (MSD), the residual mean square distance (RMSD), 

the center of mass distance (CMD), and volume difference (VD) were used to evaluate the 

accuracy of our segmentation method. The DSC, precision and recall scores are used to 

quantify volume similarity between two contours. The HD, MSD and RMSD metrics are 

used to quantify boundary similarity between two surfaces. The CMD metric is used to 

measure the distance between the center of segmented and manual contour, which is 

especially important for prostate contour because it determines the isocenter setup. The VD 

metric is used to measure the absolute volume difference between the segmented and manual 

contour, which dose volume histogram calculation depends on. More accurate segmentation 

results are associated with lower HD, MSD and RMSD scores and higher DSC, precision 

and recall scores.
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Five-fold cross-validation method was used to evaluate the proposed segmentation algorithm 

among the first 50-patient group, because it gives the proposed model the opportunity to 

train on multiple train-test splits. This method split up data into five sub-groups. One of the 

sub-groups (10 patients’ data) was used as the test set and the rest (40 patients’ data) were 

used as the training set for both CBCT-to-sMRI transformation model (CycleGAN) and 

segmentation model. The models were trained on the training set and scored on the test set. 

Then the process was repeated until each unique sub-group had been used as the test set.

In addition, a hold-out method was used to evaluate the proposed segmentation algorithm 

how well it performs on unseen data. We used the first 50-patient group as the training set 

for both CBCT-to-sMRI transformation model (CycleGAN) and segmentation model, and 

used the second 50-patient group for testing. The second 50-patient group is not involved in 

any training steps.

By using both of the two validations, each of 100 patient data was exactly tested once. We 

used the numerical metrics of these patients to evaluate the proposed method’s performance. 

To illustrate the significant improvement of sMRI-aided strategy, a paired two-tailed t-test 

was used between the results of the other comparison methods.

RESULTS

3.A. Contribution of deep attention

To demonstrate the efficacy of deep attention, we compared the results of our proposed 

DAUNet algorithm against the algorithm without using deep attention, i.e., deeply 

supervised U-Net (DSUNet). These two algorithms were both trained on sMRIs. Fig. 4 

shows 3D scatter plots of the first three principal components of patch samples in the feature 

maps extracted from the last convolution layer of three deconvolution operators. To 

demonstrate the ability of AGs on differentiating tissues around organ margins, we randomly 

selected 1000 samples from the posterior margin of prostate, the anterior margin of rectum, 

and the region between prostate and rectum, as shown in the subfigure (a4). We selected the 

samples due to their location in the organ margin, proximity to an adjacent organ, and the 

resulting difficulty in accurate differentiation and identification. The scatter plots of a 

DSUNet in the subfigure (b1-b4) illustrates an overlap between the samples from the 

bladder, the region between bladder and rectum, and the rectum regions; thus these two 

regions cannot be easily separated. Whereas with DAUNet, as shown in the subfigure (c1-

c4), the samples can be easily separated, demonstrating the significant enhanced discerning 

capability with the addition of a deep attention strategy. We also compared the numerical 

results of DAUNet with those of DSUNet on sMRI data in Table 1, 2 and 3. As is shown, 

DAUNet achieved better performance than DSUNet. Table 1 shows the numerical 

comparison for five-fold cross-validation experiments. Table 2 shows the numerical 

comparison for hold-out validation experiment. Table 3 shows the numerical results of all 

used 100 patients data.
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3.B. Efficacy of sMRI-aided strategy

Fig. 5 shows axial views of the CBCT image, sMRI and deformed prostate manual contours 

at axial level for a patient. To better illustrate the contrast enhancement of sMRI-aided 

strategy, Fig. 5 (c) compare the profiles of the dashed red line for CBCT image (a), sMRIs 

(b) and manual contours (displayed overlaid on the CBCT image). The dash line passed 

through the bladder (cyan), prostate (orange), and rectum (yellow) manual contours. To 

make the boundary clear, we set 0 as the voxels without organs, and 1.0 as the voxels within 

the organs. Thus, the boundary of the prostate is the jump discontinuity on the plot profile. 

To provide a meaningful comparison, we use a x − min(X)
max(X) − min(X)  normalization to scale voxel 

intensities on the dash line to [0, 1], where x denotes a voxel’s intensity on dash line, X 
denotes the all voxels’ intensity appeared on dash line. As is shown in subfigure (c), the 

middle jump of yellow dashed line depicts the region of prostate manual contour. It is shown 

that the sMRI’s plot profile (red line) in that region has three significant peaks, and two of 

them are correlated to the manual prostate contour’s boundary. However, from CBCT’s plot 

profile (green line), the peaks of prostate boundary are not very significant from other peaks 

within the prostate region. In addition, this situation occurs in first and third jumps of yellow 

dashed line, i.e., the region of bladder and rectum. As is shown in this subfigure, sMRI 

provides superior bladder and prostate contrast to CBCT image.

Fig. 6 compares the segmentation results with and without using the sMRI-aided strategy. In 

the first row, the segmented contour on sMRI (a3) is quite close to the manual contours, 

while the segmentation results on CBCT show different size and shape for bladder and 

prostate from manual contours. In the second row, the segmented prostate contour of both 

CBCT (b2) and sMRI (b3) images are different from the manual prostate contour. The 

segmentation error of sMRI (b3) may be caused by the synthesis error caused by CycleGAN 

during synthesis process. Even so, the segmented prostate contour of sMRI (b3) is closer to 

manual contour as compared to the segmented prostate contour of CBCT (b2).

To evaluate the influence of sMRI-aided strategy on the segmentation, we compared the 

results obtained with the proposed DAUNet tested separately on CBCT and sMRIs. The 

numerical comparison between DAUNet using CBCT (DAUNet CBCT) and DAUNet using 

sMRI (DAUNet sMRI) for five-fold cross-validation is shown in Table 1. The numerical 

comparison for hold-out validation is shown in Table 2. In addition, the performance of 

proposed method on two validations has no significant difference in large amount of metrics. 

We show the numerical results of all 100 patients in Table 3. As shown in these tables, 

compared CBCT segmentation, our sMRI-aided segmentation demonstrates superior 

performances on all metrics.

DISCUSSION

We proposed a new pelvic multi-organ segmentation method which incorporates both a 

sMRI-aided strategy and a deep attention strategy into a U-Net architecture for automatic 

multi-organ segmentation of CBCT images. The proposed method makes use of the superior 

soft-tissue contrast of sMRI, bypasses MR acquisition and has the potential to generate 

accurate and consistent pelvic multi-organ segments using CBCT images alone.
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This paper is the first study of automatic multi-organ segmentation for pelvic CBCT images 

using deep learning-based method. Compared to deformable registration-based methods, our 

method achieves higher accuracy. Thor et al. reported the average DSC (range) was 0.80 

(0.65–0.87) for prostate, 0.77 (0.63–0.87) for rectum and 0.73 (0.34–0.91) for bladder 

among 36 patient datasets when propagating the corresponding contours from planning CT 

to CBCT with Demons deformable registration algorithm (Thor et al., 2011). Similar results 

can also be found in other deformable registration-based studies (Woerner et al., 2017; 

Rubeaux et al., 2013; Thörnqvist et al., 2010; Gardner et al., 2015), and our method 

demonstrates 6%, 14%, and 22% higher DSC for prostate, rectum and bladder, respectively.

The results of the proposed method can be further examined by comparing it to inter-

observer variation of manual contouring on CBCT. Gardner et al. reported an average DSC 

of 0.872 and HD of 5.22 mm of prostate contours among five radiation oncologists on ten 

patients’ dataset when compared to the consensus contour (Gardner et al., 2015; Gardner et 
al., 2019). Choi et al. showed that the mean center of mass distances from averaged prostate 

contour was 1.73 mm among three observers contouring on ten patients (Choi et al., 2011). 

White et al. reported the mean standard deviation of prostate volume among five observers 

on five patients was 8.93 cc with a large range (3.98 – 19.00 cc) (White et al., 2009). Our 

results are similar or better when compared to the above findings, indicating manual 

contouring is prone to errors from significant inter-observer variation. The method proposed 

here can provide an observer-independent segmentation method to improve reproducibility 

and efficiency with comparable accuracy.

There are several limitations in the implementation of this study. As we stated in 2.C, the 

prostate and organ contours in this study were delineated on MR first, and then propagated 

to CBCT with proper refinement. The refinement aims to correct obvious error from 

registration when keeping the majority of contours. Thus, such contour for prostate would 

mostly avoid including periprostatic region. However, we noticed that during this process, it 

may introduce registration errors which cannot be fully corrected by the refinement, and the 

error in refinement which may inevitably include some of the periprostatic region since the 

poor contrast on CBCT. The registration error may affect the performance in sMRI stage by 

poorly matched MRI-CBCT training dataset. Thus, in order to reduce the errors, we review 

each deformable registration very carefully to make sure that all MRI-CBCT registration in 

our training database matched very well. Secondly, the refinement was done by one 

physician, which may have been affected by the physician’s contouring style. A potential 

solution is to include consensus contours by multiple observers on the refinement of 

contours to reduce the observer bias on segmentation training dataset.

In addition, the sMRI quality may affect the segmentation accuracy. On the one hand, the 

CBCT image quality is often affected by the physical imaging characteristics, namely a large 

scatter-to-primary ratio leading to image artifacts such as streaking, shading, cupping, and 

reduced image contrast, which will inherently influence sMRI quality and thus accuracy of 

the segmentation. Applying deep learning-based CBCT image quality enhancement to first 

improve the CBCT image quality will be our future work. On the other hand, the sMRI 

synthesis error may also introduce the segmentation error, to improve the accuracy of the 
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sMRI synthesis model and define a more specific loss function for CBCT-to-MRI 

supervision will be our future work.

The computation complexity of proposed method is higher than U-Net algorithms due to the 

use of another CycleGAN-based sMRI generation model. The learning rate for Adam 

optimizer was set to 2e-4, and the model was trained and tested on 2 NVIDIA Tesla V100 

with 32 GB of memory for each GPU. A batch size of 20. 12 GB CPU memory and 58 GB 

GPU memory was used for each batch optimization. The training was stopped after 100000 

iterations. Model training takes approximately 30 hours. For testing, sMRI patches were 

generated by feeding CBCT patches into the trained CycleGAN model. Pixel values were 

averaged when overlapping exists. The sMRI estimation for one patient takes about 1–2 

minutes. Tensorflow was used to implement both CycleGAN and DAUNet network 

architecture. During segmentation, binary cross entropy was used as loss function, and the 

learning rate for Adam optimizer was set to 1e-3. The training was stopped after 180 epochs. 

For each epoch, the batch size was set to 20. The training of DAUNet model takes about 1.7 

hours.

In this study, we demonstrated the feasibility of our method with 100 clinical patient cases. 

A comprehensive evaluation with a larger cohort of patients with diverse disease 

characteristic and image quality would be involved in the future. This study validated the 

proposed method by quantifying the shape similarity of contours, while small differences 

from ground truth were observed. Its potential clinical impact due to such differences in 

dose estimation and treatment replanning is not yet fully understood. Thus, a further 

investigation in clinical outcomes of the proposed method in adaptive radiation therapy 

would be of great interest and is needed for eventual adoption in general clinical use.

CONCLUSIONS

In summary, we developed an accurate pelvic multi-organ segmentation strategy on CBCT 

images with CBCT-based sMRIs. This technique could provide real-time accurate target and 

organ contours for adaptive radiation therapy, which would greatly facilitate clinical 

workflow.
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Figure 1. 
The first row shows the schematic flow of the training of synthetic MRI via CycleGAN. The 

second shows the generators’ and discriminators’ network architectures used in first row.
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Figure 2. 
The first row shows the schematic flow of the training of synthetic MRI pelvic segmentation 

via DAUNet. The second shows the DAUNet network architectures used in first row. The 

third row shows the attention gate architecture used in second row.
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Figure 3. 
The schematic workflow of segmenting of a new arrival patient’s CBCT image.
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Figure 4. 
An illustrative example of the benefit of our DAUNet compared with DSUNet without using 

AGs, (a1) shows the original CBCT image in transverse plane. (a2) shows corresponding 

manual contours, (a3) shows the generated sMRI, (a4) shows the sample patches’ central 

positions drawn from sMRI, where the samples belonging to the bladder are highlighted by 

green circles, and the samples belonging to the rectum are highlighted by red asterisks, and 

the samples between bladder and rectum regions are highlighted by blue circles. (b1-b4) 

show the scatter plots of the first 3 principal components of corresponding patch samples in 

feature maps extracted by using a DSUNet, respectively. (c1-c4) show the scatter plots of 

first 3 principal components of corresponding patch samples in the feature maps extracted 

by DAUNet, respectively.
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Figure 5. 
Visual results of generated sMRI. (a) shows the original CBCT image at axial level, the 

display window of CBCT image was set to [−160, 240] HU. The manual contours of bladder 

(cyan), prostate (orange) and rectum (yellow) were displayed overlaid on the CBCT image. 

(b) shows the generated sMRI. (c) shows the normalized plot profile of CBCT, sMRI, and 

manual contour of the red dashed line in (a), respectively.
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Figure 6. 
Comparison of the proposed method on sMRI data and CBCT data. (a1) and (b1) show the 

CBCT images of two patients, with manual contour of bladder (cyan), prostate (orange) and 

rectum (yellow) overlaid on the CBCT images. (a2) and (b2) show the CBCT images of two 

patients, with the segmented contour of DAUNet trained on CBCT data overlaid on CBCT 

images. (a3) and (b3) show the sMRI images with segmented contours of DAUNet trained 

on sMRI data. The display window of all CBCT images was set to [−160, 240] HU.
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Table 1.

Numerical comparison of DAUNet trained and tested on sMRI (DSUNet sMRI), DAUNet trained and tested 

on CBCT (DSUNet CBCT), and DSUNet trained and tested on sMRI (DSUNet sMRI) for five-fold cross-

validation.

Method DSC Sensitivity Specificity HD (mm) MSD 
(mm)

RMSD 
(mm)

CMD 
(mm) VD (cc)

Bladder

DSUNet 
sMRI 0.93±0.04 0.95±0.032 0.91±0.07 5.91±4.90 0.52±0.29 0.85±0.62 1.25±1.00 9.17±6.30

DAUNet 
CBCT 0.91±0.06 0.96±0.048 0.87±0.08 12.79±14.82 0.67±0.33 1.07±0.64 1.4±1.49 16.57±18.61

DAUNet 
sMRI 0.94±0.02 0.94±0.04 0.96±0.02 4.58±3.94 0.48±0.23 0.83±0.63 0.93±0.74 6.92±5.71

P-value 
DAUNet 
sMRI vs. 
DSUNet 

sMRI

0.174 0.022 0.003 0.021 0.591 0.922 0.014 0.195

P-value 
DAUNet 
sMRI vs. 
DAUNet 
CBCT

0.004 0.002 <0.001 <0.001 0.002 0.019 0.005 0.007

Prostate

DSUNet 
sMRI 0.83±0.045 0.83±0.091 0.86±0.091 6.42±2.46 0.91±0.26 1.28±0.34 2.48±1.11 6.39±7.29

DAUNet 
CBCT 0.80±0.05 0.80±0.10 0.81±0.08 6.82±3.088 1.06±0.29 1.48±0.48 3.22±1.30 5.65±6.80

DAUNet 
sMRI 0.86±0.04 0.86±0.06 0.87±0.09 5.36±2.46 0.76±0.26 1.14±0.36 1.98±1.14 3.22±2.55

P-value 
DAUNet 
sMRI vs. 
DSUNet 

sMRI

0.002 0.541 0.074 0.065 0.017 0.091 0.147 0.049

P-value 
DAUNet 
sMRI vs. 
DAUNet 
CBCT

<0.001 0.010 0.043 0.034 <0.001 0.006 <0.001 0.103

Rectum

DSUNet 
sMRI 0.86±0.042 0.85±0.07 0.89±0.07 9.96±5.52 1.32±2.27 2.63±5.17 4.83±4.99 7.14±9.95

DAUNet 
CBCT 0.83±0.055 0.81±0.098 0.87±0.07 15.51±22.13 1.40±1.06 3.07±3.21 5.28±5.88 9.60±8.96

DAUNet 
sMRI 0.92±0.03 0.91±0.02 0.93±0.02 5.20±1.61 0.62±0.15 1.24±1.01 1.94±1.29 3.70±4.18

P-value 
DAUNet 
sMRI vs. 
DSUNet 

sMRI

<0.001 0.002 0.042 <0.001 0.128 0.161 0.007 0.065

P-value 
DAUNet 
sMRI vs. 
DAUNet 
CBCT

<0.001 <0.001 0.007 0.031 <0.001 0.004 0.009 0.001
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Table 2.

Numerical comparison of DSUNet sMRI, DSUNet CBCT, and DSUNet sMRI for hold-out validation.

Method DSC Sensitivity Specificity HD (mm) MSD 
(mm)

RMSD 
(mm)

CMD 
(mm) VD (cc)

Bladder

DSUNet 
sMRI 0.92±0.05 0.95±0.04 0.89±0.08 6.99±5.60 0.49±0.26 0.77±0.42 1.34±1.53 8.11±8.16

DAUNet 
CBCT 0.88±0.07 0.89±0.09 0.88±0.09 9.84±10.38 0.82±0.54 1.29±0.86 2.72±2.76 11.94±14.30

DAUNet 
sMRI 0.95±0.03 0.96±0.02 0.93±0.04 4.79±5.83 0.40±0.20 0.78±0.76 0.86±0.63 4.41±4.45

P-value 
DAUNet 
sMRI vs. 
DSUNet 

sMRI

0.004 <0.001 0.005 0.138 0.105 0.974 0.008 0.005

P-value 
DAUNet 
sMRI vs. 
DAUNet 
CBCT

<0.001 0.001 0.015 0.048 <0.001 0.023 <0.001 0.005

Prostate

DSUNet 
sMRI 0.84±0.09 0.87±0.11 0.82±0.10 4.55±2.36 0.68±0.39 0.96±0.50 2.04±2.03 1.87±1.67

DAUNet 
CBCT 0.84±0.11 0.82±0.10 0.85±0.14 4.84±3.26 0.78±0.57 1.12±0.78 1.95±2.23 2.31±1.84

DAUNet 
sMRI 0.87±0.08 0.86±0.10 0.86±0.08 4.27±2.19 0.69±0.45 1.02±0.69 1.93±1.94 2.10±1.71

P-value 
DAUNet 
sMRI vs. 
DSUNet 

sMRI

0.015 0.392 0.015 0.411 0.961 0.059 0.072 0.587

P-value 
DAUNet 
sMRI vs. 
DAUNet 
CBCT

<0.001 <0.001 0.076 0.014 <0.001 0.040 0.009 0.569

Rectum

DSUNet 
sMRI 0.88±0.063 0.90±0.06 0.87±0.07 7.29±4.47 0.73±0.57 1.45±1.53 2.61±2.85 3.49±4.20

DAUNet 
CBCT 0.83±0.09 0.86±0.11 0.81±0.09 10.76±14.62 0.99±0.56 1.56±1.15 2.56±2.38 7.04±7.92

DAUNet 
sMRI 0.90±0.05 0.92±0.06 0.88±0.07 5.72±4.25 0.81±0.90 2.00±3.18 2.02±2.32 4.16±3.58

P-value 
DAUNet 
sMRI vs. 
DSUNet 

sMRI

0.004 <0.001 0.018 0.003 0.194 0.194 0.003 0.171

P-value 
DAUNet 
sMRI vs. 
DAUNet 
CBCT

<0.001 <0.001 0.002 <0.001 0.003 0.486 0.003 <0.001
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Table 3.

Numerical comparison of DSUNet sMRI, DSUNet CBCT, and DSUNet sMRI on 100 patients.

Method DSC Sensitivity Specificity HD (mm) MSD 
(mm)

RMSD 
(mm) CMD (mm) VD (cc)

Bladder

DSUNet 
sMRI 0.93±0.05 0.96±0.03 0.91±0.07 6.45±5.24 0.51±0.27 0.81±0.52 1.29±1.28 8.642±7.23

DAUNet 
CBCT 0.90±0.06 0.93±0.08 0.88±0.08 11.31±12.75 0.74±0.44 1.18±0.76 2.08±2.29 14.26±16.59

DAUNet 
sMRI 0.95±0.02 0.95±0.04 0.95±0.03 4.69±4.92 0.44±0.22 0.80±0.69 0.90±0.68 6.55±6.68

P-value 
DAUNet 
sMRI vs. 
DSUNet 

sMRI

0.003 0.180 <0.001 0.049 0.154 0.960 0.023 0.096

P-value 
DAUNet 
sMRI vs. 
DAUNet 
CBCT

<0.001 0.169 <0.001 0.002 <0.001 0.009 <0.001 <0.001

Prostate

DSUNet 
sMRI 0.84±0.07 0.85±0.10 0.84±0.096 5.48±2.57 0.80±0.35 1.12±0.47 2.26±1.63 4.13±5.71

DAUNet 
CBCT 0.82±0.09 0.81±0.10 0.84±0.11 5.83±3.30 0.9±0.47 1.30±0.66 2.58±1.92 3.98±5.21

DAUNet 
sMRI 0.86±0.06 0.86±0.08 0.87±0.085 4.82±2.37 0.73±0.37 1.08±0.55 1.954±1.58 3.32±5.54

P-value 
DAUNet 
sMRI vs. 
DSUNet 

sMRI

<0.001 0.268 0.120 0.043 0.126 0.584 0.179 0.317

P-value 
DAUNet 
sMRI vs. 
DAUNet 
CBCT

<0.001 <0.001 0.084 0.010 <0.001 0.009 0.031 0.403

Rectum

DSUNet 
sMRI 0.88±0.05 0.88±0.07 0.88±0.08 8.62±5.15 1.03±1.66 2.04±3.82 3.72±4.18 5.31±7.78

DAUNet 
CBCT 0.83±0.07 0.84±0.11 0.84±0.08 13.14±18.71 1.19±0.87 2.31±2.51 3.92±4.65 8.32±8.47

DAUNet 
sMRI 0.91±0.04 0.92±0.04 0.90±0.05 5.46±3.19 0.71±0.65 1.62±2.36 1.98±1.86 3.93±3.86

P-value 
DAUNet 
sMRI vs. 
DSUNet 

sMRI

<0.001 <0.001 0.014 <0.001 0.192 0.434 0.002 0.155

P-value 
DAUNet 
sMRI vs. 
DAUNet 
CBCT

<0.001 <0.001 <0.001 0.006 0.001 0.130 0.005 <0.001

Phys Med Biol. Author manuscript; available in PMC 2021 February 04.


	Abstract
	INTRODUCTION
	MATERIALS AND METHODS
	sMRI estimation
	Deep attention network
	Database
	Reliability evaluation of the segmentation algorithm

	RESULTS
	Contribution of deep attention
	Efficacy of sMRI-aided strategy

	DISCUSSION
	CONCLUSIONS
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Figure 6.
	Table 1.
	Table 2.
	Table 3.

