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Abstract

Purpose: Manual delineation of head and neck (H&N) organ-at-risk (OAR) structures for 

radiation therapy planning is time consuming and highly variable. Therefore, we developed a 

dynamic multi-atlas selection-based approach for fast and reproducible segmentation.

Methods: Our approach dynamically selects and weights the appropriate number of atlases for 

weighted-label fusion and generates segmentations and consensus maps indicating voxel-wise 

agreement between different atlases. Atlases were selected for a target as those exceeding an 

alignment weight called dynamic atlas attention index. Alignment weights were computed at the 

image-level and called global weighted voting (GWV) or at the structure-level and called structure 

weighted voting (SWV) by using a normalized metric computed as the sum of squared distances 

of CT-radiodensity and Modality Independent Neighborhood Descriptors (extracting edge 

information). Performance comparisons were performed using 77 H&N CT images from an 

internal Memorial Sloan-Kettering Cancer Center dataset (N=45) and an external dataset (N=32) 

using Dice Similarity Coefficient (DSC), Hausdorff distance (HD), 95th percentile of HD, Median 

of Maximum Surface Distance, and Volume Ratio Error against expert delineation. Pair-wise DSC 

accuracy comparisons of proposed (GWV, SWV) vs. single best atlas (BA) or majority voting 

(MV) methods were performed using Wilcoxon rank-sum tests.

Results: Both SWV and GWV methods produced significantly better segmentation accuracy 

than BA (p < 0.001) and MV (p < 0.001) for all OARs within both datasets. SWV generated most 

accurate segmentations with DSC of: 0.88 for oral cavity, 0.85 for mandible, 0.84 for cord, 0.76 

for brainstem and parotids, 0.71 for larynx, and 0.60 for submandibular glands. SWV’s accuracy 

exceeded GWV’s for submandibular glands (DSC=0.60 vs 0.52, p=0.019).

Conclusions: The contributed SWV and GWV methods generated more accurate automated 

segmentations than the other two MABAS techniques. The consensus maps could be combined 

with segmentations to visualize voxel-wise consensus between atlases within OARs during manual 

review.
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1. INTRODUCTION

Organ at risk (OAR) segmentation is a critical aspect of radiotherapy treatment planning. 

Clinically used manual delineations are time consuming to produce and are prone to high 

inter- and intra-observer variability.1,2 Therefore, automating the segmentation of OARs 

particularly in sites involving large numbers of structures, such as the head and neck (H&N), 

is imperative to produce fast, reliable and consistent contours. Multi-atlas-based 

segmentation (MABAS)3,4 or a combination of atlas and machine learning-based methods5,6 

have been used to generate OAR segmentations. Such methods seek to model anatomical 

variability within the medical images by leveraging population-based information computed 

directly through atlas label fusion, or through statistical modeling, respectively.

Multi-atlas based segmentation approaches consist of (a) registering a target image to a set 

of training images and their associated expert labels, called atlases, (b) propagating 

registered atlas labels onto the target image, and (c) selecting and fusing these labels in a 

meaningful way to estimate a new segmentation. These can be further refined using 

techniques such as active contours to generate smooth contour delineations4. Selection of the 

relevant set of atlases while reducing the influence of completely irrelevant atlases is 

important to achieve accurate MABAS segmentation. The selected set of relevant atlases for 

an incoming target scan may vary from a subset of the multi-atlas7,8 to selection of all 

atlases in the multi-atlas9,10. In addition to atlas selection, weighing the set of selected 

atlases is also important to reduce the effect of outlier propagated atlas labels and ensure 

good segmentation11,12. This work addresses both issues for generating segmentations of 

OARs in the head and neck.

First, to reduce the adverse effect of combining segmentations from atlases that are outliers 

(those with large misalignment to target scan often arising due to highly different anatomy), 

we introduced a metric called dynamic atlas attention index (τ) that determines the 

appropriate number of atlases from the set of matching atlases for a given target scan. This 

selection is based on the relative weights assigned to the individual atlases with respect to all 

structures, in the case of global weighted voting, or with respect to a particular structure (in 

structured weighted voting) computed from a measure of target-to-atlas alignment and 

selecting only those with weights above this index. The target-to-atlas alignment is 

computed using the sum of squared distance metric of the CT density or an edge descriptor 

called the modality independent descriptor (MIND) that was previously developed for atlas 

registration. The τ parameter is determined as the minimum alignment required to maximize 

the segmentation accuracy for any given set of atlases in a multi-atlas set. This differs from 

prior approaches where the number of atlases to be used in weighted combination is pre-

specified9,13,14 and the label fusion involves computing the relative weights of those atlases.

Second, as opposed to prior MABAS methods that utilized voxel intensity, location, gradient 

and curvature texture features15, Dice Similarity Coefficient (DSC) score distribution16, or a 

constant value9 as weights for atlas fusion, our atlas weighting computation involves metrics 

(CT density or MIND) that are fast to compute. Sanroma et.al13 proposed using edge-based 

and Bayesian inference-based expected Dice similarity coefficient atlas weighting measures 

and exploited machine learning regression for expected segmentation performance during 
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atlas weighting. We independently evaluated CT density and MIND descriptor-based image 

features to test whether image similarity-based metrics are indeed less optimal than other 

metrics. The presented multi-atlas label fusion generates a consensus segmentation together 

with a voxel-wise consensus probability map. Finally, we used the consensus map as a visual 

aid to determine the underlying variability within the produced probabilistic segmentations.

Our contributions are as follows: (a) an approach to automatically select and weight different 

atlases, either relative to the individual structures or for the entire image, to produce a multi-

atlas consensus segmentation with voxel-wise consensus weights, (b) to compare two image 

features for evaluating atlas to target image similarity, and (c) visualization of segmentations 

using voxel-wise segmentation consensus maps.

2. MATERIALS AND METHODS

2.A. Overview

Figure 1 provides a schematic overview of our approach for generating multi-atlas 

segmentation and associated consensus maps for an unseen target scan. An incoming target 

scan was deformably registered to all atlases in the multi-atlas. Pairwise image similarity 

between the target scan and all atlases was computed. Then using the dynamic atlas attention 

index τ, our method selected the appropriate atlas set. The weights of the individual selected 

atlases were computed by normalizing and then exponentiating the atlas to target similarity. 

Voxel-wise weighted fusion of the atlas labels generated OAR consensus segmentation 

including voxel-wise consensus. Consensus is defined as the probability that a voxel is 

assigned a particular label based on the weighted frequency of that label being assigned by 

the individual atlases in the selected multi-atlas set. This voxel-wise consensus map was 

then used to visualize all voxels labeled by the different atlases for inclusion within the 

consensus segmentation. This color-coded map encapsulates the overall labeling variability 

within the segmentation, with voxels in red depicting higher consensus among the different 

atlases and blue voxels corresponding to lower consensus.

2.B. Analyzed datasets

We evaluated our approach using 77 H&N contrast-enhanced CT images, which included 45 

clinical CT datasets of patients treated at our institution (INST). The average image 

resolution of this INST dataset was 1 × 1 × 2.5 mm3. The nine OAR manual delineations 

contained in the internal INST dataset were: larynx, bilateral parotids and submandibular 

glands, oral cavity, brainstem, mandible and spinal cord. Thirty-two CT scans from the 

publicly available, multi-institutional Public Domain Database for Computational Anatomy 

(PDDCA)17 curated from the Radiation Therapy Oncology Group (RTOG) 0522 study were 

used for external validation of our approach. The PDDCA dataset CT images had an average 

resolution of 1 × 1 × 3 mm3 and contained manual delineations of the following nine OARs: 

brainstem, chiasm, mandible, bilateral optic nerves, parotids and submandibular glands, as 

well as the presence of five bony landmarks. Clinically accepted delineations of nine OARs 

within each dataset that were performed by an expert radiation oncologist, physicist, or 

dosimetrist, depending on the organ, and were used for multi-atlas construction and 

considered the gold standard during segmentation validation. These expert delineations are 
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referred to as atlases in this manuscript. The clinical datasets contained anatomical 

variability introduced by the underlying location of pathology as well as the existence of 

dental artifacts and bite blocks. The 3D images were cropped from above the eyes to the top 

of the sternum to reduce image size and thus registration computation time. Both the INST 

and PDDCA datasets include delineations of nine OARs with three non-overlapping 

structures. A table listing the above-mentioned structures contained within both datasets has 

been included in the supplementary Table 1.

Image Registration—The Plastimatch16,17 algorithm was used to deformably register an 

incoming target image with all images in the multi-atlas. Registration between an atlas 

image and an incoming target scan required, on average, approximately three minutes of 

computation time, resulting in O(N × M) computation overhead for registering all N atlases 

to target. A mean squared error cost metric was used to minimize registration error. The 

target-atlas pair was registered in the following steps: (1) affine registration to centrally align 

and spatially resize the images (2) b-spline non-rigid registration in three stages. The image 

resolution, regularization parameter lambda, and maximum number of iterations were 

refined in three levels from (i) 4 × 4 × 2 mm3, 0.05, and 100 to (ii) 2 × 2 × 1 mm3, 0.005, 

and 50 and (iii) 1 × 1 × 1 mm3, 0.005, and 20. The regularization term lambda, as defined in 

the Plastimatch18,19 method, is used to tradeoff the contribution between image intensity 

matching (for alignment) and deformable vector field smoothing (for smoothness of 

deformation of various structures in the image) during b-spline registration. As this term is 

relaxed during subsequent stages, the overall regularization of the control points is reduced 

to improve image matching and achieve better registration accuracy over the reduced grid 

space. Parameters used for performing registration are included in Supplementary Table 2.

2.C. Image features and atlas fusion strategies

We compared the performance of image similarity computed using CT radiodensity 

differences against the modality independent descriptor (MIND)20 between the target and 

the registered atlas scans for assigning atlas weights during label fusion. The MIND feature 

computes local neighborhood descriptors that incorporate local image similarity including 

edges, the location and orientation of corner points, as well as image texture (i.e. the spatial 

arrangement of consistent intensity patterns in the image region) across the two CT images. 

The sum of squared difference (SSD) distance metric was used to quantify the differences 

between the registered atlas and the target image using either the CT-radiodensity or the 

MIND descriptors. The distances were converted to similarities as described in the 

subsequent Subsection 2.D. Normalized correlation coefficient, while being a more robust 

metric for calculating intensity differences between heterogeneous CT images, is 

computationally intensive and time-consuming. Therefore, SSD was used for calculating 

image similarity to reduce the overall computational burden during atlas selection.

Atlas-to-target similarities were computed using (i) the entire image (global weighted) 

similar to the global image-weighted voting (GWV)21, or (ii) a region-of-interest defined by 

each structure (structure weighted) and similar to the structure weighted voting (SWV).22 

We compared the performance of GWV and SWV against single best atlas (BA) and 

majority voting (MV)23 methods.
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The multi-atlas segmentation Ls
j for target scan IS and structure label j using a multi-atlas set 

MA consisting of N atlases, MA = {A1, A2, …AN}, where each atlas Ai is associated with 

an image Ii and label Li, can be computed as the weighted sum of K (1 ≤ K ≤ N − 1) atlases 

in MA as

Ls
j x = ∀j, ∑

i = 1

K
wi x × s,

s = 1 if Li x = j
s = 0, otℎerwise

(1)

where wi is the weight associated with atlas Ai for a target scan IS where s ≠ I, and Ls
j x . 

The weighted combination corresponds to the normalized consensus (0 to 1) among the 

different atlases of assigning a label j to each voxel x given that the individual atlas labels 

correspond to that label at the given location. In the case of overlapping labels, the voxel 

label with a higher consensus contributes towards the final segmentation.

The BA selection method selects the single best atlas that is the most similar to the target 

image such that K=1 and w=1. The MV atlas fusion approach combines the top K atlases 

with equal weights assigned (w/K) to each atlas. In contrast, our approach using GWV and 

SWV selects the appropriate number of atlases and assigns weights to the selected atlases 

corresponding to their similarity to the target image or structure, respectively.

2.D. Dynamic atlas attention index for selecting and weighting atlases for weighted 
fusion

Both BA and MV methods are known to produce less accurate segmentations. This is 

because similarity criteria based on CT-radiodensity, edge features, or metrics such as a 

histogram of oriented directions (HOG) assume that the compared images are highly similar, 

and the differences arise solely due to misalignment or anatomical differences. As a result, 

selecting the single best atlas or selecting all atlases with slightly different weights fails to 

produce a good segmentation. Therefore, we introduced a metric called the dynamic atlas 

attention index τ(0 to 1) that selects the number and set of atlases most suited for producing 

accurate segmentations of the individual OARs in each target scan. The metric τ is the lower 

limit on the similarity that must be achieved for an atlas to be considered suitable for label 

fusion. Higher values of τ reduce the number of selected atlases while lower values increase 

the number of atlases. In the extremes, τ = 1 corresponds to BA while τ= 0 corresponds to 

selecting all available atlases.

Our approach for atlas selection and fusion involves two steps, namely, selecting the 

appropriate number of atlases and then computing the weights for those selected atlases. The 

GWV weighting method differs from the SWV method in that the weights and the number 

of atlases for GWV are selected at the level of the image resulting in a single set of atlases 

and weights for all the structures. Whereas, in the SWV method, separate sets of atlas 

weights and associated atlases are selected per structure. Therefore, the overall technique for 

selecting and weighting atlases in the two methods is the same, with j = 1, corresponding to 

all structures taken as one unit for GWV atlas selection and weighting calculations, while j 
varies with each structure in SWV. To select the required number of atlases for the individual 
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structure j, the atlas-to-target distance φS
j  is computed for the target scan S, from the i atlases 

on a structure-by-structure basis φS
j = φS

1, j…φS
i, j  where ∀i ∈ {1…N – 1, i ≠ S}. 

Normalized atlas similarity set φSN
j  corresponds to the normalized similarities of the set of 

selected atlases for label fusion. It is calculated from the target-atlas similarity distances as:

φSN
j = 1 −

φS
i, j − min φS

j

max φS
j − min φS

j (2)

where max φS
j  and min φS

j  are the maximum and minimum distances within the φS
j  set for 

structure j. The normalized distance φS
j  are subtracted by 1.0 to convert distance to 

similarity. Next, the appropriate number of atlases and the atlas set is extracted by selecting 

atlases that have a normalized similarity of at least τ. As a result of this step, at most K 

ordered atlases, where K≤N-1, that have atlas similarity greater than or equal to τ are 

selected.

As a second step, the weights wi,j for the individual atlases i for each structure j in the 

selected atlas set are computed as:

wi, j = eφSN
i, j /∑i = 1

K φSN
i, j

, if φSN
i, j ≥ τ

0, otℎerwise
(3)

where 0 ≤ τ ≤ 1. If an atlas is a subset of K selected atlases that have similarity of at least τ, 

its associated label weight is calculated as the exponential of the probability of high atlas 

similarity value between structure j for atlas i and structure j for target scan S. This atlas 

weight assignment maximizes the likelihood of the propagation of relevant voxel-wise labels 

while reducing the effect of outlier labels. The calculated atlas weights are used to fuse the 

labels from the selected atlases using Equation (1) to produce the consensus map for each 

structure being segmented. The consensus map is converted into the range (0–100) through 

normalization and the consensus segmentation is computed through thresholding at a default 

value of 33. This normalization is done purely to have a sufficient range for visualization 

purposes.

The algorithm describing our approach to segment an incoming target CT scan using the 

multi-atlas leveraging dynamic atlas selection and weighting is included below (Table 1):

2.E. Segmentation Evaluation

We employed leave-one-out validation using the internal and external datasets and 

subsequently compared the automated segmentations with the expert delineated structures, 

considered the gold standard, for each target scan using the Dice Similarity Coefficient 

(DSC), Hausdorff Distance (HD), 95th percentile of HD (HD95), Median of Maximum 

Surface Distance (MMSD) and Volume Ratio Error calculated as (VGS − VAS)/VGS, where 

VGS is the gold standard segmentation. Statistical differences between segmentation 

performances were determined through the Wilcoxon rank-sum test performed on the DSC 
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metric. A Bonferroni correction was applied to account for multiple comparisons and reduce 

the chances of obtaining false-positive results using the DSC metric.

3. RESULTS

3.A. Dynamic selection of atlases for label fusion leads to more accurate segmentation 
than selecting all atlases

Using sixteen randomly selected patients from the INST dataset as a calibration dataset, we 

tested whether varying the number of selected atlases through the τ parameter impacted 

segmentation accuracies. Leave-one-out validation was performed such that, for each 

patient, a maximum of fifteen atlases (τ=0) and a minimum of single best atlas (τ=1) could 

be selected for atlas fusion. The value of τ was varied from 0 to 1 with the increments of 0.1. 

Figure 2.(a) shows changes in the number of selected atlases for a randomly selected five out 

of sixteen patients with increasing values of τ using the GWV method. We chose GWV for 

showing the results to conserve space for plotting. Note that different numbers and different 

sets of atlases will be selected for SWV for each structure.

As shown in Figure 2.(a), for a specific value of τ = 0.4, varying numbers of atlases were 

included for label fusion in all the patients. These differences are exemplified in the case of 

Patient 1 and Patient 5, where the former required 12 atlases while the latter required 6 

atlases to reach the same value of τ= 0.4. We examined the effect of selecting different 

numbers of atlases on the segmentation performance for different normal structures 

including a long tubular structure, namely, the spinal cord (see Figure 2.(b)), a large soft 

tissue structure, the left parotid (see Figure 2.(c)), and a structure with high contrast, such as 

the mandible (see Figure 2.(d)). Figure 2.(b) illustrates that Patient 5 required fusion of two 

atlases (DSC = 0.82 with τ = 0.7) while Patient 1 required fusion of ten atlases (DSC = 0.81 

with τ= 0.2) to the achieve highest possible segmentation accuracy for the spinal cord. This 

variability within the number of selected atlases was also observed for other patients across 

all OARs. As seen, arbitrarily selecting all (τ = 0.0) or the single best atlas (τ = 1.0) does not 

lead to the best performance for all three structures in both extreme cases Patients 1 and 5. 

On the other hand, segmentations with the highest DSC score were generated for both cases 

using an intermediate τ value. The SWV atlas fusion strategy uses the default threshold 

value of 33, which was empirically selected as the common threshold parameter for all 

structures by observing the preliminary segmentation results of these initial five test cases.

We optimized the segmentation accuracy across all structures for the appropriate τ value 

using all 45 patients in the INST dataset and found that a τ of 0.8 for GWV and 0.5 for 

SWV using CT-radiodensity image similarity, and a τ of 0.7 using MIND were appropriate 

for segmenting all structures (Figure 3(a–b)). The choice of τ has been fixed and used for 

segmentation of all OARs in the external PDDCA dataset.

3.B. Comparison of image similarity computed using CT-radiodensity with MIND for multi-
atlas label fusion

Table 2 shows DSC accuracy computed for the 9 OARs when using CT-radiodensity and 

MIND for computing image similarity to assign atlas weights using the GWV and SWV 
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methods. Accuracies were significantly different when using SWV between the two image 

similarity computations, but were highly similar for all other structures. This result suggests 

that the computationally simpler CT-radiodensity method is sufficient for computing 

similarity between target and atlas images. The combination of four atlas fusion and two 

image feature determination methods resulted in a total of eight approaches for generating 

automated segmentations for each evaluated target scan (Supplementary Figure 1).

3.C Comparison of MABAS segmentations produced using atlas fusion methods

Figure 4 displays two example patients with automated segmentations generated using the 

various methods overlaid with expert delineation using CT-radiodensity as a feature for 

computing image similarity. GWV and SWV generated consensus maps that were converted 

to segmentations using a pre-determined consensus threshold of 33. As seen, BA results in 

underestimation for all structures (shown in red) compared to manual delineation (shown in 

green). In contrast, MV, GWV and SWV methods produced segmentations much closer to 

the expert delineation for larger structures. All methods resulted in overestimation for the 

oral cavity and the spinal cord for the first example target scan, and overall slight 

underestimation for the second example target scan using the multi-atlas cohort.

Table 2 displays the segmentation accuracy comparison of the nine OARs using all image 

feature and atlas fusion combinations for the INST dataset. Statistical comparison was 

performed using the Wilcoxon-rank sum test to determine any statistically significant 

differences across all feature-method combinations. Bonferroni correction was applied to 

reduce the effect of false-positives on the DSC accuracies. As shown, both GWV and SWV 

atlas fusion methods outperformed the BA and MV methods. SWV method was similar to 

GWV in all but one structure. It significantly outperformed GWV for segmenting the 

submandibular glands, a structure with very poor soft-tissue contrast. Therefore, we chose 

SWV with the CT-radiodensity image feature as the preferred weighted atlas fusion scheme 

for external dataset validation.

3.D. SWV with CT-radiodensity as image feature produced similar segmentation 
accuracies for both internal and external datasets

DSC and HD95 segmentation accuracy results for each OAR using the CT-radiodensity 

image feature combined with SWV atlas fusion method are displayed in Figure 5. The 

smallest structures, such as the chiasm and the optic nerves, underperformed based on the 

DSC accuracy because this metric compares the volumetric ratios of the expert versus 

automatic segmentations and is thus biased against smaller structures. Volume Error, MMSD 

and HD results using SWV and CT-radiodensity are also presented in Figure 6 and 

Supplementary Figure 2, respectively. A negative volume error (Figure 6.(a)) depicts 

overestimation and a positive volume error refers to an underestimated MABAS result when 

compared against the gold standard. It can be observed that our algorithm slightly 

overestimated the volume for most structures in the internal dataset by less than 10%, except 

for the larynx and the submandibular glands. In contrast, larger structures in the external 

PDDCA dataset were slightly underestimated, with the worst median volume error observed 

for the mandible and the left parotid. This may be contributed to the anatomical variability 
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within the atlases, as well as inherent registration errors propagated onto the target scan from 

the multi-atlas.

Overall, the SWV atlas fusion and CT-radiodensity image feature method resulted in DSC 

accuracy greater than 0.75 for large structures, such as the cord, brainstem, mandible and 

oral cavity.

Results from the external validation dataset were consistent with our findings using the 

internal dataset. The highest DSC accuracy was achieved for the mandible. Large soft-tissue 

structures, such as brainstem and parotids achieved comparable median DSC accuracy of 

0.83, 0.77 and 0.76 respectively. In contrast, small structures such as the chiasm and the 

optic nerves performed poorly due low soft-tissue contrast that the multi-atlas segmentation 

scheme was unable to capture.

Figure 7 presents example segmentation results of two typical dataset cases comparing 

expert clinical delineations against MABAS contours using CT-radiodensity image feature 

and SWV atlas fusion within the MABAS scheme. Maximum DSC accuracy for the patient 

shown in Figure b (a) was observed for the oral cavity OAR (0.88), and for the oral cavity 

and spinal cord (0.86) for patient shown in Figure 7(b). Overall, the MABAS-generated 

contours resulted in overestimation for the larynx, with DSC accuracy of 0.68 and 0.76 for 

patients shown in Figure 7(a) and Figure 7(b) respectively, and underestimated the superior-

anterior portion of the parotids. This may be due to the lack of contrast close to the structure 

boundary, as well as the presence of dental artifacts at the anterior portion of the parotid 

close to the mandible. Segmentation consensus maps of two patients, along with their 

corresponding MABAS segmentations using SWV, are also displayed in Figure 7. 

Additional segmentation comparisons for two sample patients from the PDDCA dataset, 

depicting the best and worst submandibular gland, parotid and chiasm segmentations, are 

displayed in Supplementary Figure 3. The consensus maps highlight the highest label 

agreement and uncertainty within the atlases selected for weighted voting label fusion, 

corresponding to areas of red and blue, respectively.

Table 3 displays comparison of achieved segmentation results against existing methods for 

segmentation of head and neck OARs. It should be noted that the external prior methods 

presented their results using different datasets, except for Ren et al.24, who also utilized the 

external PDDCA dataset for validating their approach. Our method achieved results very 

similar to the deep learning method by Ibragimov et al.6 as well as the STEPS algorithm by 

Duc et al11 and commercial MiM software as investigated by La Macchia et al.25 However, 

our method was worse compared to the deep learning method by Ren et al.24 for small 

structures including the submandibular glands and optic nerves.

4. DISCUSSION

We developed a novel approach to automatically select and weight the relevant number of 

atlases required to achieve high segmentation accuracy during MABAS atlas selection and 

fusion. Our results show that both dynamically weighted label fusion methods using entire-

image based GWV and structure-based SWV significantly outperformed the MV 
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(predefined K-atlas selection) and BA (single-atlas selection) based segmentation methods 

for all OARs. Our approach selects the best and appropriate number of atlases based on the 

image features that are required to achieve accurate segmentation while reducing the 

contribution of superfluous or insufficient outlier atlases during fusion. Segmentation results 

achieved for the PDDCA dataset indicate that the τ parameters, used for dynamic atlas 

selection during SWV and GWV, do not need to be optimized for an incoming H&N CT 

dataset, thereby mitigating any hyperparameter tuning computation overhead. We also 

evaluated the utility of the image similarity computed using MIND descriptors against the 

commonly used CT-radiodensity for computing atlas-to-target similarity and weights for 

multi-atlas label fusion. Our results show that both metrics and weighted-voting fusion 

techniques achieved similar performance except for the submandibular glands, where SWV 

combined with CT-radiodensity produced statistically significant results. This is because of 

the presence of low soft-tissue contrast in the region-of-interest that was better captured by 

fusing structure-specific relevant atlases to produce consensus segmentations.

Our results confirm the prior results including those by Aljabar et.al7 and Wolz et.al23 which 

showed that selecting relevant sets of atlases for label propagation and fusion is imperative 

for achieving accurate segmentations. Unlike prior works that have typically fixed the 

number of atlases, we developed an approach to automatically identify the best number of 

atlases for each target. Sanroma et al.13 showed that varying the number of atlases in 

addition to atlas selection itself was required to achieve high segmentation accuracy.

Bayesian inference21 as well as machine learning regression for expected segmentation 

performance13 using edge-based features have been used to overcome the limitation of 

image similarities computed using image intensity including CT-radiodensity for assigning 

atlas weights. The limitation of intensity-based image similarities including local 

similarities26 stems from the fact that these methods assume the differences in the atlas and 

target image are caused solely by mis-registration and not by any anatomic or intensity 

variations (due to artifacts) in the images. Therefore, we evaluated whether edge-based 

measures using MIND descriptors overcame such limitations. However, as shown in our 

results, both MIND and CT-radiodensity based measures were comparable in the achieved 

segmentation accuracies especially when using multi-atlas fusion methods.

Regardless of the method used for producing the OAR segmentations (manual or algorithm-

based), all OAR segmentations should be subject to peer review27–29 to ensure robust 

treatment plans. Therefore, we developed a visualization framework for viewing the 

consensus maps produced using the MABAS method and incorporated it within the Varian 

Eclipse system as a plug-in for clinical testing and internal validation. We used DSC and HD 

metrics for evaluating the accuracies to produce a more meaningful estimate as the DSC 

volumetric measure alone has been shown to be insufficient for evaluating clinical contour 

utility as demonstrated by Sharp at al.30

As a limitation, we could not use the atlases computed from the internal dataset for 

segmentation with the external PDDCA dataset and vice versa because of difficulties in 

achieving registration without significant manual editing. Therefore, we only verified if the 

dynamic atlas-selection and weighted voting achieved similar performance in the two 
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datasets. Atlas-to-target image registration is a crucial step for selecting relevant atlases. Any 

deformable image and label registration errors are inherently propagated onto image 

similarity calculations as well as atlas-label selections. Our presented atlas weighting 

scheme aims to mitigate these trickling errors by minimizing the effect of voxel-labels that 

may not highly correlate with overall atlas consensus during atlas label fusion. An alternate 

method may be to dynamically select the group of best performing atlases versus individual 

atlases for segmenting an incoming target scan, as demonstrated by Zaffiano et al.31

As a second limitation, we were not able to use multi-observer segmentations to test whether 

the segmentations produced using our method were within inter-observer variability. In 

addition, the default consensus threshold of 33 for producing SWV segmentations is not 

fine-tuned for all structure segmentations to mitigate the effect of hyperparameter tuning 

during multi-atlas segmentation. This threshold may vary depending on the anatomical and 

atlas variability within the individual structures being segmented. Similar to the work of 

Veeraraghavan et al.32, selection of an OAR-specific consensus threshold may improve 

structure segmentations. Finally, the gold standard clinical contours for the atlases were 

produced by different clinicians. Therefore, inter-observer segmentation variability is 

inherent in the atlases which likely led to lower than anticipated segmentation accuracies. In 

summary, we developed and implemented a framework for multi-atlas segmentation and 

visualization of OAR segmentations in head and neck CT images.

5. CONCLUSION

We developed a MABAS dynamic atlas selection and weighted approach for multiple 

normal organ at risk segmentation in head and neck CT images. We introduced a dynamic 

atlas attention index metric for selecting the number of atlases and weighting the atlases for 

label fusion using structure-wise voting and global image-wise voting techniques. Our 

approach produced more accurate segmentations than other MABAS techniques. This 

developed segmentation scheme has been incorporated as a plug-in within the Varian Eclipse 

clinical framework to provide users with tools to produce more consistent OAR contours 

along with their consensus maps for segmentation review. Also, consensus maps reflecting 

voxel-wise agreements between atlases produced using our method could be used together 

with segmentations for manual reviewing. Further studies could investigate the utility of 

combining these maps with segmentations for potential interactive editing applied to clinical 

treatment planning.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Schematic overview of our approach. A target scan was registered to all images and labels in 

the multi-atlas. Pairwise target to atlas similarities were computed. The atlas attention index 

was calculated. The set of atlases and their associated weights were dynamically selected. 

These selected labels were fused to produce segmentations and an associated consensus map 

that visualized underlying variability within generated OAR segmentations. Steps 2–6 

represent modifications to the general MABAS scheme.

Haq et al. Page 14

Med Phys. Author manuscript; available in PMC 2020 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2: 
(a) Number of selected atlases with increasing τ (dynamic atlas attention index) using GWV 

and CT-radiodensity for five randomly selected patient scans, using fifteen atlases. Varying 

number of atlases are required for fusion to achieve a minimum similarity of τ=0.4. DSC 

comparison for Patients 1 and 5 for (b) spinal cord, (c) left parotid and (d) mandible with 

increasing τ demonstrate the difference in the number of atlases required for fusion to 

achieve high DSC accuracy.
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Figure 3: 
Average DSC segmentation accuracy, along with standard deviation, of 45 internal INST 

cases over all structures, generated using (a) Global Weighted Voting (GWV), and (b) 

Structured Weighted Voting (SWV) atlas fusion against expert delineation, using increasing 

values of τ. We investigate the effect of changing dynamic atlas attention index to 

segmentation accuracy for optimal τ parameter selection for CT-radiodensity and MIND 

image features.
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Figure 4: 
Example segmentations of two randomly selected target scans (in rows) from the INST 

dataset using (c) best atlas (BA), (d) majority voting, (e) global weighted voting, and (f) 

structure weighted voting atlas fusion methods and the CT-radiodensity image similarity 

feature. Figure shows expert delineated contours in (b) and in green in (c,d,e,f), and 

algorithm-generated segmentations in red (c, d,e,f).
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Figure 5: 
(a) Dice similarity coefficients (DSC) and (b) 95th Percentile of Hausdorff Distance (HD95) 

(mm) using CT-radiodensity image similarity method and SWV atlas fusion against expert 

delineation for N=44 internal INST dataset (left) and N=32 external PDDCA (right) 

datasets.
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Figure 6: 
Median and interquartile range (IQR) of (a) Volume overlap Error and (b) Median of 

Maximum undirected Surface Distance (MMSD) (mm) comparing expert manual 

delineation to the CT-radiodensity image similarity and SWV atlas fusion method for INST 

(left) and external PDDCA (right) datasets.
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Figure 7: 
Comparison of MABAS segmentations using the CT-radiodensity image similarity and 

Structure Weighted Voting atlas fusion method (blue) against expert clinical delineations 

(green) for two patients (a-b). The segmentation consensus map for each patient is shown in 

the last column. A consensus value of 33% was used for the MABAS segmentations.
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Table 1:

Step-by-step algorithm describing the procedure for segmenting OAR structures of the head and neck for an 

incoming target CT scan using the Structured Weighted Voting (SWV) and Global Weighted Voting (GWV) 

atlas fusion techniques using CT-radiodensity image similarity or MIND descriptor.

INPUT: Unseen target CT scan, Multi-atlas set with CT images and expert delineations of OARs

OUTPUT: Segmented CT scan with OAR segmentations and consensus map

 Step 1: Deformably register all atlases to the target scan by using Plastimatch

 Step 2: Propagate atlas labels to the target scan

 Step 3: Calculate atlas similarity matrix using either CT-radiodensity or MIND descriptor image feature in Eq. 2

 Step 4: Calculate weights and dynamically select top-ranked atlases using Eq. 3

  IF fusion method == SWV THEN

   Set τ = 0.5

  ELSE IF fusion method == GWV THEN

   Set τ = 0.8

 Step 5: Fuse propagated atlas labels using Eq. 1 to produce the consensus map

 Step 6: Extract segmentations using default consensus threshold = 33
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Table 2:

Median Dice Similarity Coefficients of automated segmentations generated using different combinations of 

image similarity and atlas fusion methods against expert segmentation for all OARs of the internal INST 

dataset. DSC for the preferred combination, CT-radiodensity and SWV, are presented in bold. Values marked 

in ** and * were found to be statistically significant when compared against CT-radiodensity and SWV, with 

p-value < 0.001 and p-value < 0.05, respectively. SMG = Submandibular Gland.

OAR CT-radiodensity DSC MIND DSC

BA MV GWV SWV BA MV GWV SWV

Oral Cavity 0.77** 0.86* 0.86 0.88 0.7** 0.83** 0.81 0.84

Mandible 0.68** 0.82 0.84 0.85 0.65** 0.82** 0.80 0.84

Cord 0.76** 0.82 0.83 0.84 0.69 0.81 0.81 0.82

Brainstem 0.73 0.74 0.76 0.76 0.66** 0.74 0.74 0.75

Left Parotid 0.64** 0.73 0.75 0.76 0.58** 0.69** 0.71 0.72

Right Parotid 0.65** 0.71 0.73 0.74 0.48** 0.68 0.69 0.71

Larynx 0.50** 0.67 0.68 0.71 0.35** 0.63 0.67 0.63

Left SMG 0.47** 0.48** 0.52* 0.60 0.36** 0.38** 0.44 0.52

Right SMG 0.37** 0.44** 0.53* 0.59 0.24** 0.37** 0.43 0.48*
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Table 3:

DSC segmentation accuracies achieved using MABAS scheme versus various prior H&N segmentation 

methods in literature. Methods that report results using the publicly available PDDCA dataset are marked with 

an *.

Prior Methods OAR Dice Similarity Coefficient

Prior Method MABAS

Duc et al.11 Cord 0.76 0.84

Parotids 0.65 0.77

Brainstem 0.83 0.76

OpticNerves 0.55 0.38

La Macchia et al.25 using MiM software Cord 0.81 0.84

Mandible 0.86 0.87

Brainstem 0.81 0.76

Parotids 0.79 0.77

Ibragimov et al.6 Parotids 0.77 0.77

Cord 0.87 0.84

Mandible 0.91 0.87

Ren et al.*24 Chiasm 0.58 0.33

OpticNerves 0.71 0.38
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