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Abstract

Currently, there are still no early biomarkers to detect infants with risk of autism spectrum disorder 

(ASD), which is mainly diagnosed based on behavioral observations at three or four years of age. 

Since intervention efforts may miss a critical developmental window after 2 years old, it is 

clinically significant to identify imaging-based biomarkers at an early stage for better intervention, 

before behavioral diagnostic signs of ASD typically arising. Previous studies on older children and 

young adults with ASD demonstrate altered developmental trajectories of the amygdala and 

hippocampus. However, our knowledge on their developmental trajectories in early postnatal 

stages remains very limited. In this paper, for the first time, we propose a volume-based analysis of 

the amygdala and hippocampal subfields of the infant subjects with risk of ASD at 6, 12, and 24 

months of age. To address the challenge of low tissue contrast and small structural size of infant 

amygdala and hippocampal subfields, we propose a novel deep-learning approach, dilated-dense 

U-Net, to digitally segment the amygdala and hippocampal subfields in a longitudinal dataset, the 

National Database for Autism Research (NDAR). A volume-based analysis is then performed 

based on the segmentation results. Our study shows that the overgrowth of amygdala and cornu 

ammonis sectors (CA) 1–3 May start from 6 months of age, which may be related to the 

emergence of autistic spectrum disorder.

Keywords

Autism; Convolutional neural network; Trajectory; Amygdala; Hippocampus

dgshen@med.unc.edu, li_wang@med.unc.edu.
G. Li and M.-H. Chen—Co-first authors.

HHS Public Access
Author manuscript
Graph Learn Med Imaging (2019). Author manuscript; available in PMC 2020 February 26.

Published in final edited form as:
Graph Learn Med Imaging (2019). 2019 October ; 11849: 164–171. doi:10.1007/978-3-030-35817-4_20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



1 Introduction

Autism, or autism spectrum disorder (ASD), refers to a range of conditions characterized by 

challenges with social skills, repetitive behaviors, speech, and nonverbal communication, as 

well as by unique strengths and differences. Globally, autism is estimated to affect 70 

million people as of 20171. The diagnosis of ASD is mainly based on a thorough behavioral 

assessment. Studies demonstrate that behavioral signs can begin to emerge as early as 6 to 

12 months [2]. However, most professionals who specialize in diagnosing the disorder won’t 

attempt to make a definite diagnosis until 2 or 3 years of age [3]. As a result, the time 

window of opportunity for effective intervention may have passed when the disorder is 

detected. Thus, it is of great importance to detect ASD earlier in life for better intervention.

Magnetic resonance (MR) examination allows researchers and clinicians to noninvasively 

examine brain anatomy. Structural MR examination is widely used to investigate brain 

morphology and plays an increasingly pivotal role in early diagnosis and intervention of 

ASD because of its high contrast sensitivity and spatial resolution [4]. Many neuroscience 

studies on older children and young adults with ASD demonstrate abnormalities in the 

amygdala [5, 6] and hippocampus [7, 8]. For example, some studies have reported increased 

amygdala and hippocampal volumes [9–11]. However, most of previous studies are based on 

cross-sectional subjects larger than 2 years of age. Hence, our knowledge on the volumetric 

growth of autistics in early postnatal stages remains very limited. Moreover, the studies on 

hippocampal subfields, i.e., the subiculum, the cornu ammonis sectors (CA) 1–3, and the 

dentate gyrus (DG) [8], are rare at early stages. In fact, each subfield has different functions. 

For example, CA3 and DG are involved in memory encoding and early retrieval, while CA1 

is involved in late retrieval, consolidation, and recognition [12].

Therefore, longitudinal studies of the amygdala and hippocampal subfields development 

could identify critical periods of abnormal trajectory as a first step towards establishing 

neurobiological factors responsible for the autism. To characterize trajectories of the 

amygdala and hippocampal subfields at early stages, i.e., 6-, 12-, and 24-months of age, it is 

critically important to accurately segment them from MR images. Manual segmentation is 

often treated as a gold standard, but it is time-consuming and tedious, along with large inter- 

and intra-observer variability. In recent years, deep neural networks have been widely 

applied in medical image segmentation. Fully convolutional networks (FCNs) [13], as a 

natural extension of convolutional neural networks (CNNs), were developed for semantic 

segmentation of natural images and have been rapidly applied to biomedical images due to 

their powerful end-to-end training. 3D U-Net [14] extends the FCNs for volumetric 

segmentation by using skip connections to capture both the local and contextual information. 

To date, many network architectures further incorporate the residual connections [15] or 

dense connections [16] to get efficient improved flow of information and gradients 

throughout the network [17, 18]. A new convolutional network module, which is specifically 

designed for dense prediction, was proposed in [19]. The module uses dilated convolutions 

to systematically aggregate multiscale contextual information without losing resolution. 

Inspired by [20], in this paper, we propose a Dilated-Dense U-Net for accurate segmentation 

1https://www.autismspeaks.org/science-news/autism-and-health-special-report-autism-speaks.
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of amygdala and hippocampal subfields from around 6-, 12-, and 24-month-old infant brain 

MRI. Based on the segmentation results, for the first time, our study reveals that the 

amygdala and CA1–3 start to overgrow from 6 months of age, which may be related to the 

emergence of ASD.

2 Materials and Methods

Data Description.

Totally 276 subjects gathered from the National Database for Autism Research (NDAR) [21] 

were used in the study. More specifically, the dataset consists of 30 autistic subjects (25 

males/5 females), 31 mild condition autism spectrum subjects (21 males/10 females), and 

215 normal controls (133 males/82 females). In the experiment, we regard the first two types 

as one group. All images were acquired on a Siemens 3T scanner. T1-weighted MR images 

were acquired with 160 sagittal slices using parameters: TR/TE = 2400/3.16 ms and voxel 

resolution=1×1×1mm3. Then, in-house tools were used to perform skull stripping, intensity 

inhomogeneity correction, and histogram matching for MR images. There are 12, 13, and 15 

MR images acquired at 6, 12, and 24 months, which were manually labeled by an 

experienced neuroscientist. These subjects were randomly selected, and, during manual 

annotations, diagnosis information is unknown to the neuroscientist. The longitudinal 

analyses were conducted on a subset of 29 ASD subjects and 113 normal control (NC) 

subjects, who have all the three longitudinal scans acquired at 6, 12 and 24 months of age. 

The age of participant did not differ significantly (p-value > 0.05) between ASD and NC 

group at each time point.

Dilated-Dense U-Net:

In this study, a novel network architecture, Dilated-Dense U-Net (DDUNET), is proposed to 

segment the amygdala and hippocampal subfields. Inspired by [20], the proposed network is 

a fully convolutional neural network taking advantages of the U-Net skip connections, dense 

blocks, and dilated convolutions. The U-Net skip connections facilitate the joint capturing of 

both the local and contextual information, while the dilated dense blocks bring a better flow 

of the gradient information without losing resolution. As the structure size of the amygdala 

and hippocampal subfields is very small, some details may be missed in max-pooling layer. 

Thus, dilated convolutions are used to support exponential expansion of the receptive field 

without loss of resolution or coverage.

The proposed network architecture is shown in Fig. 1. It consists of a contracting path and 

an expansive path going through 7 dense blocks. Each path consists of one standard dense 

block and two dilated dense blocks. After the first standard dense block in the contracting 

path, a max-pooling layer of size 2 × 2 × 2 is used to reduce the dimensionality and exploit 

the contextual information. Each dense block consists of three BN-ReLU-Conv-Dropout 

operations, in which each Conv includes 16 3 × 3 × 3 kernels and the dropout rate was 

0.1during training. It should be noted that two dilated dense blocks with dilation rates d = 2 

are used in the downsampling path to expand receptive fields. Then, a dense block with a 

dilation rate d = 2 is used to transfer the features from the contracting path to the expansive 
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path. Skip connections are established between the contracting path and the expansive path 

to recover the spatial information lost during the downsampling.

Network Implementation.

Due to large appearance differences in MRI between 6, 12, and 24 months, we trained three 

individual models for each age period. During training, we randomly extracted 3D patches 

from training images. The patch size was optimized as 16 × 64 × 16 based on cross-

validation, by using cross-entropy as a loss function. We used SGD optimization strategy. 

The initial learning rate was 0.005, which was multiplied by 0.1 after each epoch. Training 

and test were performed on a NVIDIA Titan X GPU. Training a DDUNET takes around 72 

h, and, in the application stage, segmenting a 3D image takes 60 s.

3 Experiments and Results

In this section, we present our segmentation results of the amygdala and hippocampal 

subfields using the proposed Dilated-Dense U-Net, by comparison with 3 state-of-the-art 

methods. Based on the segmentation results, we further measured the volumetric differences 

of the amygdala and hippocampal subfields between ASD group and NC group.

3.1 Segmentation Results and Performance

Leave-one-out cross-validation was used in the experiment, e.g., for 24 months, in each fold, 

we selected 12 subjects for training, 2 subjects for validation, and 1 subject for testing. 

Figure 2 shows the 2D and 3D views of segmented amygdala and hippocampal subfields for 

one randomly-selected subject acquired at 24 months old by different methods, including 

DRUNET [18], SegNet [22], U-Net [14], our proposed DDUNET, and manual segmentation. 

It can be seen that the comparison methods cannot accurately identify these ROIs, especially 

for CA1–3. By contrast, our method has achieved a consistent result with the manual result. 

Table 1 reports the Dice coefficients (mean ± std) of the segmentation results obtained by 

different networks. Our proposed method achieves the highest Dice coefficients for all age 

periods. We further calculate p-values between proposed results and any comparison results, 

and mark the significantly better performance in bold (p-value < 0.05). For most cases, our 

proposed method can achieve a significantly better result. We then apply our trained model 

to the remaining subjects and further perform ROI-based volumetric measurements.

3.2 Volumetric Measures and Discussion

Cross-Sectional Studies: The volumetric measurements for all 276 subjects are 

provided in Fig. 3. At 6 months of age, compared with NC group, ASD group has significant 

enlargements (p < 0.05) in amygdala in both left and right hemispheres (with 4.7% and 3.4% 

enlargement, respectively), and in CA1–3 in left and right hemispheres (with 5.8% and 3.3% 

enlargement, respectively). At 12 months of age, for male subjects, the CA1–3 in both left 

and right hemisphere show 4.4% and 3.3% enlargement, respectively. For female subjects, 

there is no significant difference between ASD group and NC group, which may be caused 

by limited female subjects in the ASD group. At 24 months of age, compared with the NC 

group, the ASD group shows significant enlargement in amygdala (both hemispheres, p-
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value < 0.01), CA1–3 (left hemisphere, p-value < 0.01), and subiculum (left hemisphere, p-

value < 0.05).

Longitudinal Study: Figure 4 shows the longitudinal trajectory of each ROI volume from 

a subset of 29 ASD subjects and 113 NC subjects with all three longitudinal MR images 

acquired at around 6, 12, and 24 months of age. At 6 months of age, compared with the NC 

group, the ASD group shows significant enlargement in amygdala (both left and right 

hemispheres, p-value < 0.05), and hippocampus in CA1–3 (both left and right hemispheres, 

p-value < 0.01). At 12 months of age, compared with the NC group, the ASD group shows 

significant enlargement in amygdala (left hemisphere, p-value < 0.05), and hippocampus in 

CA1–3 (both left and right hemispheres, p-value < 0.05). At 24 months of age, the 

difference between ASD and NC groups becomes larger, and it is significantly different in 

the amygdala (both left and right hemispheres, p-value < 0.05), and CA1–3 (both left and 

right hemispheres, p-value < 0.01).

We further investigate the growth rates from 6 to 12 months of age and find that the growth 

rates of the two groups are not significantly different. However, in the second year, the 

average ROI volumetric growth rates of ASD group become larger than the NC group in 

CA1–3 (left hemisphere, p-value = 0.0101), and hippocampus (left hemisphere, p-value = 

0.0365). We further normalized the ROI volumes with total brain volumes (ROI volume/total 

brain volume) and still find that the ASD group shows significant increase of growth rate in 

CA1–3 (left hemisphere, p-value = 0.0053), and hippocampus (left hemisphere, p-value = 

0.0146).

The degree of amygdala enlargement at the early age is associated with the severity of social 

and communication and emotional perception [5]. The enlargement of CA1–3 may represent 

up-regulation, strengthen emotion of fear to communicate with surrounding or others. These 

findings suggest that there are developmental abnormalities in amygdala and hippocampus 

(especially for CA1–3) in the early age of ASD, which is also confirmed by previous reports 

on older children and young adults [5, 6].

In conclusion, for the first time, our study finds that the overgrowth of amygdala and CA1–3 

in hippocampal subfields starts from 6 months of age, which may be linked to early 

emergence of ASD.
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Fig. 1. 
DDUNET consists of two paths: a contracting path to capture contextual information and an 

expansive path to capture local information. There are seven dense blocks in total: two 

standard dense blocks (i.e., d = 1), and five dilated dense blocks (i.e., d = 2).
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Fig. 2. 
Segmented amygdala and hippocampal subfields from one randomly-selected subject 

acquired at 24 months of age, by four different networks and manual segmentation.
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Fig. 3. 
The volumetric data for all participants at different age stages. Significance of the p-value of 

each ROI is shown at the corner of each plot figure, with * indicating p-value < 0.05 and ** 

indicating p-value < 0.01.
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Fig. 4. 
The growth trajectory of each ROI. Significance of the p-value of each ROI at different ages 

is indicated by * with p-value < 0.05, and by ** with p-value < 0.01. While, significance of 

the p-value of growth rate is indicated by ✶ with p-value < 0.05.
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Table 1.

Comparison between different networks in term of Dice coefficients (mean ± std) for each segmented 

structure. The best accuracy is shown in bold with p-value < 0.05.

Age Amygdala CA1–3 Subiculum CA4/DG

DRUNET 6 months 0.754 ± 0.013 0.728 ± 0.007 0.652 ± 0.020 0.685 ± 0.019

12 months 0.804 ± 0.016 0.810 ± 0.009 0.825 ± 0.017 0.800 ± 0.015

24 months 0.846 ± 0.008 0.827 ± 0.008 0.842 ± 0.012 0.801 ± 0.002

SegNet 6 months 0.695 ± 0.015 0.688 ± 0.014 0.646 ± 0.018 0.638 ± 0.007

12 months 0.792 ± 0.012 0.762 ± 0.012 0.692 ± 0.016 0.690 ± 0.004

24 months 0.834 ± 0.017 0.764 ± 0.021 0.705 ± 0.016 0.695 ± 0.006

U-Net 6 months 0.687 ± 0.006 0.624 ± 0.003 0.621 ± 0.006 0.600 ± 0.010

12 months 0.754 ± 0.008 0.707 ± 0.004 0.679 ± 0.009 0.637 ± 0.012

24 months 0.795 ± 0.006 0.720 ± 0.010 0.695 ± 0.018 0.674 ± 0.008

DDUNET 6 months 0.882 ± 0.007 0.863 ± 0.009 0.832 ± 0.005 0.809 ± 0.010

12 months 0.898 ± 0.010 0.878 ± 0.009 0.846 ± 0.009 0.820 ± 0.006

24 months 0.909 ± 0.014 0.880 ± 0.016 0.854 ± 0.006 0.815 ± 0.010
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