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Abstract

Purpose: To evaluate fast-kV switching (FS) dual energy (DE) cone beam computed tomography 

(CBCT) using the on-board imager (OBI) of a commercial linear accelerator to produce virtual 

monoenergetic (VM) and relative electron density (RED) images.

Methods: Using an polynomial attenuation mapping model, CBCT phantom projections obtained 

at 80 and 140 kVp with FS imaging, were decomposed into equivalent thicknesses of aluminum 

(Al) and polymethyl methacrylate (PMMA). All projections were obtained with the titanium foil 

and bowtie filter in place. Basis material projections were then recombined to create VM images 

by using the linear attenuation coefficients at the specified energy for each material. Similarly, 

RED images were produced by replacing the linear attenuation values of Al and PMMA by their 

respective relative electron density (RED) values in the projection space. VM and RED images 

were reconstructed using Feldkamp-Davis-Kress (FDK) and an iterative algorithm (iCBCT, Varian 

Medical Systems). Hounsfield units (HU), contrast-to-noise ratio (CNR) and RED values were 

compared against known values.

Results: The results after VM-CBCT production showed good material decomposition and 

consistent HUVM values, with measured root mean square errors (RMSE) from theoretical values, 

after FDK reconstruction, of 20.5, 5.7, 12.8 and 21.7 HU for 50, 80, 100 and 150 keV, 

respectively. The largest CNR improvements, when compared to polychromatic images, were 

observed for the 50 keV VM images. Image noise was reduced up to 28% in the VM-CBCT 

images after iterative image reconstruction. Relative electron density values measured for our 

method resulted in a mean percentage error of 0.0 ± 1.8%.

Conclusions: This study describes a method to generate VM-CBCT and RED images using FS-

DE scans obtained using the OBI of a linac, including the effects of the bowtie filter. The creation 

of VM and RED images increases the dynamic range of CBCT images, and provides additional 
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data that may be used for adaptive radiotherapy, and on table verification for radiotherapy 

treatments.
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dual energy imaging; cone beam computed tomography; relative electron density; fast-kV 
switching; image reconstruction

1. INTRODUCTION

Image-guided radiotherapy (IGRT) is used routinely during the course of treatment in order 

to improve its accuracy and precision. Cone-beam computed tomography (CBCT) is widely 

utilized for IGRT to aid in patient positioning and assessment of tumor response for possible 

adaptation (adaptive radiotherapy - ART) (Thörnqvist et al 2016, Lou et al 2013, Ghilezan et 
al 2013). However, CBCT presents some limitations including patient motion during image 

acquisition, photon scattering between the patient and detector, image noise and other 

artifacts (Landry and Hua 2018, Hansen et al 2018). These effects may result in inaccurate 

CT numbers and lower image quality than a diagnostic CT scanner (Peroni 2011). Moreover, 

the reduced contrast in CBCT can affect soft-tissue visibility, thereby limiting CBCT use for 

organ delineation and re-planning purposes (Lütgendorf-Caucig et al 2011, Lu et al 2011). 

However, since the on-board imager (OBI) used for CBCT acquisition is directly mounted to 

the linac gantry, it represents a convenient and efficient method for patient imaging in the 

treatment position. Thus, methods to improve CBCT image quality are desired.

In the diagnostic imaging community, there is increased interest in dual-energy (DE) CT 

imaging (Vaniqui et al 2017, Forghani et al 2017, Fredenberg 2018). DECT consists of 

imaging the patient with two different x-ray spectra to obtain more detailed information on 

the tissues within. There are multiple applications of DECT imaging that may benefit 

patients receiving radiotherapy. Among these applications is the generation of virtual 

monoenergetic (VM) CT scans (McCollough et al 2015). These image sets are produced 

from DE imaging data and the CT numbers represent the attenuation coefficients at an exact 

energy (Yu et al 2012). VM images offer the potential to reduce metal artifacts (Lewis et al 
2013), increase soft tissue contrast (Noid et al 2018), and provide quantitative information 

on contrast agent concentration (Nasirudin et al 2015, Van Elmpt et al 2016, Larsson 2010). 

DECT can also provide additional information on material characterization (Lee et al 2016), 

including relative electron density (RED) and effective atomic number (Z) (Martz et al 
2016). Such data has been shown to be valuable for treatment planning with low energy 

brachytherapy sources (Williamson et al 2006, Landry et al 2016). Recently, DECT has 

shown promising results for proton therapy, since relative stopping power (RSP) can also be 

derived from these images (Vilches-Freixas et al 2017, Zhang et al 2018b, 2018a, Landry 

and Hua 2018).

In this study, we examine the feasibility of fast-kV switching (FS) (Haytmyradov et al 2019) 

DE-CBCT on the OBI of a linac using material decomposition (Wong and Huang 1983). 

Based on this approach, the scatter-corrected projections are decomposed into images of 

effective basis material thicknesses on a pixel-by-pixel basis (Li et al 2012). The basis 
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material projections are then recombined to create VM images by using the corresponding 

attenuation coefficients at the specified energy for each basis material. This technique may 

allow for the determination of the optimal energy for artifact reduction (Li et al 2012) and 

soft tissue contrast enhancement (Wu et al 2009). In addition, this approach is used to 

generate RED images that may be used for adaptive treatment planning (Vilches-Freixas et 
al 2017).

2. MATERIALS AND METHODS

DE imaging using material decomposition involves a number of steps. First, a mapping 

function must be created to relate high/low energy pixel values to equivalent thicknesses of 

basis materials. Next, following DE-CBCT image acquisition, scatter correction and image 

alignment between consecutive DE projections is performed followed by material 

decomposition. Lastly, selected VM or RED images are reconstructed using the basis 

material projections. Each of these steps will be described in the sections below.

2.1. Image Decomposition - Theory

The attenuation of an incident photon beam with intensity I0 can be expressed as a 

combination of photoelectric and Compton interactions along its path (Alvarez and 

Macovski 1976). In previous studies, this phenomenon was taken into account by 

approximating the attenuation as being due to two basis materials (Li et al 2013b, Wong and 

Huang 1983, Alvarez and Macovski 1976). One of the materials has a relatively high Z to 

represent the photoelectric effect while the other has a relatively lower Z to represent the 

Compton effect (Lehmann et al 1981). In practice, the basis materials that are used with this 

approach are often aluminum (Al) and polymethyl methacrylate (PMMA), representing high 

and low Z, respectively (Chuang and Huang 1988, Wong and Huang 1983). Therefore, using 

this approximation, the attenuation of a monoenergetic x-ray beam can be written as:

ln I
Io

= − μAl E tAl − μPMMA E tPMMA (1)

where I is the intensity of the exiting beam, t represents the thickness of each basis material 

(Al and PMMA) traversed by the incident beam and μ is the energy dependent linear 

attenuation coefficient for each material, respectively. For the case of monoenergetic x-ray 

beams irradiating at two different distinct energies (h and l), the transmitted intensities are 

described using the following equations:

ln Il
Ilo

= − μAl El tAl − μPMMA El tPMMA (2)

ln Iℎ
Iℎo

= − μAl Eℎ tAl − μPMMA Eℎ tPMMA . (3)

The solution of these equations allows for the individual thicknesses of each basis material 

to be determined analytically (Chuang and Huang 1987).
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Clinical x-ray beams, however, have a spectrum of energies. In this case, the high- and low- 

energy spectrum Sh (E) and Sl (E), result in transmitted intensities that can be represented as 

(Alvarez and Macovski 1976, Li et al 2012):

ln Il
Ilo

= ∫ Sl(E) −μAl(E)tAl − μPMMA(E)tPMMA dE (4)

ln Iℎ
Iℎo

= ∫ Sℎ(E) −μAl(E)tAl − μPMMA(E)tPMMA dE (5)

where S(E) implicitly includes the detector efficiency. Because detailed information on the 

x-ray spectra are required, it is difficult to analytically solve for the basis materials 

thicknesses in equations 4 and 5. Cardinal and Fenster (Cardinal and Fenster 1990, Li et al 
2012) proposed a solution to this problem consisting of fitting a rational function to 

calibration data. In this study, a 3rd order polynomial was used to fit calibration data 

consisting of:

tPMMA = a1L + a2H + a3L2 + a4LH + a5H2 + a6L3 + a7L2H + a8LH2

+ a9H3 (6)

tAl = b1L + b2H + b3L2 + b4LH + b5H2 + b6L3 + b7L2H + b8LH2 + b9H3 (7)

where H = −ln(Ih/I0) and L = −ln(Il/I0) are the scatter-corrected (or scatter-free if using 

simulated data) attenuations measured at both energies. That is, using data where the 

thicknesses of basis materials and scatter-corrected x-ray intensities are known, the 

parameters ai and bi (i=1–9) can be determined through a minimization process. By applying 

the calibration function to DE projection data, these images can be decomposed into 

equivalent thicknesses of the individual materials.

2.2. Calculation of Material Decomposition Parameters

In order to determine the material decomposition parameters of Eqs. (6) and (7), the scatter-

free attenuations H and L, expected for a known thickness combination of tAl and tPMMA, 

were calculated using a virtual (calculational) phantom with thickness combinations ranging 

from 0 – 450 mm of PMMA (5 mm steps) and 0 – 24 mm Al (1 mm steps) with Eqs. (4) and 

(5). These calculations were performed by integrating the respective kV source spectra, for 

80 and 140 kVp, with the detector efficiency and material attenuations for both thicknesses 

over all energies. The kV spectra used on these calculations were simulated previously, 

including the specific tube output window filtration and are used clinically for TrueBeam 

image reconstructions. The detector efficiency was also previously calculated by Monte 

Carlo simulations, taking into account the geometry (scintillator thickness and material) of 

the PaxScan 4030CB Flat Panel Detector (Varex Imaging, Salt Lake City, UT), calculated in 

1 kV steps of the source spectra (Lehmann 2019). Following simulation, a least-square fit 

was performed to calculate the parameters a1 to a9 and b1 to b9.
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2.3. DE-CBCT Image Acquisition

DE-CBCT scans were acquired of the Catphan 604 (The Phantom Laboratory Incorporated, 

Salem, NY, United States) using FS on a TrueBeam version 2.7MR3 (Varian Medical 

Systems, Palo Alto, CA) in Developer Mode. The FS software provides consecutive x-ray 

pulses that alternate between high and low energies using a programmed sequence. The 

image parameters used were 80 kVp (20 mA, 60 ms) and 140 kVp (20 mA, 10 ms). The 

relative exposures of low and high energies were chosen to generate similar pixel intensities 

as a precautionary measure, since possible lag effects were not quantified in this study. After 

a full rotation (360 degrees), the FS acquisition (11 frames/sec) generated 662 alternating 

projections (331 projections for each energy) with approximately 0.55 degree angular 

increment per energy, corresponding to total exposures of 400 and 66 mAs, respectively. The 

resultant DE frame rate is half of the programmed frame rate with each image pair resulting 

in one DE image. Projections were acquired using a frame grabber system (Matrox Imaging, 

Quebec, Canada) for off-line processing and encoded in 16-bit unsigned integers. Each 

projection consisted of 768 × 1024 pixels, acquired with dynamic gain mode and with both 

the titanium foil (0.89 mm) and bowtie filter, corresponding to the standard clinical CBCT 

protocols.

2.4. VM/RED Image Production

The method to create VM/RED images is outlined in Figure 1. Following FS-DE image 

acquisition, a scatter correction is first applied to the individual images using iTools 

Reconstruction (Varian). The scatter correction method is described by Sun et al. (Sun and 

Star-Lack 2010), and consists of a scatter kernel superposition (SKS) algorithm for 

deconvolving scatter from projection data. Following scatter correction, the images were 

normalized to the energy-specific air projections, thus treating the bowtie as part of the 

imaged object. To account for the angular separation between high- and low-energy 

projection pairs that is caused because of the rotational acquisition, a 2D image registration 

step was included in which projection pairs were rigidly registered by optimizing the mutual 

information (MI) metric (Wells et al 1996).

Based on the polynomial attenuation mapping (equations 6 and 7), the projections were then 

decomposed, using a custom MATLAB code, into equivalent thicknesses of PMMA and Al. 

New intensity projections for each VM were created by weighting the basis material 

projections by the material specific linear attenuation coefficients of the chosen energies (50, 

80, 100 and 150 keV) and appropriate thickness values. These values were substituted into 

the following equation:

I = I0 e−μAltAl − μPMMAtPMMA . (8)

Additionally, RED images were produced by replacing the attenuation coefficient of Al and 

PMMA by their corresponding RED values in the decomposed projections (Men et al 2015).

The bowtie filter modifies the spectrum in a non-uniform way, therefore a positional-

dependent approach needs to be performed. In order to compensate for the bowtie filter, 

rotational FS images were obtained with the bowtie in place. The wobbling effect from the 
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bowtie (Zheng et al 2011) was taken into account by acquiring the scans in both the 

clockwise and counter-clockwise direction. As described previously, both scatter correction 

and image registration were performed prior to material decomposition of the bowtie 

images. VM/RED projections of the bowtie were created using the same approach described 

previously (Figure 1). Bowtie air normalization images were computed for 10 sectors, by 

averaging all air projections having the bowtie within a 36° sector. This was performed for 

both rotation directions. These VM bowtie images were placed in the respective air 

calibration folder within iTools. The program then normalized all projections with the 

bowtie air normalization image of the appropriate gantry sector. This normalization removed 

the bowtie from the VM/RED projections leaving only the object to be reconstructed. 

Conceptually, this is equivalent to subtracting the material thickness images of the bowtie-

only measurements.

VM/RED projections were then loaded into iTools software for volumetric image 

reconstruction at the specified energies, using FDK (Feldkamp et al 1984) and iterative 

reconstruction with medium noise suppression with 0.5×0.5×2.0 mm3 voxels (detail of 

Varian’s iCBCT can be found in Laugeman et al 2019 and Mao et al 2019). Compared to the 

standard CBCT image reconstruction framework, the scatter correction and analytical 

spectrum correction (beam hardening correction) steps were removed. The former was 

removed because the scatter correction was already applied to the original projections and 

the latter was not used as the VM projections consisted of a single energy (not a spectrum). 

Moreover, the beam hardening correction was inherently taken into account during the 

decomposition process. As mentioned previously, iTools performs a normalization of the 

projections to the correspondent VM/RED bowtie image.

In order to assess the consistency of the Hounsfield Units (HU) values generated for VM-

CBCT, a calibration was used to produce theoretical HU values according to the nominal 

linear attenuation coefficient values μVM of the Catphan 604 inserts provided by the vendor 

(The Phantom Laboratory Incorporated 2015). Theoretical HU values for each VM image 

(HUVM) were determined using the following equation:

HUVM = 1000(μVM − μWater
μwater

) (9)

where μVM and μWater are linear attenuation coefficients of the measured insert and water, 

respectively, at a particular VM value. The theoretical values extracted from equation 9 were 

used to determine the slope and intercept for our VM-CBCT HUVM calibration for each 

energy evaluated. Before reconstructing the VM-CBCT, the calibration curves for HUVM 

values were defined inside the reconstruction framework for each chosen energy. RED 

images were reconstructed using a similar approach.

2.5. Contrast-to-Noise Ratio

The VM images provide data at a particular energy value, and may provide improved soft 

tissue contrast (Noid et al 2018), particularly at low energies. However, the increased 

contrast often comes at the expense of increased image noise (Gondara 2016, Hatton et al 
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2009, Mentl et al 2017, Chen et al 2017). To evaluate this effect, the contrast-to-noise ratio 

(CNR) was assessed and defined as:

CNR = sins − sbg
σmean

(10)

where Sins is the average CT number inside the insert with a circular region-of-interest (ROI 

- 242 pixels), Sbg is the average CT number for the background (region without inserts), and 

σmean is the mean standard deviation within the insert ROI. CNR values were calculated 

within the sensitometry slice of the Catphan 604 for the VM-CBCT images after FDK and 

iterative reconstruction. For comparison, these quantities were also calculated for the 80 and 

140 kVp images reconstructed inside iTools, using standard FDK and iterative 

reconstructions with medium noise suppression.

3. RESULTS

3.1. Material Decomposition

The model for mapping the attenuations was evaluated and fit errors over all values used for 

the calibration are shown in figure 2. The error maps show the difference between the actual 

thicknesses used for the attenuation calculation and the polynomial fit, over a larger 

thickness range, expected to include most clinical situations. Within the fitting range (red 

rectangle), the residual errors are well below 1 mm for both materials. Outside the fitting 

range, even for large material thicknesses, such as 500 mm of PMMA and 30 mm of Al, the 

errors are within 2 mm. Of note, the errors of the two material thicknesses tend to be in 

opposite directions, thus reducing the total error when the materials are combined to create 

VM/RED projections. An example of the material decomposition for the Catphan 604 into 

equivalent thicknesses of Al and PMMA is shown in Figure 3.

3.2. VM-CBCT

Figure 4 shows the reconstructed images of the Catphan 604 inserts for each selected VM. 

The theoretical and measured HUVM for each insert are summarized in Table 1. The inserts 

listed in the table begin with air, located at the 12 o’clock position on the figure, and proceed 

in a clockwise manner. Note that for the air inserts, the measured value of exactly −1000 HU 

is caused by the HU mapping implementation of the reconstruction, which clips values 

below −1000 HU. Following FDK image reconstruction, the HUVM resulted in RMSE of 

20.5, 5.7, 12.8 and 21.7 HU for 50, 80, 100 and 150 keV respectively. After iterative image 

reconstruction, the HUVM resulted in RMSE of 21.1, 5.8, 11.3 and 20.5 HU for 50, 80, 100 

and 150 keV respectively.

The largest errors were observed for the high-density materials at lower energies (50% bone 

and Teflon). These errors were most likely due to uncertainties during the SKS scatter 

correction which is a water-based approach. Thus the scatter through high-density materials 

may not be modeled accurately (Maslowski et al 2018). Additionally, a polynomial fit is an 

approximation and these high density inserts may not be effectively modelled using the 

approach by Alvarez and Macovski (Alvarez and Macovski 1976). The materials with the 

smallest differences (excluding air inserts), across all energies, between theoretical and 
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calculated values were the LDPE and polystyrene inserts. This effect may also be related to 

the HU calibration process, which tends to reduce errors for inserts in the mid HU range.

With respect to the individual VM images, the 50 keV image had the largest dynamic range 

in HUVM ranging from −1000 to +1063. This is expected as the photoelectric effect is 

dominant at low energies, resulting in attenuation coefficient related to Z3 of the materials. 

At 150 keV, the range in HUVM is −1000 to +860.

3.3. Contrast-to-Noise Ratio

The results for the CNR are presented for all energies in figure 5. The measurements were 

made for each insert, excluding air, Teflon and 50% Bone, since these are much higher 

contrast inserts and it was decided to focus on inserts with attenuation coefficients more 

similar to soft tissue. The background values were obtained from a circular region of the 

phantom without the inserts. For FDK reconstruction, the largest relative increase in CNR 

was from 6.2 (80 kVp) to 10.3 (50 keV) for the LDPE insert and the smallest relative 

increase in CNR was from 12.0 (80 kVp) to 15.2 (50 keV) for the Delrin insert. For the 

Acrylic (PMMA) insert, that mimics soft-tissue, the increase was from 2.8 (80 kVp) to 3.6 

(50 keV). Overall, for the FDK reconstruction, the 50 keV image resulted in a mean 

improvement of 43% and 63% of the CNR compared to 80 kVp and 140 kVp respectively, 

for the materials shown.

Following iterative reconstruction, the relative largest increase in CNR was from 10.2 (140 

kVp) to 24.8 (50 keV) for the 20% Bone insert and the smallest relative increase in CNR 

was from 18.9 (140 kVp) to 21.8 (50 keV) for the Delrin insert. For acrylic, the 

improvement was from 3.6 (140 kVp) to 6.6 (50 keV). The 50 keV image resulted in a mean 

improvement of 41% and 71% of the CNR compared to 80 kVp and 140 kVp respectively, 

for the materials shown.

3.4. Relative Electron Density Images

By combining the equivalent thicknesses of Al and PMMA weighted by their respective 

relative electron density, RED images were created. This method reduces errors by avoiding 

the HU-RED conversion on single energy kVp images (Hatton et al 2009). For each insert, 

RED values were measured inside a circular ROI, as described previously. The measured 

RED values are presented and compared to reference values provided by the Catphan 604 

vendor in Table 2. Overall, the average percentage difference between theoretical and 

measured values was 0.0 ± 1.8%. The measured median percent error was 0.2%. All values 

were obtained using FDK reconstruction. Iterative reconstruction did not result in any 

significant differences (data not shown).

4. DISCUSSION

In this study, that is the first of its kind, we obtained FS DE-CBCT scans using the OBI of a 

commercial linear accelerator. The projections were subsequently processed off-line, using a 

material decomposition approach, allowing for the creation of VM and RED images. The 

HUVM and RED values from these images were compared with theoretical values, and 

showed good overall agreement. Previously, the evaluation of DE-CBCT has been studied 
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mainly on bench-top systems (Li et al 2013a, Iramina et al 2018, Zbijewski et al 2014), and 

more recently on a Synergy linear accelerator (Elekta, Stockholm, Sweden)(Men et al 2017). 

Li et al.(Li et al 2013a, 2012). These approaches used a material decomposition approach 

based on attenuation measurements on scatter-corrected calibrations images of physical step 

wedges. Iramina et al.(Iramina et al 2018) used a filter-based DE separation technique on a 

bench-top micro-CBCT system. The authors evaluated a split-filter and alternate switching 

filters during image acquisition for spectral separation, and found the latter to be useful for 

metal artifact reduction. Zbijewski (Zbijewski et al 2014) et al. investigated the use of 

differential filtering and regularization for DE-CBCT material classification as a function of 

iodine concentration. This study was also performed on a bench-top system, and 

demonstrated a material classification accuracy over 90%. Kuo Men et al. (Men et al 2017) 

described a dual scan image acquisition, the creation of a look-up-table for basis material 

decomposition to produce RED images. However, none addressed the challenges of using 

DE-CBCT with the bowtie filter, which is highly desirable clinically (Mail et al 2009). 

Moreover, our studies were obtained using a FS acquisition on a linac, thus reducing the 

potential of motion artifacts when using a dual scan approach.

Compared to material decomposition calibration using a physical step wedge phantom, the 

virtual phantom allows for a much larger thickness range with user selected thickness 

increments. Moreover, this method avoids errors derived from imperfect scatter correction 

(Maslowski et al 2018), especially for thicker regions of a physical phantom. Within the 

fitting range, 0–24 mm for Al and 0–450 mm for PMMA, the residual errors were within 1 

mm for both materials. The errors from the material mapping for the two materials tended to 

be in the opposite directions, which results in a total error reduction when the materials are 

combined in VM/RED projections. Therefore, our theoretical calibration is capable of 

providing material decomposition, being a fast and robust way to address this fundamental 

step for VM/RED image production. Finally, the theoretical approach allows for verification 

of the fit quality beyond the thickness range used for the least-square fit. However, such an 

approach requires detailed knowledge of x-ray spectra and detector response. An alternative 

approach to the presented calibration uses maximum likelihood basis-component 

decomposition (Schlomka et al 2008).

Overall, the HUVM values generated from our approach agree well with theoretical values. 

For the range 50–150 keV, the RMSE of 16.5 (FDK) and 16.0 (iterative) HU values are 

similar to those found in the literature. Zucca et al. (Zucca et al 2016) observed HUVM 

RMSE values of 26.8 HU and 13.4 HU, for GE and Siemens DE-CT scanners, respectively. 

In their study, VM images were created from 40–140 keV. The maximum RMSE values 

observed were 43.9 and 35.8 for the high Z material, for both scanners respectively. Sellerer 

et al. (Sellerer et al 2018) compared different DE-CT scanners using an abdominal phantom. 

The comparison was made between three types of DE-CT scanners: dual-layer CT (DLCT), 

rapid-kVp-switching CT (KVSCT) and dual-source CT (DSCT). Similar to our study, the 

authors concluded that the HU values agreed well with theoretical results.

VM-CT has been studied to define the optimal energy for tumor signal-to-noise (SNR), 

which would benefit clinical follow-up and improve contour delineation (Wichmann et al 
2014, Albrecht et al 2015, Lam et al 2015). Further studies are required on VM-CBCT to 
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determine the optimal energy for tumor and soft tissue contrast for each anatomical site. 

Wang et al. (Wang et al 2019) described a clinical protocol to determine the optimal VM in 

twin beam CT for organ segmentation of head-and-neck patients. In general, low energy VM 

images can provide enhanced image contrast, which in turn may result in improved organ 

segmentation (Lütgendorf-Caucig et al 2011, Lu et al 2011). Bazalova et al, demonstrated 

that DE imaging may also provide improved dose calculations compared to using single 

energy CT (Bazalova et al 2008); therefore the demonstrated accuracy in this study can 

potentially contribute to improved CBCT dose calculations.

In this study, RED images were created by replacing the μ values of the basis materials with 

the corresponding RED values when creating the projections. Following image 

reconstruction, RED values were measured within the inserts on the sensitometry slice of the 

Catphan 604 phantom. Compared to the reference values provided by the vendor, our 

method obtained a mean percent error of 0.0 ± 1.8%. The largest uncertainties were 

observed for the bone inserts, which are known to be a problematic region for correct RED 

and RSP measurement (Matsufuji et al 1998, Kanematsu et al 2012, Peng et al 2016). 

Nevertheless, the results for the other inserts compare well to the 2% maximum error 

observed in the Men et al. (Men et al 2015) study. The mean error measured for our RED 

estimation method was 0.00 ± 0.02 which compares well with Schyns et al. (Schyns et al 
2017) who observed a mean error of 0.01 ± 0.03. In that study, they used 50 and 90 kVp 

with an integrated CBCT on a small animal irradiator that acquired the images 

consecutively. Our median error of 0.22% for RED compares favorably to the 1.4% found by 

Shen et al. (Shen et al 2018) which used 3 distinct energies.

The results of using the iterative CBCT reconstruction improved CNR by reducing image 

noise, consistent with the work published by Mao et al. (Mao et al 2019). The noise 

reduction improved the CNR values of the 50 keV images by approximately 71%, for the 

measured inserts, compared with the 140 kVp images. Note, however, that the exact amount 

of noise reduction related to the iterative reconstruction is somewhat arbitrary, since it 

depends on the selected noise suppression settings.

An important consideration of the proposed method is that the scatter correction performed 

on the projections uses a water-based approach. Therefore, a projection of the Catphan with 

high-density inserts would be interpreted and corrected as water slabs. This effect may 

explain the largest error found for HU values of high-density materials at lower energies, 

since we have a larger contribution of the Al base material when weighting the decomposed 

thicknesses into a VM projection. Future studies will involve the use of more sophisticated 

scatter correction algorithms, such as Acuros (Maslowski et al 2018, Wang et al 2018).

An advantage of our approach is that it uses the Varian image reconstruction algorithms, 

which are clinically available and computationally efficient. Therefore, this method allows 

one to decide the best energy for a desired task, and create a VM-CBCT in a timely manner 

for clinical applications such as image-guidance, treatment planning, dose recalculation for 

ART (Hudobivnik et al 2016, Zhu and Penfold 2016, Vilches-Freixas et al 2017, Men et al 
2017, Peng et al 2016, Vaniqui et al 2017), among other applications discussed in the 

literature (Patino et al 2016, Fredenberg 2018, Forghani et al 2017, Van Elmpt et al 2016, Yu 
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et al 2012). The iTools software allows for integration of a MATLAB script within its image 

reconstruction pipeline, which would completely automate our basis material decomposition 

and VM-CBCT production method.

There are a number of limitations with this study. First, the full scan takes approximately 

one minute. While this works well for phantoms, there can be a significant amount of organ 

or patient motion during the image acquisition. However, the implementation of FS DE-

CBCT avoided the additional second scan used in a previous study (Men et al 2017). 

Additionally, the time can be further reduced by using half-arc scans or faster CBCT scan 

times (Mao et al 2019). Another limitation is that scans were obtained using a full-fan 

technique, resulting in a limited field of view (FOV). To facilitate the calibration, we 

assumed the beam spectra were spatially uniform, and the heel effect was not taken into 

account. To take into account a larger FOV, a half-fan scan, with the detector offset, would 

be required. In the latter case, the calibration process may exhibit a positional dependence 

that needs to be taken into account. Also, the high- and low-energy projections were 

acquired consecutively with a separation of approximately 0.55 degrees, resulting in the 

need to align the images prior to basis material decomposition. Thus, future studies are 

required to determine whether frame interpolation or an increased frame rate would present 

any improvement to current results. Future directions may also include determining the 

optimal kVp/mA settings for imaging with fast-kV switching.

5. CONCLUSION

We presented a method for obtaining FS DE-CBCT images using the OBI of a linear 

accelerator including the effects of the bowtie filter. The creation of VM and RED images 

increases the dynamic range of CBCT images, and provides additional data that may be used 

for adaptive radiotherapy, and on table verification for radiotherapy treatments.
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FIG.1. 
VMCBCT/RED image reconstruction steps. FS projections at low- and high-energies are 

acquired. Scatter correction is applied to the projections, rigid image registration is 

performed and the calibration functions are used to decompose the projections into 

thicknesses of Al and PMMA basis materials to be recombined. The VM/RED intensity 

images of the bowtie are used for log normalization before image reconstruction to remove 

the bowtie from the projections.
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FIG. 2. 
Representation of the 3rd order polynomial fit errors of PMMA thickness (left) and the Al 

thickness (right). The least square fit was based on material thickness pairs covering a range 

of 0 – 450 mm PMMA and 0 – 24 mm Al, as indicated by the red rectangle.
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FIG. 3. 
Projection images representing the thicknesses of Al (left) and PMMA (right) of the Catphan 

604 following material decomposition. On the left, the bright part at the borders correspond 

the thickest part of the bowtie filter. The displayed Al thicknesses vary from 0 – 30 mm and 

PMMA thicknesses from 0 – 200 mm.
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FIG. 4. 
VM-CBCT images derived using our method. The FDK reconstructions are shown on the 

top row and iterative reconstruction on the bottom. Window/Level: [−1000/ 1251].
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FIG. 5. 
CNR measurements after FDK (stripes) and iterative reconstruction for 50, 80, 100 and 150 

keV VM-CBCT and 80 and 140 kVp CBCT.
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Table 1

HU values comparison between theoretical and VM-CBCT for the energies of 50, 80, 100 and 150 keV.

50 keV 80 keV

Theoretical FDK Iterative Theoretical FDK Iterative

Air (Upper) −1000 −1000 −1000 −1000 −1000 −1000

Teflon 1030 1061 1063 913 916 920

Delrin 320 343 343 351 346 343

20% Bone 298 307 309 146 156 152

Acryllic 79 79 78 122 109 110

Air (Lower) −1000 −1000 −1000 −1000 −1000 −1000

Polystyrene −98 −91 −93 −32 −33 −28

LDPE −155 −160 −160 −90 −84 −85

50% Bone 1092 1046 1043 545 544 540

PMP −238 −257 −255 −179 −178 −177

 RMSE 20.5 21.1 5.7 5.8

100 keV 150 keV

Theoretical FDK Iterative Theoretical FDK Iterative

Air (Upper) −1000 −1000 −1000 −1000 −1000 −1000

Teflon 895 886 889 874 859 860

Delrin 354 342 336 354 334 333

20% Bone 120 130 131 95 107 109

Acryllic 132 108 116 141 109 113

Air (Lower) −1000 −1000 −1000 −1000 −1000 −1000

Polystyrene −24 −20 −20 −11 −11 −15

LDPE −75 −73 −75 −68 −69 −69

50% Bone 441 469 465 354 408 405

PMP −165 −166 −166 −159 −158 −157

 RMSE 12.8 11.3 21.7 20.5
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Table 2

Reference and measured RED values. The measurements were taken inside a circular ROI on a Catphan 604 

reconstructed slice containing all inserts.

Reference FDK Percent Difference

Air (Upper) 0.001 0.001 0.0%

Teflon 1.868 1.856 0.7%

Delrin 1.363 1.340 1.7%

20% Bone 1.084 1.101 −1.6%

Acrylic 1.147 1.120 2.3%

Air (Lower) 0.001 0.001 0.0%

Polystyrene 0.998 0.994 0.4%

LDPE 0.945 0.942 0.3%

50% Bone 1.312 1.365 −4.0%

PMP 0.853 0.852 0.1%

Mean % difference 0.0%

Standard deviation 1.8%
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