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REVIEW

Preclinical and Clinical Development of 
Noncoding RNA Therapeutics for Cardiovascular 
Disease
Cheng-Kai Huang, Sabine Kafert-Kasting, Thomas Thum

ABSTRACT: RNA modulation has become a promising therapeutic approach for the treatment of several types of disease. The 
emerging field of noncoding RNA-based therapies has now come to the attention of cardiovascular research, in which it 
could provide valuable advancements in comparison to current pharmacotherapy such as small molecule drugs or antibodies. 
In this review, we focus on noncoding RNA-based studies conducted mainly in large-animal models, including pigs, rabbits, 
dogs, and nonhuman primates. The obstacles and promises of targeting long noncoding RNAs and circRNAs as therapeutic 
modalities in humans are specifically discussed. We also describe novel ex vivo methods based on human cells and tissues, 
such as engineered heart tissues and living myocardial slices that could help bridging the gap between in vivo models and 
clinical applications in the future. Finally, we summarize antisense oligonucleotide drugs that have already been approved by 
the Food and Drug Administration for targeting mRNAs and discuss the progress of noncoding RNA-based drugs in clinical 
trials. Additional factors, such as drug chemistry, drug formulations, different routes of administration, and the advantages 
of RNA-based drugs, are also included in the present review. Recently, first therapeutic miRNA-based inhibitory strategies 
have been tested in heart failure patients as well as healthy volunteers to study effects on wound healing (NCT04045405; 
NCT03603431). In summary, a combination of novel therapeutic RNA targets, large-animal models, ex vivo studies with 
human cells/tissues, and new delivery techniques will likely lead to significant progress in the development of noncoding 
RNA-based next-generation therapeutics for cardiovascular disease.
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It is well known that <2% of the human transcriptome 
encodes protein-coding RNAs, whereas the major-
ity are noncoding RNAs (ncRNAs), including ribo-

somal RNA, tRNA, microRNA (miRNA, or miR), long 
noncoding RNA (lncRNA), circular RNA (circRNA), and 
other small RNAs.1,2 Over the past 2 decades, there 
has been increasing evidence that ncRNAs act as key 
players in the onset and progression of cardiovascular 
diseases (CVDs).3–5 As the ncRNA research field has 
progressed, researchers have developed complex tools 
to modulate these ncRNAs with the aim of establishing 
novel, next-generation strategies to combat CVDs.6 For 
example, some of the first miRNA or lncRNA targets 
identified in cardiac remodeling were miR-21 and the 

lncRNA Chast.7,8 Therefore, ncRNA-orientated next-
generation drugs might offer a novel therapeutic option 
for CVDs, for which innovations have been scarce in 
the last few decades.

CVDs are the main cause of death in both Europe 
and the United States, according to Atlas (European 
Society of Cardiology) and the Centers for Disease 
Control and Prevention (CDC, United States).9,10 One of 
the drawbacks to develop new therapeutic innovations is 
that most observations have only been made in in vitro 
systems or small animal models (eg, rodents) but have 
not yet been replicated or have failed to be replicated 
in larger animal models. Indeed, rodents exhibit sev-
eral fundamental differences in certain cardiovascular 
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physiology elements, such as heart weight, heart rate, 
blood pressure, and the coronary artery system, in com-
parison to larger animals and humans that may influence 
experimental conclusions.11,12 Excitingly, several RNA-
based drugs targeting CVD have already been approved 
by the US Food and Drug Administration, and the phar-
maceutical development of ncRNAs is also currently 
under way.13–15 To progress in clinical application, proof 
of concept and safety evaluation in large animal models, 
such as pigs and nonhuman primates, are helpful and 
often necessary steps before the start of first-in-human 
trials. Thus, in the present review, we focus on ncRNA-
targeting therapeutic studies mainly performed in large 
animals and current clinical trials.

MiRNA Studies in Large Animals
MiRNAs are a class of ncRNAs with short (≈18–22 
nucleotides) and highly conserved sequences that pre-
dominantly exist in eukaryotes. Functionally, miRNAs are 
involved in various gene regulatory mechanisms includ-
ing mRNA degradation and translational repression via 
the RNA-induced silencing complex.16 Since miRNAs 
are highly conserved, exhibit short sequences, and are 
highly abundant, they became the first class of ncRNAs 
studied in large animal models (Tables 1 and 2; Figure 1) 
and, recently, clinical trials (Table 3; Figure 1).

Pig Studies
Pigs are a popular model for mimicking human heart 
disease, especially for myocardial infarction (MI) studies, 
since the porcine heart shares many similarities with the 
human heart, including heart weight, blood pressure, and 
heart rate.11,43,44

One of the first studies that investigated miRNA thera-
peutics in large animal models targeted the miRNA miR-
92a. MiR-92a is ubiquitously expressed and has multiple 

functions in the body, including the modulation of angio-
genic pathways.29 In a mouse model, it was shown that 
miR-92a was upregulated after cardiac ischemic injury. 
Silencing miR-92a by 2’-O-methyl (2’-O-Me)-modified 
antagomir-92a significantly enhanced angiogenesis in 
vitro and in vivo. Furthermore, the inhibition of miR-92a in 
a MI mouse model reduced the infarct size and improved 
certain cardiac functions.29 Meanwhile, in an ischemia-
reperfusion injury pig model, there was a reduction in 
infarct size, less cardiomyocyte apoptosis, and better myo-
cardial function after the inhibition of miR-92a expres-
sion.18 The downregulation of miR-92a also increased 
capillary density and reduced cardiac inflammation; how-
ever, this study focused only on the short-term (three 
or seven days) effect of antagomir-92a treatment. To 
study more long-term effects and overcome the poten-
tial off-target issues of a systemic miR-92a blockade, 
Bellera et al19 delivered antimiR-92a encapsulated in 
bioabsorbable and biocompatible microspheres via 
intracoronary injections in a MI pig model. The micro-
sphere-antimiR-92a was detected mainly in the capil-
laries of the anterior myocardial wall and surprisingly 
showed no distribution to remote organs. Regarding the 
long-term effects of microsphere-antimiR-92, the treat-
ment also induced angiogenesis 1 month following MI 
induction. This data revealed that a drug meant to inhibit 
miRNAs may have higher specificity and a greater long-
term effect when modified with proper physical protec-
tions or conjugation chemistries. A miR-92a inhibitor 
was further tested in 2 phase I clinical trials (Table 3) 
and was named MRG-110 (miRagen Therapeutics, 
Inc, NCT03603431 and NCT03494712).17 MRG-110 
is expected to accelerate wound healing by improving 
blood flow via its proangiogenic properties. Indeed, Gal-
lant-Behm et al17 demonstrated in a pig model that the 
administration of antimiR-92a inhibitors significantly 
increased blood flow and revascularization in peri-
wound areas. The results of these phase 1 studies have 
not yet been published.

Another mechanism regulated by miRNAs and often 
contributing to CVD is mitochondrial dysfunction.45 
MiR-15b has been shown to be involved in mitochon-
drial dysfunction by targeting Arl2 (ADP-ribosylation 
factor-like 2). In a primary rat cardiomyocyte model, 
both cellular atrial tachypacing (ATP) levels and Arl2 
mRNA expression decreased following miR-15b over-
expression, while miR-15b inhibition reversed this phe-
notype.30 Hullinger et al20 further applied locked nucleic 
acid (LNA)-modified antimiR-15b to a MI pig model and 
showed that miR-15b inhibition restored porcine cardiac 
function. In addition to a 16-mer antimiR, researchers 
also developed a short 8-mer antimiR-15b and found 
that it efficiently suppressed miR-15b expression and 
also enhanced cardiac function. Interestingly, there were 
differences between the 2 oligonucleotide inhibitors. For 
example, treatment with a 16-mer (but not an 8-mer) 

Nonstandard Abbreviations and Acronyms

ABCA1 ATP-binding cassette transporter A1
AF atrial fibrillation
Arl2 ADP-ribosylation factor-like 2
ASO antisense oligonucleotide
ATP atrial tachypacing
CVD cardiovascular disease
EHT engineered heart tissue
hiPSC human-induced pluripotent stem cell
LNA locked nucleic acid
lncRNA long noncoding RNA
MI myocardial infarction
ncRNA noncoding RNA
SREBP sterol-response element-binding protein
VLDL very low density lipoprotein
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antimiR increased left ventricular end-diastolic pressure, 
whereas treatment with only the 8-mer antimiR signifi-
cantly reduced infarct size.20 These data indicated the 
importance of designing miRNA inhibitors to achieve an 
efficient therapeutic response.

Importantly, the pharmacological effects of anti-
miRs might be influenced by the disease condition. For 
instance, the cardiac-enriched miR-208a is encoded 
from the intron of the α-MHC gene and has been 
reported to be responsible for cardiac hypertrophy and 
fibrosis.46 Montgomery et al32 further demonstrated that 
the inhibition of miR-208a improved cardiac function in 
a hypertension-induced heart failure rat model. Eding et 
al21, however, showed that differentially expressed down-
stream genes modulated by antimiR-208a are different 
in TAC and MI rat models, and a similar stress-depen-
dent antimiR effect was also observed in a pig MI model. 
These results, therefore, suggested that the disease type 
and severity of a disease should be considered in the 
preclinical development of a miRNA drug.

Another miRNA, miR-132, was shown to be crucially 
involved in cardiac growth and autophagy.40 Indeed, miR-
132 is both necessary and sufficient for driving patholog-
ical cardiomyocyte growth, a hallmark of adverse cardiac 
remodeling. Recently, the safety, tolerability, favorable 
pharmacokinetics, dose-dependent pharmacokinetic/
pharmacodynamic (PK/PD) relationships, and the high 
clinical potential of an antimiR-132 treatment in pigs fol-
lowing myocardial infarction has been documented.23

It is known that the adult mammalian heart has no 
significant regenerative capacity following injury, caus-
ing massive cardiomyocytes loss and subsequently lead-
ing to cardiac dysfunction and heart failure. Based on a 
whole-genome miRNA library screening that compared 

postnatal day 1 and day 7 rodent hearts, miR-199a was 
identified and suggested to promote the cardiomyocyte 
cell cycle re-entry both in vitro and in vivo. The overex-
pression of miR-199a increased cardiomyocyte prolif-
eration and preserved cardiac function after inducing 
MI in mice.31 The same group next overexpressed miR-
199a in pigs after MI via the intramyocardial injection of 
adeno-associated virus-containing miR-199a.22 Indeed, 
the overexpression of miR-199a in pig hearts post-MI 
improved cardiac contractility, increased muscle mass, 
and reduced scar size; however, 70% of the adenoas-
sociated virus-miR-199a treated pigs (7 out of 10) died 
from sudden cardiac death 7 to 8 weeks after virus 
injection. Further histological analysis revealed that a 
small group of cells expressing cell proliferation markers 
(eg, Ki67) and early heart development markers (such 
as GATA4) were infiltrating the infarcted myocardium. 
These cells were poorly differentiated, highly proliferat-
ing, and immature premyocytes that likely induced the 
observed ventricular fibrillation and sudden cardiac death 
of the pigs.22 Overall, this miR-199 pig study impressively 
demonstrated the power of miRNAs in achieving biologi-
cal effects in the heart and highlighted the need for the 
careful preclinical characterization and off-target effect 
prediction of miRNA-based drugs before clinical testing.

Due to the similarity between pigs and humans regard-
ing their cardiovascular systems and physiology, (mini-)
pigs can also be valuable models for atherosclerosis. 
Based on different genetic alterations, minipigs with con-
stitutive and/or diet-dependent increases in serum cho-
lesterol have already been generated and used in drug 
testing. For instance, strains with an altered LDL recep-
tor gene or apolipoprotein E deficiency had increased 
serum cholesterol and developed atherosclerosis.47,48 

Table 1. Modulation of miRNA Expression in Different Large Animal Models

Experimental Model Therapeutic Target Therapeutic Approaches Disease Model Mechanisms Reference

Pig miR-92a antimiR Excisional wound ITGA5 de-repression 17

 miR-92a antimiR IRI Improved cardiac function 18

 miR-92a antimiR MI Long-term recovery 19

 miR-15b antimiR IRI PDK4/SGK1 de-repression 20

 miR-208a antimiR IRI Stress-dependent 21

 miR-199a AAV6-mediated overexpression MI Activation of several heart  
development markers (GATA4)

22

 miR-132 antimiR MI FoxO3 de-repression 23

Dog miR-328 AV-mediated overexpression AF CACNA1C/CACNB1 de-repression 24

antimiR

 miR-206 LV-mediated overexpression AF SOD1 de-repression 25

antimiR

Rabbit miR-1 LV-mediated overexpression AF KCNE1/KCNB2 de-repression 26

antimiR

Nonhuman primate MiR-33a/b antimiR Dyslipidemia ABCA1 de-repression 27

 MiR-33a/b antimiR (8-mer) Obesity ABCA1 de-repression 28

AF indicates atrial fibrillation; AV, adenovirus; IRI, ischemia-reperfusion injury; LV, lentivirus; and MI, myocardial infarction.
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The engineered heart tissue (EHT) made from miniature 
pigs carrying the hypertrophic cardiomyopathy mutation 
MYH7 R403Q has presented increased stiffness and 
impaired muscle relaxation.49 Mentzel et al50 investigated 
the miRNA profiles of diet-based obese minipigs and 
found several miRNAs to be potential biomarkers and 
therapeutic targets. In the future, the testing of ncRNA 
therapeutic efficacy in such disease models may provide 
important contributions to a mechanistic understanding 
and pharmaceutical exploitation of the respective RNA 
compounds.

Dog and Rabbit Studies
In contrast to pigs, dog hearts have abundant collateral 
coronary vessels and thus are not easily useable as a MI 
model.11,44,51 In contrast, dog hearts have an electrophysi-
ological system very similar to that of humans, are prone 
to develop atrial fibrillation (AF), and are thus often used 
as a preferable model for AF research.

There are a variety of methods to induce AF in dogs, 
including nicotine treatment and ATP.24,25,52,53 In an 
ATP-induced AF-dog model, miR-328 was found to be 
upregulated; moreover, the overexpression of miR-328 
via an adenoviral approach recapitulated AF phenotypes 
in healthy dogs. Additionally, computational prediction 
revealed that the calcium voltage-gated channel subunits 
α1c and β1 are 2 genes targeted by miR-328. Treatment 
with antimiR-328 significantly de-repressed the expres-
sion of CACNA1C and CACNB1 and reversed AF.24

In addition, miR-206 was shown to participate in AF 
progression. MiR-206 is a muscle-enriched miRNA and 
is also required for the regeneration of neuromuscular 
synapses. The knockout of miR-206 in an amyotrophic 
lateral sclerosis mouse model accelerated the disease 

progression.33 The miRNA profiling in an AF-dog model 
revealed that miRNA-206 was induced 10-fold com-
pared to in the control group. Additionally, the inhibi-
tion of miR-206 by lentiviral-antimiR-206 injection 
attenuated the AF-induced symptoms.25 Although neu-
ronal regeneration induced by miR-206 indicated the 
essential role of miR-206 during muscle denervation 
and reinnervation,33,34 the overexpression of miR-206 
aggravated the AF-induced symptoms. These results 
highlight that miRNAs could possess different func-
tions in different organs and sometimes exhibit spe-
cies-specific effects.

In an ATP-induced AF rabbit model, miR-1 was 
reported to promote cardiac arrhythmias and enhance 
calcium release by targeting several ion channel genes. 
These findings were also observed in mouse and rat 
models.26,35,36 The inhibition of miR-1 via lentiviral-based 
antimiR-1 infections significantly prolonged the atrial 
effective refractory period and de-repressed potassium 
voltage-gated channel (KCN) E1 and B2 expression, 2 
target genes of miR-1.26

Atherosclerosis studies have been performed in 
Watanabe heritable hyperlipidemic rabbits since their 
development/discovery in the 1970s. Meanwhile, 2 
advanced strains were generated: one showing spon-
taneous coronary atherosclerosis (Watanabe heri-
table hyperlipidemic-CA) alone and the other showing 
myocardial infarction (Watanabe heritable hyperlipid-
emic-MI).54,55 Despite certain differences from human 
pathophysiology, these animal models can be useful 
tools for the investigation of new drug candidates. How-
ever, there have so far been no reports on the profiles of 
the effect of miRNA, other classes of ncRNA, nor their 
inhibitors in Watanabe rabbits.

Table 2. The Developmental Progression of ncRNA Studies in Different Models and Clinical Trials

ncRNA

In Vitro/Small Animal Model

Large Animal Model
Clinical 

DevelopmentTarget Characterization
Proof of Therapeutic 

Concept

miR-92a Human endothelial cells17,29 Mouse17,29 Pig17–19 Yes

miR-15b Primary rat cardiomyocytes30  Pig20  

miR-199a Primary rat/mouse cardiomyocytes31 Mouse31 Pig22  

miR-208a  Rat32 Pig21  

miR-328   Dog24  

miR-206 Mouse33  Dog25  

Rat34

miR-1 Primary rat cardiomyocytes35 Rat36 Rabbit26  

miR-33 8 human cell lines and 2 mouse cell lines,37 Mouse37–39 Nonhuman primate27,28 Yes

2 human cell lines and 1 mouse cell lines38

miR-132 Primary rat/mouse cardiomyocyte and  
2 mouse cell lines40

Mouse23,40 Pig23 Yes

lncRNA CHROME 3 human cell lines and primary human 
hepatocytes41

 Nonhuman primate 
(observational)41

 

lncRNA H19 Human aortic smooth muscle cells42 Mouse42 Pig (observational)42  

lncRNA indicates long noncoding RNA; and ncRNA, noncoding RNA.
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Nonhuman Primate Studies
Chronic heart failure, subacute MI models, as well as mod-
els of atherosclerosis have also been studied in nonhuman 
primates56,57; however, due to ethical and financial issues, 
primates are not frequently used in cardiovascular research.

The transcription factor SREBP (sterol-response ele-
ment-binding protein) regulates genes involved in choles-
terol biosynthesis, such as ABCA1 (ATP-binding cassette 
transporter A1). A loss of ABCA1 expression can cause 
Tangier disease, which is characterized by a low level of 
circulating HDL.58 Najafi-Shoushtari et al and Rayner et 
al showed that the human SREBP genome locus tran-
scribes not only mRNA but also 2 miRNAs, miR-33a 
and miR-33b. MiR-33 inhibits the expression of ABCA1, 
which leads to circulating HDL-C reduction and, there-
fore, the silencing of miR-33 increased HDL-C expres-
sion in a mouse model.37–39 Despite the promising results 
of developing miR-33 as a therapeutic target against dys-
lipidemia and atherosclerosis, its clinical progress is lim-
ited. MiR-33b, which is encoded from the SREBP1 gene 
locus, only exists in large animals and not in mice. This 
difference may also significantly affect the results stud-
ied using knockout mouse models or insulin response 
experiments in mice.59 To solve this issue, Rayner et al27 
injected 2’-fluoro/-O-methoxyethyl (2’-F/MOE)-modified 

antimiR-33a/b subcutaneously to treat African green 
monkeys (Chlorocebus aethiops) with dyslipidemia. They 
found the same results as observed in the mouse model: 
the knockdown of miR-33a/b increased ABCA1 expres-
sion and plasma HDL-C levels. Interestingly, beyond 
cholesterol metabolism, they also found genes involved 
in fatty acid oxidation and biosynthesis to be regulated. 
These effects resulted in the reduction of plasma VLDL 
(very low density lipoprotein) triglyceride levels, a new 
finding that was not observed in the mouse model.27

Another study employed subcutaneous administration 
of short seed-targeting 8-mer antimiRs in obese Afri-
can green monkeys.28 In this study, the de-repression of 
several miR-33 target genes, including ABCA1m were 
observed, plasma HDL-C levels were elevated, and no 
adverse effects were noticed.28 These 2 studies per-
formed in nonhuman primates provided evidence that the 
inhibition of miR-33a/b to raise plasma HDL-C levels 
could be a promising therapeutic strategy for the treat-
ment of dyslipidemia.

LncRNA and circRNA Studies in Large Animals
LncRNAs are another class of ncRNAs with longer (>200 
nucleotides) but less conserved sequences.60 Having 

Figure 1. Scheme of oligonucleotide-based RNA delivery.
A, AntimiRs (miRNA inhibitors) can be modified with different chemical modifications, including locked nucleic acids (LNAs) and sugar backbone 
modifications (2’-O-Me, 2’-F/MOE, and 2’-O-MOE), while miRNA can also be enhanced via miRNA mimics. To inhibit mRNAs or long noncoding 
RNAs (lncRNAs), short hairpin RNAs (shRNAs), or LNA/GapmeR are commonly used. B, Adenovirus, adenoassociated virus (AAV), and lentivirus 
particles can be used as a vector to silence or overexpress target genes. In addition to viral-based delivery, liposomes or nanoparticles are another 
way through which to deliver antimiRs or miRNA mimics. C, Various delivery approaches can be applied in different species. For example, atrium 
injection is performed in rabbits and dogs with atrial fibrillation. For pigs, intravenous injection, catheter-based injection, and intracoronary injection 
are commonly used. Subcutaneous injection can be also used. Clinically, subcutaneous injection, intravenous injection, and intradermal injection 
are more attractive and easier delivery routes in humans.
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various biological functions, lncRNAs are certainly prom-
ising therapeutic targets; however, translational studies 
in animals are difficult with this class of ncRNA due to 
their poor sequence conservation between species.61,62 
Thus, only well-conserved lncRNAs seem promising as 
translationally relevant disease targets for new thera-
pies. Indeed, the number of conserved lncRNAs is still 
quite limited.8,63,64 As the degree of DNA/RNA sequence 
conservation among different species is commonly used 
to predict the biological functions of the species,65,66 it 
explains why lncRNA-targeting experiments are not fre-
quently performed in large animals. Studies have begun 
to identify novel un-annotated lncRNAs in different large 
animal models. Kern et al analyzed lncRNAs from three 
farm animals (chicken, cattle, and pigs) and found that 
half were not annotated in NCBI or other databases. As 
expected, the lncRNAs from these species were less 
conserved. Interestingly, researchers also found that 
many have locus-conserved transcripts (a transcript with 
a diverged sequence but the same genomic position as 
its neighboring genes), which might indicate similar bio-
logical functions between themselves.67 In dogs, Béguec 
et al analyzed the lncRNA profile of 26 different tissue 
types and developed a tool called FEELnc.68 Surprisingly, 
around 900 lncRNAs (10%) were highly conserved 
to human transcripts, including well-known HOTAIR, 
MALAT1, and NEAT1.68,69 In addition to these specific 
species, large-scale lncRNA analysis in >7 divergent 
species, from zebrafish to humans, was also reported.70,71

The dynamic expression of lncRNAs in the progres-
sion of heart disease is also important. In a porcine isch-
emic heart model, RNA-seq was performed to compare 

the expression of lncRNAs between healthy and isch-
emic zones of the heart. Four hundred fifty lncRNAs 
were identified that were not previously annotated and 
were differentially regulated after ischemic injury. Among 
these novel lncRNAs, transcripts that are transcribed 
antisense to myocardial transcription factors, such as 
GATA4, GATA6, and KLF6, were identified and observed 
to potentially have important biological functions in the 
heart.72 An experimentally validated database (a heart 
disease-related, noncoding RNA database, HDncRNA) 
developed by Wang et al contains around 2000 lncRNAs 
that are associated with heart diseases in 6 species, 
including humans, rodents, pigs, calves, and dogs. This 
database is equipped with a web-based interface that 
allows users to easily search for lncRNA candidates, 
directing them to the original relevant publications.73 
Recently, Wu et al74 analyzed the lncRNA-mRNA net-
work in carotid atherosclerotic rabbit models and dis-
covered several novel lncRNAs involved in the disease 
progression of atheroscelrosis.

In spite of the obstacles mentioned above, there have 
been 2 lncRNA studies performed in large animals. 
LncRNA CHROME, identified by Hennessy et al,41 was 
found to be upregulated in nonhuman primates with 
atherosclerotic vascular disease. Further in vitro data 
showed that the overexpression of CHROME in HepG2 
cells reduced miR-33 expression and de-repressed the 
miR-33-targeted genes, including ABCA1, while the 
inhibition of CHROME by shRNA or LNA GapmeR in 
primary human hepatocytes and HepG2 cells had oppo-
site effects. Likewise, Li et al42 demonstrated that the 
expression of lncRNA H19 increased in 2 abdominal 

Table 3. Clinical Trials With ncRNA-Based Therapeutics

Targeted 
miRNA

Developmental 
Drug

Chemistry/ 
Mechanism Indication Sponsor/Collaborators Clinical Trial Identifier Phase

miR-92a MRG-110 LNA antimiR Wound healing miRagen Therapeutics, Inc NCT03603431 Phase I

NCT03494712 Phase I

miR-16 Mesomir TargoMir Malignant pleural 
mesothelioma

Asbestos Diseases Research 
Foundation/EnGeneIC Limited

NCT02369198 Phase I

miR-34a MRX34 miRNA mimic Cancer/melanoma 
(advanced)

Mirna Therapeutics NCT01829971 Phase I

NCT02862145 Phase II

miR-122 Miravirsen Various Hepatitis C Various NCT01646489 Phase I

RG-101 NCT00979927 Phase I

Other NCT00688012 Phase I

NCT01200420 Phase II

miR-155 Cobomarsen  
(MRG-106)

LNA antimiR Blood cancer (eg, 
chronic lymphocytic 

leukemia)

miRagen Therapeutics, Inc NCT02580552 Phase I

NCT03713320 Phase II

NCT03837457 Phase II

miR-21 RG012 AntimiR Alport syndrome Sanofi Genzyme NCT03373786 Phase I

NCT02855268 Phase II

miR-29b Remlarsen  
(MRG-201)

miRNA mimic Cutaneous fibrosis miRagen Therapeutics, Inc NCT02603224 Phase II

miR-132 CDR132L AntimiR Heart failure Cardior Pharmaceuticals GmbH NCT04045405 Phase Ib

LNA indicates locked nucleic acid; and ncRNA, noncoding RNA.
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aortic aneurysm mouse models as well as a low-density 
lipoprotein receptor (LDLR) knockout mini-pig aneurysm 
model. The in vitro knockdown of H19 decreased the 
apoptotic rate of human smooth muscle cells. Overall, 
further and more therapeutic experiments in large ani-
mal models are needed, since no lncRNA therapeutic 
approach has been performed in large animals thus far.

Despite their low sequence conservation, lncRNAs 
have higher tissue specificity. According to a study 
published by Cabili et al,75 78% of lncRNAs may be 
tissue-specific, which is much higher than the percent-
age reported for mRNAs (19%). This conclusion is also 
supported by a recently published large-scale RNA-
seq analysis that revealed 51% to 63% of lncRNAs 
to be tissue specific.71 This specificity makes certain 
conserved lncRNAs promising targets for drug devel-
opment, since drugs designed to act based on tissue-
specific lncRNAs and their interaction may produce 
less remote off-target effects.

Circular RNAs (circRNAs) are another novel class of 
RNA molecules, have a structure featuring covalently 
linked 3’ to 5’ ends,76 and are highly abundant in the 
human genome.2,77 A review published recently summa-
rized the role of circRNAs in cardiovascular biology. In 
this review, Aufiero et al78 listed several circRNAs with 
functions in rodent heart disease models. For example, 
a circRNA termed heart-related circRNA (HRCR) was 
reported to have cardioprotective functions via spong-
ing miR-223. The overexpression of HRCR inhibited 
miR-223 activity and de-repressed the downstream 
protein ARC and therefore attenuated hypertrophic 
responses.79 Hansen et al80 reported that a circRNA 
called ciRS-7 (currently named Cdr1as) could serve as a 
miRNA sponge and be involved in heart diseases. Later, 
Cdr1as was further proven to promote myocardial infarc-
tion by sponging miR-7.81 In addition to cardiomyocytes, 
Garikipati et al demonstrated that the overexpression 
of circFndc3b in endothelial cells enhanced angiogenic 
activity and reduced endothelial apoptosis. The car-
dioprotective mechanism of circFndc3b was to inter-
act with the RNA-binding protein FUS to regulate the 
VEGF-A signaling pathway.82 Since circRNAs stem from 
mRNAs, recently, several studies have also reported 
that lncRNA/circRNA-mRNA-miRNA networks play an 
important role in heart development and disease, such as 
AF and atherosclerosis.83–86 For example, Zhang et al86 
found 7 circRNAs that functioned in cell adhesion, cell 
activation, and the immune response, which provided an 
overall better understanding of the pathogenesis of ath-
erosclerosis. With the increasing importance of machine 
learning algorithms and artificial intelligence, we hope 
that the better interpretation of such network interac-
tions can lead to an improved understanding of ncRNA 
networks and their effects on diseases. With the help of 
network prediction, Cdr1as was also shown to regulate 
neuronal activity in brains by forming a specific ncRNA 

regulatory network together with the lncRNA Cyrano 
and miR-7/miR-671.87 High sequence conservation, 
abundant quantity, and a higher stability than mRNA are 
all other advantages of circRNA in terms of its poten-
tial to be studied in large animal models and its future 
consideration as a therapeutic target in humans.88–90 
Several studies have reported that 15% to 30% of cir-
cRNAs are conserved between 3 main species: mouse-
human, mouse-pig, and pig-human.91–93

Human EHTs and Living Myocardial Slices
Although data from large animal models may be more pre-
dictive for human cardiovascular diseases, these studies 
also continue to possess certain limitations. For example, 
large animals require larger breeding space and higher 
maintenance costs, and experimental interventions may 
be time-consuming and do not allow for high repetition. 
Such circumstance makes it difficult for researchers to 
collect enough samples in a reasonable time to achieve 
statistical significance.12,94 In addition, large animals have 
longer gestation times, which makes it difficult to gener-
ate gene knockout/knockin models, although the recent 
emergence of the CRISPR/Cas9 (clustered regularly 
interspaced short palindromic repeats/Cas9) technique 
may help solve this problem.11,95 Due to the limitations 
mentioned above, EHT and living myocardial slice mod-
els derived from human cells or tissues may serve as a 
bridge between in vitro and in vivo models (Figure 2).96,97

Since the generation of human-induced pluripotent 
stem cells (hiPSCs) was reported,98,99 studies on the dif-
ferentiation of hiPSCs into various functional cell types, 
including cardiomyocytes, have rapidly increased in 
number.100,101 However, hiPSC-derived cardiomyocytes 
(hiPSC-CMs) cultured in monolayer systems show imma-
ture and fetal phenotypes that do not reflect the adult 
heart and fail to recapitulate chronic heart disease pheno-
types.102 EHTs composed of hiPSC-CMs and additional 
supporting cells in a 3-dimensional culture system may 
better reflect a fully developed heart under correspond-
ing disease models.103,104 The EHT, sometimes mixed with 
fibroblast or endothelial cells, has shown improved adult 
phenotypes, including rod-shaped cardiomyocytes with 
well-organized sarcomere structures, systolic contrac-
tion, and inotropic responses to drug stimulation.105,106 
Tiburcy et al105 further treated isoprenaline, a β1- and 
β2-adrenoceptor agonist to hiPSC-CM EHTs, to mimic 
hypertrophic responses, which demonstrated the pos-
sibility of using EHT as heart failure and cardiac repair 
models. HiPSCs can not only be generated from healthy 
individuals but also from patients who suffering from heart 
disease. Prondzynski et al107 generated EHTs from hyper-
trophic cardiomyopathy patient-derived hiPSC-CMs, and 
the hypertrophic cardiomyopathy-EHTs showed pheno-
types including cardiac hypertrophy, hypercontractility, 
and higher myofilament calcium sensitivity. The overall 
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results exhibited the possibility of using EHTs in personal-
ized medicine approaches in the near future.

Recently, living myocardial slice technology has 
emerged as another option for further experimental 
evaluation before and in addition to large animal mod-
els or clinical trials. Here, cardiac tissue is cut into thin 
slices by a vibratome, and such slices provide a 3-dimen-
sional structure containing various cell types and exhibit 
preserved electrical and mechanical connection. This 
technology has proven to be a platform for studying elec-
trophysiology, drug screening, cardiac fibrosis, and heart 
failure in cardiac slices that are obtained from several 
animals, including rats, guinea pigs, rabbits, dogs and, 
recently, also humans.108–113 Watson et al described a 

detailed protocol for the preparation of adult ventricular 
myocardial slices with preserved cardiomyocyte viability 
(97%) and functionality for up to 1 week. The thickness of 
each myocardial slice is 100 to 400 µm, which allowed for 
oxygen and small compounds to diffuse through the slice. 
Moreover, ultrathin slices also make it possible to produce 
many experiments from the same heart and therefore 
reduce the number of animals needed in a study.97,114

Clinical Experiences With Coding and 
Noncoding RNA Therapeutics
Since the biological relevance of ncRNAs has been rec-
ognized, the cardiovascular community has begun to 

Figure 2. Workflow of 2 3-dimensional ex vivo models, engineered heart tissues (EHTs), and living myocardial slices.
A, Somatic cells are isolated from human blood cells or skin cells, reprogrammed into human induced pluripotent stem cells (hiPSCs), and 
differentiated into hiPSC-derived cardiomyocytes (hiPSC-CMs). The hiPSC-CMs are seeded onto the scaffolds to generate beating EHTs. 
Compared with a 2-dimensional cell culture system, EHTs exhibit a better structure and matured phenotypes that are similar to adult CMs. 
Through modifying the stiffness of the scaffold, different disease models, such as hypertrophic cardiomyopathy, can be established. EHTs can 
further be tested for drugs or as gene modulation tools. Not only stemming from healthy humans, EHTs can also be made from patients suffering 
from heart disease for disease modeling. B, To prepare living myocardial slices, small or large mammalian hearts, including human hearts, are 
explanted. The left ventricles or other parts of the heart are then isolated and dissected into small tissue blocks. Hundred to four hundred 
micrometers myocardial slices are sliced and used for further functional studies, for example, by treating with different drugs or adjusting the 
voltage that stimulates the contraction of the myocardial slices. Similar to EHTs, the living myocardial slices could also be prepared from diseased 
animal models. Doxo indicates doxorubicin; ISO, isoproterenol; and PE, phenylephrine.
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develop modulators of these targets as a new generation 
of cardiovascular therapeutics. In fact, RNA-based thera-
peutics were first developed in the 1990s, and the first 
Food and Drug Administration-approved RNA-based 
drug dates back to 1998, when a 21-mer phosphoro-
thionate oligonucleotide (fomivirsen) targeting CMV IE-2 
protein received Food and Drug Administration approval.14 
Since then, 6 more compounds have been approved by 
the Food and Drug Administration based on an anti-RNA 
mechanism targeting mRNAs relevant to age-related 
macular degeneration, neuromuscular disorders, famil-
ial hypercholesterolemia, and transthyretin-mediated 
amyloidosis, which is involved in heart failure due to the 
cardiac deposition of TTR amyloid fibrils.115 Thus, almost 
50% of these innovative drugs focused on indications in 
the cardiovascular field (Table 4). However, Mipomersen 
(a GapmeR targeting Apolipoprotein B-100) is no longer 
marketed in the United States, and 2 recently approved 
drugs for the treatment of transthyretin-mediated amyloi-
dosis still need to exhibit clinical success in a competitive 
market, in which the high costs of treatment could be a 
major drawback.116

Current clinical antisense-based drug developments 
are numerous (recently reviewed by Bennet et al13) and 
include CVD targets such as PCSK9 in LDL-C-hyper-
cholesterolemia (NCT01350960, NCT02597127), Apo-
lipoprotein CIII in familial chylomicronemia syndrome 
(Volanesorsen received conditional marketing approval 
in the EU; available via the Early Access Program in the 
US, NCT 03544060), or Lipoprotein A (Novartis/Akcea 
Therapeutics, NCT04023552; Amgen, NCT03626662). 
Moreover, further drugs are currently in a developmen-
tal pipeline for the treatment of CVD, targeting mRNAs 
for angiopoietin 3, factor XI, or apolipoprotein(a), among 
others.117–119 All these aforementioned therapeutic enti-
ties use an RNAseH-dependent mechanism or siRNA/
RNAi to repress the expression levels of the target tran-
script. Other drugs targeting mRNAs make use of splic-
ing modulation to improve the expression of a beneficial 
functional transcript over an altered or missing splicing 
product in the relevant disease, such as dystrophin in 
Duchenne muscular dystrophy or the SMN protein in 
spinal muscular atrophy (see Eteplirsen and Nusinersen 

in Table 4). Splicing modulation will, in principle, be a rel-
evant mechanism for lncRNAs and circRNAs upon their 
being targeted as pharmaceutical agents in the future. 
As described above, these mechanisms are currently 
subjects of intensive research.

MiRNAs have so far reached the clinical stage, 
although clinical studies using or targeting miRNAs are 
still more scarce than antisense strategies for mRNAs. 
The majority of results from the US database of clini-
cal trials (www.clinicaltrials.gov) refer to the evaluation of 
miRNA as biomarkers or prognostic factors. Still, a num-
ber of miRNAs are currently under clinical development 
and are summarized below (Table 3).

Organ Fibrosis
A compound mimicking miRNA-29a in clinical develop-
ment aims to increase the functional levels of miRNA-
29a to combat fibrosis. MiRNA-29a has been shown 
to reduce collagen expression and is downregulated 
in multiple fibrotic conditions, including, but not limited 
to, fibrosis of the heart, lungs, liver, and kidneys and 
systemic sclerosis.120 One early comprehensive study 
revealed that miR-29a plays an important role in the 
pathological remodeling of the heart after myocardial 
infarction.121 Recently, and in contrast to the proposed 
beneficial effects of miR-29a overexpression, it has been 
demonstrated that cardiomyocyte-expressed miR-29 
promotes pathological remodeling of the heart by acti-
vating Wnt signaling.122 MiRNA-29a mimic, called Rem-
larsen (MRG-201),123 was successfully tested in a phase 
I study with drug administration to 54 healthy volunteers 
(NCT02603224); currently, a phase II clinical trial target-
ing cutaneous fibrosis is being conducted to determine 
if the substance can limit the formation of fibrous scar 
tissue in certain skin diseases (NCT03601052). These 
studies could pave the way toward the investigation of 
this drug in idiopathic pulmonary fibrosis and other con-
ditions of pathological fibrosis.

MiR-21 is a profibrotic molecule discovered in 2008 
that is currently being targeted in a clinical phase II 
trial. AntimiR-21 has been described as strongly anti-
fibrotic7 and is currently clinically developed for the 
treatment of Alport syndrome, a collagen IV defect 

Table 4. FDA-Approved Antisense Drugs

Proprietary Name Active Ingredient Target/Indication Route of Administration FDA Approval Year

VITRAVENE (Novartis) Fomivirsen sodium CMV IE-2/CMV retinitis Intravitreal 1998

MACUGEN (Valeant) Pegaptanib sodium VEGF165/AMD intravitreal 2004

KYNAMRO (Kastle) Mipomersen sodium Apolipoprotein B-100/hoFH Subcutaneous 2013

EXONDYS 51 (Sarepta) Eteplirsen Dystrophin/DMD Intravenous 2016

SPINRAZA (Biogen) Nusinersen sodium SMN/SMA in infants Intrathecal 2016

ONPATTRO (Alnylam) Patisiran sodium Transthyretin/hATTR in adults Intravenous 2018

TEGSEDI (Akcea) Inotersen sodium Transthyretin/hATTR in adults Subcutaneous 2018

AMD indicates age-related macular degeneration; CMV, cytomegalovirus; DMD, Duchenne muscular dystrophy; hATTR, hereditary transthyretin-mediated amyloidosis; 
hoFH, homozygous familial hypercholesterolemia; and SMA, spinal muscular atrophy.

www.clinicaltrials.gov
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causing fibrotic kidney disease, hearing loss, and eye-
sight problems.124–126 A natural history study and a first-
in-man trial have both been successfully completed 
(NCT03373786). A phase II trial for the assessment of 
safety, tolerability, and efficacy in reducing the decline 
in renal function has been initiated in a randomized, 
double-blind, placebo-controlled design, with weekly 
subcutaneous injections of either the test substance or 
a placebo over 48 weeks (NCT02855268).

Ischemic Conditions and Heart Failure
Another compound intended to promote the growth 
of new blood vessels by inhibiting miR-92a (MRG-
110) is currently under clinical development. The ben-
eficial effects of miR-92a silencing in ischemic heart 
conditions and for the promotion of angiogenesis, as 
observed in mice and pigs, have been described above. 
A phase I trial for the investigation of an intradermal 
injection of miR-92 antimiR in wound healing and inci-
sional complications recently completed recruitment 
(NCT03603431). The safety of antimiR-92 adminis-
tration via intravenous injection has been assessed in 
healthy volunteers, but the results of the study are not 
yet publicly available (NCT03494712).

Recently, a clinical dose ascending and dose repeti-
tion phase 1b study was initiated to assess the safety, 
pharmacokinetics, and pharmacodynamic parameters 
of an antimiR-132 inhibitor in stable heart failure 
patients (NCT04045405). Preclinical data suggested 
this miRNA plays a key role in the pathological cardiac 
remodeling process.23,40

Other Clinical Developments
Another inhibitor against a miRNA, miR-155, previ-
ously also described in cardiovascular disease,127 is 
being developed for the treatment of various blood 
cancers, including, but not limited to, T-cell lymphoma 
and chronic lymphocytic leukemia. This LNA antimiR, 
called Cobomarsen (MRG-106), has reached clini-
cal phase II with 2 currently active trials, PRISM and 
SOLAR (NCT03713320, NCT03837457). Two other 
developments rely on increasing the function of miR-
16 (NCT02369198) and miR-34a (NCT01829971) in 
patients with various advanced malignancies. A phase 
I trial using TargomiRs (minicells targeted to EGFR) 
loaded with miR-16-based mimic microRNA was com-
pleted with encouraging results.128 However, the effects 
of TargomiRs in patients with malignant pleural meso-
thelioma require further investigation. One phase I trial 
with a miR-34a mimic (MRX34) enrolling 155 subjects 
was withdrawn by the sponsor after 5 serious immune-
related adverse events (NCT01829971). This illustrates 
the potential immunogenicity and off-target effects 
induced by some RNA drugs.129

An antimiR-122 has been evaluated for the treat-
ment of hepatitis C in patients who did not respond to 
pegylated-interferon alpha and ribavirin; however, its 

clinical development has so far not proceeded beyond 
phase II (NCT02508090, NCT02452814).

Drug Formulations and Different Routes of 
Administration
As mentioned above, ncRNA-based therapies have 
recently attracted increasing attention. Compared with 
other drug formulations, like small molecules or antibod-
ies, RNA therapies have several advantages. Previous 
studies have shown that many protein targets (80%–
85% of the protein-coding genes) are still “undruggable”, 
mostly scaffold proteins or transcription factors.130,131 
In contrast, 98% of the human transcriptome consist 
of noncoding RNAs; therefore, RNA therapy provides 
treatment options to those diseases with “undrug-
gable” protein targets. Drug resistance from an ABC 
transporter or from epigenetic modifications is a seri-
ous issue in treating cancer or infectious disease,132,133 
whereas ncRNA therapy has no such issues reported 
so far. Another advantage of ncRNA is the paracrine 
effect. Previous studies have shown that multiple cell 
types in the cardiovascular system generate different 
kinds of vesicles, such as microvesicles and exosomes, 
that are able to transport the ncRNAs to other organs or 
cell types. The paracrine effect provides ncRNA-based 
drugs with broader targets to the whole signaling path-
way compared with antibodies or small molecules.134,135 
Additionally, with different chemical modifications, the 
half-life of ncRNA drugs can be long (weeks to months), 
and, thus, patient dosing frequency can be decreased 
compared with small molecules or antibodies.136,137 A 
further advantage is that one or more complete disease 
pathway can be modulated by noncoding RNA-based 
therapeutic approaches.138

With respect to chemical modifications, the miRNA 
agonists and antagonists mentioned in the previous 
sections are all synthetic oligonucleotides but belong to 
different chemical classes. These range from small dou-
ble-stranded RNAs (siRNA—eg, Patisiran and miRNA 
mimic—eg, MesomiR) over antisense DNA/RNA oligo-
nucleotides with backbone modifications (eg, Fomivirsen, 
Eteplirsen). Furthermore, the second generation of anti-
sense oligonucleotides (ASOs), which contain sugar 
modifications such as 2’-O-methoxyethyl (2’-O-MOE, 
eg, Mipomersen) or an 2’-4’ ether bridge leading to a 
bicyclic sugar moiety, usually referred to as LNA, have 
also been well-developed. To maintain RNAse H cleav-
age, these therapeutic ASOs need to possess a comple-
mentary sequence target made up of DNA flanked by 
the modified residues; these entities are called GapmeR 
or chimeric LNA (eg, Miravirsen, Cobomarsen; Figure 1).

The first steps in clinical development mainly used local 
administration, for example, intravitreal for eye diseases, 
intradermal for wound healing, and intrathecal for neu-
rological disorders. Meanwhile, systemic administrations, 
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such as intravenous or subcutaneous injection, are pre-
ferred for most clinical applications but raise the ques-
tion of tissue-specific drug delivery versus off-target 
effects.139 Current nonclinical studies in heart disease 
models may make use of local administration, including 
intracoronary or intramyocardial injection, but their trans-
lation into clinical reality remains questionable and diffi-
cult (Figure 1). Therefore, different strategies have been 
exploited to direct therapeutic ASO to target tissue and 
cell types. In CVD, it may be important, depending on the 
pathomechanism of the clinical entity, to deliver the drug 
to the cardiomyocytes, endothelial cells, cardiac fibro-
blasts, or the immune cells in the heart. Viral and nonviral 
approaches are the subjects of ongoing investigations 
in RNA-based diagnostic and therapeutic strategies 
for CVD, as recently reviewed by Lu and Thum.6 While 
directing ASO drugs toward the liver via GalNAc con-
jugation or liposomal formulation has already reached a 
clinical stage, including Food and Drug Administration 
approval (Patisiran), microRNA mimics have been shown 
to specifically reach cancer cells via liposomal (MRX34) 
or TargomiR formulations (MesoMiR). However, the deliv-
ery of cardiac-specific ASO drug remains a challenge to 
be solved in the future (Figure 1).

In a systematic study involving 135 large animal pigs, 
potential differences between intravenous and intracoro-
nary applications of antimiR-132 were tested.23 Based 
on detailed plasma PK and tissue uptake measurements 

of the antimiR-132, it could be shown that there were 
no significant PK differences between these 2 routes 
of administration. However, whether this could be trans-
lated to other antimiR molecules and/or chemistries 
remains to be tested.

Virus-based approaches, especially via adenoassoci-
ated virus, are currently powerful tools for human gene 
therapy but challenging due to high antibody titers found 
in many patients, which limits the number of eligible 
patients entering clinical trials.140–143 A possible solution 
could be new capsid-modified adenoassociated viruses 
with improved specificity for delivery to the cardiovascu-
lar system and/or a decreased ability to raise an immune 
response.144–146 Cardiac specific delivery strategies are 
also currently being developed in the ongoing EU proj-
ect CardioReGenix.147

Finally, most studies have usually been performed in 
single-model systems in small rodents, hampering clini-
cal translation. Cardiovascular studies in large-animal, 
nonrodent studies or human ex vivo studies may be more 
predictive of future clinical success in next generation 
ncRNA-based therapeutics.97

CONCLUSIONS
Here, we described the state-of-the-art ncRNA-based 
therapies targeting the heart, ranging from large-animal 
heart disease models to clinical studies (Figure 3).

Figure 3. Processes of noncoding RNA (ncRNA)-based drug development.
Novel ncRNA candidates are selected from a RNA-seq profile or other ncRNA approaches40,148 and then validated in cardiovascular cells (in vitro). 
After basic characterization, the ncRNA candidates are further investigated in animal models (in vivo). Several pathophysiological animal models 
of cardiovascular complication are available in different species, ranging from small to large animals, via the application of surgical techniques, 
genetic engineering, or diet changes. Some effective yet nontoxic ncRNA candidates are selected for further clinical development. However, 
successful transitions from preclinical to clinical studies are generally small in number. Often, in vitro models are easy to apply but have limited 
clinical relevance; while in vivo models have higher clinical relevance, they are challenging to conduct and expensive. To increase the translational 
efficiency of ncRNA-based therapeutic human induced pluripotent stem cells and/or other human cardiovascular cell types and living myocardial 
slices, could be powerful tools to bridge the gap between in vivo and clinical development. IRI indicates ischemia-reperfusion injury; and TAC, 
transverse aortic constriction.



RE
VI

EW
Huang et al ncRNA Studies in Large Animals and Clinical Trials

674  February 28, 2020 Circulation Research. 2020;126:663–678. DOI: 10.1161/CIRCRESAHA.119.315856

The improvement of bioinformatic tools enhances 
our understanding of the underlying mechanisms of the 
lncRNA/circRNA-mRNA-miRNA network in CVDs. This 
then supports the discovery of novel RNA molecules, 
which can prove to be therapeutic targets and provide 
more and hopefully improved treatment options to CVD 
patients in the future. Furthermore, large animal models 
have recently been gaining increasing attention for their 
high clinical relevance; however, while being closer to 
humans than rodents, there remain limitations on the 
level of metabolism or immune system, which render 
animal studies on a whole not to be fully predictive for 
safety and efficacy in humans. Despite great efforts in 
the last few decades, promising clinical candidates con-
tinue to be eliminated from the developmental pipeline 
for safety reasons and/or a lack of efficacy in all clinical 
stages. Therefore, the rapid development of human ex 
vivo systems, such as EHTs and living myocardial slices, 
constitute new valuable tools to improve insight into the 
translatability of preclinical studies. Such ex vivo models 
will also ultimately contribute to a reduction of the num-
ber of animals used in animal studies in pharmaceu-
tical drug development. New delivery techniques with 
the aim of increasing tissue and/or cell type specific-
ity and thereby lowering off-target effects will improve 
the safety of new developmental drugs. Moreover, an 
increased understanding of certain interindividual and 
sex differences is a requirement before progress in per-
sonalized medicine.

In addition to developing techniques in the labora-
tory, it is also important to validate and qualify these 
new tools and methods to achieve standardized assays 
that can be acceptable to authorities within the regula-
tory procedure.

In summary, based on (1) in vitro models, (2) rodent 
models, (3) large animal models, (4) ex vivo studies with 
human cells and tissues, and (5) new delivery systems, 
ncRNA therapies have the potential to enable significant 
progress in the development of next-generation thera-
peutics for cardiovascular disease (Figure 3).
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