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ABSTRACT
The probability flux and velocity in stochastic reaction networks can help in characterizing dynamic changes in probability landscapes of these
networks. Here, we study the behavior of three different models of probability flux, namely, the discrete flux model, the Fokker-Planck model,
and a new continuum model of the Liouville flux. We compare these fluxes that are formulated based on, respectively, the chemical master
equation, the stochastic differential equation, and the ordinary differential equation. We examine similarities and differences among these
models at the nonequilibrium steady state for the toggle switch network under different binding and unbinding conditions. Our results show
that at a strong stochastic condition of weak promoter binding, continuum models of Fokker-Planck and Liouville fluxes deviate significantly
from the discrete flux model. Furthermore, we report the discovery of stochastic oscillation in the toggle-switch system occurring at weak
binding conditions, a phenomenon captured only by the discrete flux model.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5124823., s

I. INTRODUCTION

Networks of chemical reactions can depict how interactions
among molecules of DNA, RNA, and protein regulate gene expres-
sion. These networks, called gene regulatory networks, play impor-
tant roles in biological processes such as cell fate determination,1,2

signal transduction,3,4 and metabolic regulations.5,6 When genes,
transcription factors, signaling molecules, and regulatory proteins
are in small quantities, stochasticity plays important roles.7–9 Char-
acterizing the probability surfaces of molecules of gene regulatory
networks can help us to understand their behavior.

The general stochastic process dictated by chemical reactions
has two complementary representations, one in the form of a reac-
tion path or reaction trajectory and another in the form of a
time-evolving probability density function. The microstates of the
chemical reaction system are integer vectors of copy numbers of
different types of molecules. Specifically, the Stochastic Chemical
Kinetics (SCK) processes of reactions can be described either by

trajectories of reaction paths, which follow random-time changed
integral equations of the Poisson process,10,11 or by the time-
evolving probability density function governed by the discrete chem-
ical master equation.12–14

The Stochastic Simulation Algorithm (SSA) and related meth-
ods11,15–18 can be used to generate trajectories of reaction paths
following the random time changed Poisson integral equation. A
number of methods have also been developed, which can be used to
compute the time-evolving probability density function.19–23 Among
these, the ACME (Accurate Chemical Master Equation) method
constructs an explicit state space optimally enumerated on an
n-simplex and can be used to compute the time-evolving probabil-
ity density function for a large number of networks, with truncation
errors a priori bounded.22,23

When the microstates of the reaction system are approximated
as vectors in the continuous space, the corresponding continuous
stochastic processes can be represented either by reaction trajecto-
ries following stochastic differential equations (SDEs) such as the
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chemical Langevin equation16 or by the time-evolving probability
density governed by the Fokker-Planck equation.24–29

Ordinary differential equation models, under further simplify-
ing assumptions of large copy numbers in large volume, can describe
changes in mean concentrations of the molecular species, although
stochasticity is not taken into account.30,31

Furthermore, it is also essential to characterize the proba-
bility flux in reaction systems for understanding the biochem-
istry of living things.24,25,32–37 Probability flux and velocity field
can help us to infer the mechanisms of network functions such
as switching between cellular states32,33 and to identify barriers
and checkpoints between cellular states.28 Furthermore, the flux
and velocity fields of probability can characterize the departure
of nonequilibrium steady state from equilibrium, aiding in under-
standing of the nonlinear behavior of these networks.29,36,38 Com-
puting probability fluxes and velocity fields has also found applica-
tions in studies of stem cell differentiation,39 cell cycle,28 and cancer
development.40,41

Among early studies of probability fluxes, Hill examined reac-
tion fluxes of the discrete-state continuous-time Markov model
and introduced various forms of fluxes, including one-way tran-
sition flux, net flux, cycle fluxes, and operational flux.42 Hill’s
study and many subsequent important studies are based on a view
centered on reactions, where states correspond to specific nodes
on diagrams of kinetic reactions, representing various forms of
molecular species. We regard these models of fluxes as those of
Lagrangian fluxes. An alternative view is to center on microstates
in the state space, which are integer vectors of copy numbers. With
this viewpoint, one examines fluxes resulting from firing of dif-
ferent chemical reactions, which flow into and out of individual
fixed microstates. We regard such models of fluxes as Eulerian
fluxes.

The universal discrete flux model based on chemical stochastic
kinetics was developed in a previous study for arbitrary stochas-
tic networks of chemical reactions,37 with the Eulerian fluxes
formulated based on the discrete calculus defined for chemi-
cal stochastic kinetics. Relationships between the discrete Eule-
rian fluxes and reaction-based discrete Lagrangian fluxes were also
given. This model enables the construction of global flow-maps
of fluxes in all directions at every microstate while satisfying the
discrete version of the continuity equation. It can also be used
to tag the probability fluxes of outflow and inflow as reactions
proceed.37

While different models have been used to analyze gene reg-
ulatory networks, it is important to understand their applicabil-
ity and limitations. For analysis of the probability distribution of
microstates, models based on ordinary differential equations are
generally not applicable to stochastic systems, for example, those
with low copy numbers of molecules or with large differences
in reaction rates.31,43–45 Models based on continuum approxima-
tions of the discrete Markov jump processes also have limitations:
Fokker-Planck models may fail to capture the presence of multi-
stability arising from slow switching between the ON and the OFF
states.46 Moreover, when systems are far from equilibrium, the prob-
ability landscape constructed using models based on continuum
approximations is also of inadequate accuracy.47 In general, the
applicability and validity of these models for a specific network needs
to be investigated individually.14,31,44–50

Assessing the applicability and limitations of different models
in the analysis of probability flux and velocity is more challeng-
ing. In this work, we study the applicability and the limitations of
three classes of flux models. The first is the universal discrete flux
models based on the original stochastic chemical kinetic model.37

This model overcomes limitations in previous discrete models of
probability flux and velocity in Refs. 32 and 51–54, such as restric-
tions to analysis of single reactional trajectories,51,52 to partial flux
functions,32,53 or to single-species reactions.54

Our second class of models are diffusion approximations of
the stochastic chemical kinetics, which can be represented either
by the chemical Langevin equation for its stochastic trajectories16

or by the Fokker-Planck equation for its time-evolving probability
density.24–29 The Fokker-Planck model we study is derived from the
Kramers-Moyal expansion of the discrete chemical master equation
following Ref. 24. Our third class of models is a novel probability
flux model called the Liouville flux model, which is the determin-
istic limit of the stochastic kinetic models. It is based on chemical
rate equations and ordinary differential equations (ODEs). Although
deterministic models of flux based on ODEs are generally not appli-
cable to gene regulatory networks, the Liouville flux model treats the
probability flux with a precomputed probability distribution at indi-
vidual states. It can be directly compared with the universal discrete
flux and the Fokker-Planck flux.

We examine the behavior of the probability fluxes using the
toggle switch system. We study the steady state fluxes under two
conditions: (i) when the binding rates of the transcription fac-
tors to promoters of genes are much higher than the unbinding
rates, under which the system exhibits three stable states, and (ii)
when the unbinding rates are of the same magnitude as the bind-
ing rates, under which the system is strongly stochastic and exhibits
four stable states. Our results show that fluxes computed with these
three different models all have similar behavior under the first
condition, but exhibit markedly different behaviors under the sec-
ond condition. Furthermore, we show that the universal discrete
stochastic flux can uncover the oscillating behavior of the toggle
switch system at the nonequilibrium steady state, while the Fokker-
Planck and Liouville models fail to capture this highly stochastic
phenomenon.

Our paper is organized as follows: We first introduce the three
flux models and give closed-forms of the differences among these
models. We then examine the details of the differences in probability
fluxes in the toggle switch network under the two conditions.

II. MODELS AND METHODS
A. Model of biochemical reactions networks

We consider a well-mixed system of reactions with constant
volume and temperature. It has n molecular species Xi, i = 1, . . .,
n, which participate in m reactions Rk, k = 1, . . ., m. The microstate
x(t) of the system at time t is a column vector of copy numbers of
the molecular species: x(t) ≡ (x1(t), x2(t), . . . , xn(t))T ∈ Zn

+, where
all values are non-negative integers. A reaction Rk takes the general
form of

Rk : c1k X1 +⋯ + cnk Xn
rkÐ→ c′1k X1 +⋯ + c′nk Xn,
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so that Rk brings the system from a microstate x to x + sk, where the
stoichiometry vector sk is defined as

sk ≡ (s1
k, . . . , sn

k) ≡ (c′1k − c1k , . . . , c′nk − cnk), (1)

which gives the unit vector of the discrete increment of reaction Rk.
sk also defines the direction of Rk.

B. Discrete chemical master equation (dCME)
The discrete Chemical Master Equation (dCME) consists of a

set of linear ordinary differential equations describing the changes of
probability over time at each microstate of a reaction system.2,11,20,55

Denote the probability of the system to be at a particular microstate
x at time t as p(x, t) ∈ R[0,1]. Denote the probability surface or land-
scape over the state space Ω as p(t) = {p(x(t)|x(t) ∈ Ω)}. The dCME
at an arbitrary microstate x = x(t) can be written in the general
form as

∂p(x, t)
∂t

=
m

∑
k=1
[Ak(x − sk)p(x − sk, t) − Ak(x)p(x, t)], (2)

x − sk, x ∈ Ω. Here, the reaction propensity Ak(x) is determined
by the product of the intrinsic reaction rate rk and the combi-
nations of copies of relevant reactants at the current microstate

x: Ak(x) = rk
n
∏
l=1
(xl

clk
).

For computing the probability distribution, we employ the
recently developed ACME method22,23 to solve the dCME underly-
ing the stochastic network and obtain its exact time-evolving prob-
ability surfaces. This eliminates potential problems arising from
inadequate sampling, where rare events of low probability are dif-
ficult to quantify using techniques such as the stochastic simulation
algorithm (SSA).11,17,18,56

C. Continuum approximations of dCME
1. Deterministic equation from the law of mass action

The deterministic model of reactions describes the time-
evolving mean value or concentration ⟨Xi⟩ of each molecular species
Xi. The ordinary differential equations can be written generically at
⟨X⟩ = (⟨X1⟩, . . ., ⟨Xn⟩) as

d⟨X⟩
dt
= F(⟨X⟩). (3)

Here, the functions

F(⟨X⟩) ≡(F1(⟨X1⟩, . . . , ⟨Xn⟩), . . . , Fn(⟨X1⟩, . . . , ⟨Xn⟩)) (4)

characterize how the vector of molecular concentrations ⟨X⟩ changes
with time.

A standard approach for such a characterization is based on
chemical rate equations.57 Here, the rate of a chemical reaction is
directly proportional to the product of the activities or concentra-
tions of the reactants. Therefore, functions Fi(⟨X⟩) in Eq. (4) can be
written as

Fi(⟨X⟩) =
m

∑
k=1

sgn(si
k)rk⟨X1⟩∣c1k∣⋯ ⟨Xn⟩∣cnk∣, (5)

where si
k are the components of stoichiometry vector sk and rk is the

intrinsic reaction rate of reaction Rk.
The law of mass action can be derived from the dCME [Eq. (2)]

using the theory of moment-closure approximations at high copy
numbers.43,58–60

2. Approximation model of the Fokker-Planck
equation

The continuous diffusion approximation in the form of a
Fokker-Planck model can be derived from the discrete chemi-
cal master equation under the assumptions of (i) small jumps
between states due to firing of reactions, namely, |sk/V| < ϵ,
where ϵ Ð→ 0, and (ii) slow changes of the probability, namely,
|p(x) − p(x + sk/V)| < δ, where δ Ð→ 0 for reaction Rk, whose stoi-
chiometry is sk and the system volume is V. With these assumptions,
the transition kernel Ak(x − sk/V)p(x − sk/V, t) is differentiable to a
high degree.

The model of the Fokker-Planck equation considered in this
work is derived from the multivariate Taylor expansion or the
Kramers-Moyal expansion of the dCME,24

∂p(x, t)
∂t

=
m

∑
k=1
[Ak(x −

sk

V
)p(x − sk

V
, t) − Ak(x)p(x, t)]

≈
m

∑
k=1
[Ak(x)p(x, t) − sk

V
∇xAk(x)p(x, t)

+
sk ⋅ sT

k

2V2 ∇
2
xAk(x)p(x, t) − Ak(x)p(x, t)]

=
m

∑
k=1
[− sk

V
∇xAk(x)p(x, t) +

sk ⋅ sT
k

2V2 ∇
2
xAk(x)p(x, t)]. (6)

In Fokker-Planck models, terms higher than two are neglected.24

D. Continuity equation of probability
The evolution of the probability landscape can be viewed as

a process of movement of probability mass in the state space. The
total probability mass is conserved at any time and sums up to
one. This is captured by the continuity equation for probability.61,62

It is defined on a set of average molecular mass concentrations
⟨X⟩ = (⟨X1⟩, . . . , ⟨Xn⟩) ∈ Rn

+,

∂p(⟨X⟩, t)
∂t

+∇⟨X⟩J(⟨X⟩, t) = 0, (7)

which defines J(⟨X⟩, t), the vector of probability flux, namely, the
flow of probability in the direction of each species.

As the velocity of the probability is related to the flux by the
relationship v(⟨X⟩, t) = J(⟨X⟩, t)/p(⟨X⟩, t), the continuity equation
can also be written for velocity as

∂p(⟨X⟩, t)
∂t

+∇⟨X⟩v(⟨X⟩, t)p(⟨X⟩, t) = 0. (8)
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Similar to Eq. (7), a discrete version of the continuity equation,

∂p(x, t)
∂t

+∇d ⋅ Jr(x, t) = 0, (9)

holds for the total reactional flux defined in Ref. 37.

E. Models of probability flux
1. Liouville flux model

Here, we introduce a Liouville flux model based on the ordi-
nary differential equations for mean concentrations of molecules
from mass action. It is a set of forward differential equations in
which the increment in the mean concentration of molecular specie
over time ∂⟨X⟩/∂t, given ∂t → 0, defines the Liouville velocity
vL(⟨X⟩, t) of reactional mass of the average molecular concen-
tration ⟨X⟩,

vL(⟨X⟩, t) = F(⟨X⟩, t),

where the components of F(⟨X⟩, t) are defined by Eq. (5).
To compare with other flux models, we now restrict the values

of the function vL = vL(⟨X⟩, t) to the discrete state space Ω, where
the probability values are computed using the ACME method.22,23

We use the notation vL ≡ vL(x, t).
The Liouville flux is defined in the discrete subset Ω of the

continuous space U as

JL(x, t) ≡ vL(x, t)p(x, t). (10)

2. Fokker-Planck flux model
We rewrite the right-hand side of Eq. (6) by taking the operator

∇x(⋅) outside the parentheses,

∂p(x, t)
∂t

= −∇x

m

∑
k=1

sk

V
[Ak(x)p(x, t) − sk

T

2V
∇xAk(x)p(x, t)].

From Eq. (7), the flux for the Fokker-Planck model JFP(x, t) can be
written as follows:

JFP(x, t) ≡
m

∑
k=1

sk

V
[Ak(x)p(x, t) − sk

T

2V
∇xAk(x)p(x, t)]. (11)

The Fokker-Plank flux equation (11) has two components:

the drift term of
m
∑
k=1

skAk(x)p(x, t)/V and the diffusion term of
m
∑
k=1

sksT
k∇xAk(x)p(x, t)/(2V2). The drift term is driven by chemical

reactions occurring at x. The diffusion term approximates linearly
the stochastic fluctuations of the system.

3. Universal discrete flux model
A model of discrete flux was recently introduced in Ref. 37. As

it can account for both reactional flux and species flux, we call it
the universal discrete flux model. Briefly, we define an unambigu-
ous order of ascending relationship “≺” over all microstates and have
them ordered as x0 ≺ x1 ≺ ⋯ ≺ x∣Ω∣.37 The single-reactional flux of
probability Jk(x, t) ∈ R for reaction Rk is

Jk(x, t) ≡ {
Ak(x)p(x, t), x ≺ x + sk,
Ak(x − sk)p(x − sk, t), x ≺ x − sk.

Jk(x, t) depicts the change in p(x, t) at the state x due to one firing
of reaction Rk. If x ≺ x + sk, Jk(x, t) describes the outflux at x due to
one firing of reaction Rk. If x ≺ x − sk, Jk(x, t) describes the influx to
x due to one firing of reaction Rk.

The total reactional flux or r-flux Jr(x, t), which describes the
probability flux at a microstate x at time t, is defined as37 Jr(x, t)
≡ ( J1(x, t), . . . , Jm(x, t)) ∈ Rm. Intuitively, the r-flux Jr(x, t) is the
vector of rate change of the probability mass at x in directions of
all reactions. Jr(x, t) satisfies the discrete continuity equation (9).
Details can be found in Ref. 37.

The total species flux, or s-flux, Js(x, t) ∈ Rn is the sum of the
stoichiometry projections of m single-reaction species flux vectors
at a microstate x ∈ Rn,

Js(x, t) =
m

∑
k = 1

skJk(x, t) ∈ Rn. (12)

F. Differences between flux models
We now compare the three flux models and define analytically

their differences.

1. Difference between discrete flux
and Fokker-Planck flux

The difference between the universal discrete flux of Eq. (12)
and the Fokker-Planck flux of Eq. (11) at V = 1 is

Js(x, t)−JFP(x, t) = ∑
k: x≺
x+sk

sk[Ak(x)p(x, t) − Ak(x)p(x, t)

+
sk

2
∇xAk(x)p(x, t)]+ ∑

k: x≺
x−sk

[skAk(x−sk)p(x−sk, t)

−Ak(x)p(x, t) +
sk

2
∇xAk(x)p(x, t)]

= ∑
k: x≺
x+sk

sk[
1
2
sk∇xAk(x)p(x, t)]+ ∑

k: x≺
x−sk

sk[Ak(x − sk)

× p(x−sk, t)−Ak(x)p(x, t)+ sk

2
∇xAk(x)p(x, t)].

(13)

For reactions generating discrete flux out-flowing from x to
x + sk, the values of the discrete flux and Fokker-Planck flux differ
only in the diffusion term sk[sk∇xAk(x)p(x, t)]/2 of the Fokker-
Planck flux. For reactions generating flux flowing-in from x − sk to x,
the discrete flux and Fokker-Planck flux differ in both the diffusion
term and the drift term.

We examine the difference further by taking the linear Taylor
expansion: Ak(x − sk)p(x − sk, t) ≈ Ak(x)p(x, t) − sk∇xAk(x)p(x, t).
While the gradient of the flux defines the change of the proba-
bility with time from the continuity equation, we now skip the
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second-order term of the Taylor expansion. Equation (13) now
becomes

Js(x, t) − JFP(x, t) = ∑
k: x≺
x+sk

sk[
1
2
sk∇xAk(x)p(x, t)]

+ ∑
k: x≺
x−sk

sk[Ak(x)p(x, t) − sk∇xAk(x)p(x, t)

−Ak(x)p(x, t) +
1
2
sk∇xAk(x)p(x, t)]

= ∑
k: x≺
x+sk

sk[
1
2
sk∇xAk(x)p(x, t)]

− ∑
k: x≺
x−sk

sk[
1
2
sk∇xAk(x)p(x, t)].

Hence, the drift terms for both fluxes are the same and equal to
Ak(x)p(x, t). The difference in these two flux models resides only
in the noise encoded by the diffusion term.

2. Difference between Liouville flux
and Fokker-Planck flux

The difference between the Fokker-Planck flux from Eq. (11)
and the Liouville flux from Eq. (10), given V = 1, is

JFP(x, t) − JL(x, t) =∑
k
[sk(Ak(x)p(x, t) − 1

2
sk∇xAk(x)p(x, t))]

−F(x, t)p(x, t). (14)

In this case, difference exists in both the drift term and the diffusion
term.

However, for the special case when there is only one type of
reactant and |sk| = 1, we have F(x, t)p(x, t) = skAk(x)p(x, t). In this
case, the drift terms of the two fluxes are the same.

Moreover, in the limiting case of large concentrations, we have

F(x, t) =
m
∑
k
skAk(x)p(x, t). Therefore, the difference between the

Fokker-Planck flux and Liouville flux is only in the diffusion term,
which is generally of the order of 1

2V .

3. Difference between discrete flux and Liouville flux
The difference between the discrete universal flux [Eq. (12)]

and the Liouville flux [Eq. (10)] is

Js(x, t) − JL(x, t) = ∑
k: x≺
x+sk

[skAk(x)p(x, t) − F(x, t)p(x, t)]

+ ∑
k: x≺
x−sk

[skAk(x−sk)p(x−sk, t)−F(x, t)p(x, t)].

(15)

We consider the special case of reactions involving only a sin-
gle molecule species of reactants with |sk| = 1. We have F(x, t)p(x, t)
= skAk(x)p(x, t). For reactions with the probability flux flowing from
x to x + sk (x − sk ≺ x), both fluxes are the same. For reactions
with the probability flux flowing from x − sk to x, we can examine
this difference by taking the linear terms of the Taylor expansion of

Ak(x− sk)p(x− sk, t) ≈Ak(x)p(x, t)− sk∇xAk(x)p(x, t). Equation (15)
now becomes

Js(x, t) − JL(x, t) = ∑
k: x≺
x−sk

[skAk(x−sk)p(x−sk, t)−F(x, t)p(x, t)]

= ∑
k: x≺
x−sk

[sk(Ak(x)p(x, t) − sk∇xAk(x)p(x, t)

−F(x, t)p(x, t)].

In this case, under the assumption F(x, t)p(x, t) = skAk(x)p(x, t), the
drift terms are the same. The fluxes differ only in the diffusion term
sk∇xAk(x)p(x, t).

III. RESULTS
A. The multistable toggle switch model
1. Network and reactions

The toggle switch network consists of two genes whose protein
products mutually inhibit each other. This network plays impor-
tant roles in molecular decision-making and is widely found in
nature.63–67 The toggle switch has been studied extensively, with
its stability, dynamics, switching mechanisms, and most-probable
paths analyzed through outflow probability fluxes,32 quasipotential
landscape reconstruction,68 as well as weighted-ensemble trajectory
simulations using the string-method.33 In this study, we employ
a detailed model of the toggle switch,20,69 where the binding and
unbinding reactions are explicitly modeled. This is different from
the simplified model used in several other studies.63,70,71

There are six molecular species in our model: genes Gx and Gy,
which express proteins PX and PY , as well as protein-DNA com-
plexes Gx and Gy, with protein PY bound on gene Gx and protein
PX bound on gene Gy, respectively (Fig. 1). The dimer of protein
product PX of gene Gx inhibits the activity of gene Gy, and the dimer
of protein product PY of gene Gy inhibits the activity of gene Gx.

FIG. 1. Schematic representation of the toggle switch genetic network.
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The molecular reactions of the network are listed as follows:

R1 : Gx
sX→ Gx + PX , R2 : Gy

sY→ Gy + PY ,

R3 : PX
dX→ 0/, R4 : PY

dY→ 0/,

R5 : 2PX + Gy
by→ Gy, R6 : 2PY + Gx

bx→ Gx,

R7 : Gy
uy→ 2PX + Gy, R8 : Gx

ux→ 2PY + Gx.

(16)

The microstate of the system is defined as an ordered quadruplet
(X, Y, x, y) of copy numbers of PX , PY , Gx, and Gy, respectively. The
copy numbers of bound genes Gx and Gy are denoted as x and y,
respectively. Correspondingly, x = 1 − x and y = 1 − y, as there is
only one copy of each of genes x and y in this system. The binding
states of the two operator sites are denoted as “On-On” when x = 1
and y = 1, “On-Off” when x = 1 and y = 0, “Off-On” when x = 0 and
y = 1, and “Off-Off” when x = 0 and y = 0.

There are a number of stochastic processes encoded in this net-
work. The synthesis of proteins PX and PY from gene Gx and gene
Gy is represented by reactions R1 and R2, respectively, with the rates
of sx = sy. The degradation of proteins PX and PY is represented by
reactions R3 and R4, respectively, with the rates dx = dy. Reaction R5
represents the binding of two copies of protein PX to the promoter
site of Gy to form a protein-DNA complex Gy, with rate by. Reaction
R7 represents the unbinding of the complex Gy at a rate of uy. Simi-
larly, reaction R6 represents the binding of two copies of protein PY
to the promoter site of Gx to form a protein-DNA complex Gx, with
rate bx. Reaction R8 represents the unbinding of the complex Gx at a
rate of ux.

Here, we consider the scenario where gene regulation is much
slower than protein synthesis and degradation. In eukaryotic cells,
epigenetics processes such as histone modification and DNA methy-
lation can reduce the binding rates of transcription factors to their
targeting DNA sites. Recent findings in the genetic switch of bacte-
riophage λ showed that slower binding and unbinding also occur
in bacterial cells.72 In the regime of slow binding and unbinding
reactions, where by and bx (reactions R5 and R6) and uy and ux
(reactions R7 and R8) are smaller than synthesis rates sx and sy (reac-
tions R1 and R2), there are up to four peaks of probability over
certain regions of protein copy numbers, in which one of the two
genes is expressed and the other gene repressed as well as two genes
being either expressed or repressed simultaneously, as reported
in Ref. 20.

A well-known phenomenon in genetic switches such as the tog-
gle switch system is the extreme stability of the “On-Off” or the “Off-
On” states: it is exceedingly rare for the system to switch from one
of these two stable states to the other, even in the presence of pertur-
bations.67,73 In this study, we show that the toggle switch can switch
frequently between these two stable states without external perturba-
tions. Furthermore, these switching events can turn the toggle switch
into a stochastically oscillating system.

2. Fluxes in the toggle switch network
For the universal discrete flux, we first impose an ascending

order on the microstates in the direction of the increasing copies
of X. At a fixed value of X, we then order the states in increasing
copy number of Y. Subsequently, we order the states in increasing

copy number of x and, finally, in the order of increasing copy num-
ber of y. Following Eq. (12), the components of the universal discrete
stochastic fluxes at the microstate (X, Y, x, y) in the directions of X
and Y are

Js(X, Y , x, y)X = sXxp(X, Y , x, y) − dX(X + 1)p(X + 1, Y , x, y)
+ 2uy(1−y)p(X, Y , x, y)−by(1−y)(X +1)(X +2)
× p(X + 2, Y , x, 1 − y),

Js(X, Y , x, y)Y = sY yp(X, Y , x, y) − dY(Y + 1)p(X, Y + 1, x, y)
+ 2ux(1−x)p(X, Y , x, y)−bx(1−x)(Y +1)(Y +2)
× p(X, Y + 2, 1 − x, y).

Following Eq. (10), the Liouville flux at the microstate (X, Y,
x, y) is

JL(X, Y , x, y)X = p(X, Y , x, y)(sXx − dxX + uy(1 − y) − byX2y),

JL(X, Y , x, y)Y = p(X, Y , x, y)(sY y − dyY + ux(1 − x) − bxY2x).

Following Eq. (11), the Fokker-Planck flux for V = 1 at the
microstate (X, Y, x, y) is

JFP(X, Y , x, y)X = sXx−dXX + 2uy(1−y) − byX(X−1)y)p(X, Y , x, y)

+
1
2
∇X[sXx + dXX + 2uy(1 − y)

+ 2byX(X − 1)y)p(X, Y , x, y)],

JFP(X, Y , x, y)Y = sY y − dY Y + 2ux(1−x) − bxY(Y−1)x)p(X, Y , x, y)

+
1
2
∇Y[sY y + dY Y + 2ux(1 − x)

+ 2bxY(Y − 1)x)p(X, Y , x, y)].

B. Probability flux and velocity in the toggle switch
with strong promoter binding

We first consider the system with strong promoter binding. The
binding rates are set to bx = by = 1 × 10−2, the synthesis rates sx = sy
= 50, the degradation rates dx = dy = 1, and unbinding rates ux = uy
= 0.1. At the steady state, there are three probability peaks located at
(X, Y) = (0, 0), (50, 0), and (0, 50), corresponding to the states of the
genes Gx and Gy of “Off-Off” (x = 0, y = 0), “On-Off” (x = 1, y = 0),
and “Off-On” (x = 0, y = 1) [Figs. 2(a), 2(d), and 2(g)].

The steady state probability distribution of reactions (R1, R3),
given x = 1 [Eq. (16)], which are birth-and-death processes, is the
Poisson distribution with the maximum at its expected value of
X = sX/dX = 50.74 Similarly, the steady state probability distribu-
tion for the birth-and-death process of reactions (R2, R4), given
y = 1 [Eq. (16)], is the Poisson distribution with the maximum at
its expected value of Y = sY /dY = 50. When the binding reaction has
a higher propensity than unbinding, the genetic state “On-On” (x =
1, y = 1) disappears. With the multiplication factor of the copy num-
ber of molecules, this occurs even when by is an order of magnitude
smaller than uy.

From computed p(X, Y, x, y), we show its projection to the
plane of (X, Y) in Fig. 2, namely, we show p(X, Y) = p(X, Y, 0, 0)
+ p(X, Y, 1, 0) + p(X, Y, 0, 1) + p(X, Y, 1, 1). Similarly, Js(X, Y),
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FIG. 2. The probability surfaces, fluxes, and velocities of the toggle switch system with strong promoter binding (b = 1 × 10−2) at the steady state. Probability value is given
by the color scale, and the fluxes/velocities are shown by blue solid lines. The discrete stochastic flux model with probability surface in −log(p(x, y)) (a), flux in log |Js(x, y)|
(b), and velocity in log |vs(x, y)| (c); the Liouville flux model with the probability surface in −log(p(x, y)) (d), flux in log |JL(x, y)| (e), and velocity in log |vL(x, y)| (f); and the
Fokker-Planck flux model with probability surface in −log(p(x, y)) (g), flux in log |JFP(x, y)| (h), and velocity in log |vFP(x, y)| (i).

JL(X, Y), JFP(X, Y), vs(X, Y), vL(X, Y), and vFP(X, Y) are shown as
projected in Fig. 2.

The steady-state probability surfaces in −log p(x, t) are shown
in Figs. 2(a), 2(d), and 2(g), with high probability regions in red and
regions where probability is close to zero in white. The trajectories

of the flux field at the steady state are shown in blue for the univer-
sal discrete flux field Js(x, t) in Figs. 2(a)–2(c), for the Liouville flux
field JL(x, t) in Figs. 2(d)–2(f), and for the Fokker-Planck flux field
JFP(x, t) in Figs. 2(g)–2(i). In Figs. 2(b), 2(e), and 2(h), regions
with large absolute values of flux are shown in purple and regions
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with small absolute values of flux are shown in turquoise blue.
In Figs. 2(c), 2(f), and 2(i), regions with large absolute values of
probability velocity are shown in turquoise blue and regions with
small absolute values of velocity are shown in purple.

1. Universal discrete stochastic flux and velocity
fields

The heatmaps of the universal discrete probability flux in
log |Js(x, t)| and velocity in log |vs(x, t)| [Figs. 2(b) and 2(c), respec-
tively] show that locations with larger flux values also have higher
probability. The states “Off-Off,” “On-Off,” and “Off-On” can be
regarded as attractors of the probability flux. The flux lines con-
verge to the regions of states near “On-Off” and “Off-On,” after first
reaching the state “Off-Off.” Figure 2(c) [log |vs(X, Y)|] shows that
the velocity has larger values at locations where the flux trajectories
are close to be straight lines [purple regions, Fig. 2(c)] but drops
significantly when the trajectories make turns [turquoise regions,
Fig. 2(c)].

2. Liouville flux for the toggle switch network
In the Liouville flux, larger values are associated with higher

probabilities [Figs. 2(d) and 2(e)]. The states “On-Off” and “Off-
On” are the sinks. The flux and velocity lines converge to the states
“On-Off” and “Off-On,” after first reaching toward the state “Off-
Off.” These patterns are the same as those of the universal discrete
flux [Fig. 2(a)]. Detailed examination shows that the flux sinks are
located at the states (X = 50, Y = 0) and (X = 0, Y = 50). These
are local maxima of the probability surface. The absolute value
of the velocity function log |vL(X, Y)| shows that the probability
velocity has larger values at locations where the flux trajectories
are close to be straight lines [purple regions, Fig. 2(f)] but drops
significantly when the trajectories make turns [turquoise regions,
Fig. 2(f)].

Liouville flux trajectories and the universal discrete flux trajec-
tories depict overall similar behavior of the system. The flux lines
converge to the states “Off-On” and “On-Off” after going through
the state “Off-Off,” an intermediate attractor of the flux. How-
ever, there are significant differences. The sinks at “Off-On” and
“On-Off” are single states of (X = 50, Y = 0) and (X = 0, Y = 50) in
the Liouville flux [Fig. 2(f)], but they are regions consisting of states
in the discrete flux close to (X = 50, Y = 0) and (X = 0, Y = 50),
where the flux trajectories fluctuate [Fig. 2(c)]. The flux trajecto-
ries for the Liouville flux start at the source located at (+∞, +∞).
This is different from the discrete flux, where the trajectories start-
ing from the states with sufficiently large copy numbers converge to
a sink at (+∞, +∞), although these states have very small probability
mass.

3. Fokker-Planck flux for the toggle switch network
In the heat map of the Fokker-Planck probability flux, larger

values are associated with higher probabilities [Figs. 2(g)–2(i)]. The
states “Off-Off,” “On-Off,” and “Off-On” are attractors of the flux.
The velocity and flux lines converge to the states “On-Off” and “Off-
On,” after first reaching the state “Off-Off.” These are the same as
the Liouville flux and similar to the discrete flux [Figs. 2(a) and
2(d)]. Flux sinks are located at the states “On-Off” and “Off-On,”
represented by single states (X = 50, Y = 0) and (X = 0, Y = 50)

as in the case of Liouville flux. These two states correspond to the
maxima of the Poisson distribution of the birth-and-death process
[Eq. (16)] of reactions (R1, R3), given x = 1, and (R2, R4), given y = 1,
respectively. The absolute value of velocity function log |vL(X, Y)|
shows that the velocity has larger values at locations where the flux
trajectories are close to be straight lines [purple regions, Fig. 2(i)]
but drops significantly when the trajectories make turns [turquoise
regions, Fig. 2(i)].

There are significant differences between the Fokker-Planck
flux and the discrete stochastic flux. The states “Off-On” and “On-
Off” are single states with (X = 50, Y = 0) and (X = 0, Y = 50) in the
Fokker-Planck flux [Fig. 2(i)], but they involve sets of the states close
to (X = 50, Y = 0) and (X = 0, Y = 50) in the discrete flux [Fig. 2(c)].
The source of the flux for the Fokker-Planck flux is located at (+∞,
+∞) at infinity. This is again different from the universal discrete
stochastic flux, where a sink is at (+∞, +∞).

The Liouville flux trajectories and the Fokker-Planck trajec-
tories depict similar behavior but with some differences. Starting
from the same initial locations, for instance, (X = 70, Y = 40)
or (X = 40, Y = 70), the Liouville trajectories first tend to reach
the state “Off-Off” and then converge to the states “On-Off” or
“Off-On.” In contrast, the Fokker-Planck flux starting from the
same states tends to converge to the “Off-On” or the “On-Off”
directly.

4. Flux in different genetic states
While previous discussions are based on projections in the (X,

Y) plane with different genetic states of (x, y) marginalized, we now
examined fluxes in each of the specific genetic states of genes x and
y, namely, the “Off-Off” state at the gene copy number of (x = 0,
y = 0) [Figs. 3(a), 3(d), and 3(g)], the “On-Off” state at (x = 1, y = 0)
[Figs. 3(b), 3(e), and 3(h)], and the “On-On” state at (x = 1, y = 1)
[Figs. 3(c), 3(f), and 3(i)]. We neglect the case of (x = 0, y = 1) as it is
symmetric to that of (x = 1, y = 0).

At the “Off-Off” state (x = 0, y = 0), we observe the existence
of a sink at (X = 0, Y = 0) for all three models of fluxes [Figs. 3(a),
3(d), and 3(g)]. This is expected, as it is the state where both genes
are bound, and the probability distribution has a peak. The Fokker-
Planck and the Liouville flux trajectories converge to the state
(X = 0, Y = 0) [Fig. 3(d)] following straight lines evenly spread out
in the X–Y plane, whereas the discrete flux trajectories bend toward
the axes of X = 0 and Y = 0.

At the “On-Off” state (x = 1, y = 0), we observe the existence of
the flux sink at (X = 50, Y = 0) for the Liouville and Fokker-Planck
models [Figs. 3(e) and 3(h)]. The discrete stochastic flux trajecto-
ries converge to an area consisting of states near (X = 50, Y = 0)
[Fig. 3(b)].

At the “On-On” state, where X ∈ [40, 60] and Y ∈ [40, 60], both
genes are unbound and there is overall a small amount of proba-
bility mass associated with this genetic state. The three flux models
give markedly different results, with sinks located at very differ-
ent locations. The Liouville flux has the sink at (X = 39, Y = 39)
[Fig. 3(f)]. There are three sinks for the Fokker-Planck flux
[Fig. 3(i)]. The discrete flux appears to have the sink at (+∞, +∞)
[Fig. 3(c)].

It is informative to examine the behavior of the system with
high copy numbers of PX and PY in the regime where the law of
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FIG. 3. Fluxes of the toggle switch system described at strong promoter binding of b = 1 × 10−2. The “Off-Off” gene state (x = 0, y = 0): (a) heat map of −log p(X, Y, 0, 0)
and flux lines of Js(X, Y, 0, 0), (d) heat map of −log p(X, Y, 0, 0) and flux lines of JL(X, Y, 0, 0), and (g) heat map of −log p(X, Y, 0, 0) and flux lines of JFP(X, Y, 0, 0). The
“On-Off” gene state (x = 1, y = 0): (b) heat map of −log p(X, Y, 1, 0) and flux lines of Js(X, Y, 1, 0), (e) heat map of −log p(X, Y, 1, 0) and flux lines of JL(X, Y, 1, 0), and (h)
heat map of −log p(X, Y, 1, 0) and flux lines of JFP(X, Y, 1, 0). The “On-On” gene state (x = 1, y = 1): (c) heat map of −log p(X, Y, 1, 1) and flux lines for Js(X, Y, 1, 1), (f)
heat map of −log p(X, Y, 1, 1) and flux lines for JL(X, Y, 1, 1), and (i) heat map of −log p(X, Y, 1, 1) and flux lines for JFP(X, Y, 1, 1).

mass action applies. We can obtain the critical points for each of
the four genetic states. For the “On-On” state, we have ⟨X⟩ = (−dX

+
√

d2
X + 4sXby)/(2by) ≈ 37, ⟨Y⟩ = (−dY +

√
d2

Y + 4sY bx)/(2bx) ≈
37. For the “On-Off” state, we have ⟨X⟩ = (sX + uy)/dX ≈ 50, ⟨Y⟩ = 0.

For the “Off-On” state, we have ⟨X⟩ = 0, ⟨Y⟩ = (sY + ux)/dY ≈ 50. For
the “Off-Off” state, we have ⟨X⟩ = (ux)/dX ≈ 0, ⟨Y⟩ = uy/dY ≈ 0. The
eigenvalues for all four critical points are negative, indicating that all
four are sinks. At the states “On-On” and “Off-Off,” the eigenvalues
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are equal and matrices are multiples of the unit matrix and then flux
lines form a star.75

These critical points are exactly where the sinks of the Liouville
flux are located. The sink (X = 0, Y = 0) at the state “Off-Off” exists
for all flux models. The sink at (X = 50, Y = 0)/(X = 0, Y = 50) for the
“On-Off”/“Off-On” state exists for the Liouville and Fokker-Planck
models. In contrast, the discrete flux lines converge to a broader set
of states near the peak (X = 50, Y = 0) [(X = 0, Y = 50)]. For the
“On-On” state, the Liouville flux converges to the sink at (X ≈ 37,
Y ≈ 37), while there are multiple sinks for the Fokker-Planck flux.
The discrete flux does not converge to a single sink.

C. Flux and velocity fields in the toggle switch
with weak promoter binding from three methods

We now consider the system with weak promoter binding. The
binding rates are bx = by = 1 × 10−4, the synthesis rates are sx = sy
= 50, the degradation rates are dx = dy = 1, and unbinding rates are
ux = uy = 0.1. At the steady state, there are four probability peaks
located at (X, Y) = (0, 0), (50, 0), (0, 50), and (50, 50) correspond-
ing to the states of genes Gx and Gy of “Off-Off” (x = 0, y = 0),
“On-Off” (x = 1, y = 0), “Off-On” (x = 0, y = 1), and “On-On”
(x = 1, y = 1) [Figs. 4(a), 4(d), and 4(g)]. The steady state probability
distribution for the birth-and-death process of reactions (R1, R3) of
Eq. (16), given x = 1, is the Poisson distribution with the maximum
at its expected value of X = sX/dX = 50.74 Similarly, the steady state
probability distribution for the birth-and-death process of reactions
(R2, R4), given y = 1, is the Poisson distribution with the maximum
at its expected value of Y = sY /dY = 50. From computed p(X, Y, x, y),
we show p(X, Y), Js(X, Y), JL(X, Y), JFP(X, Y), vs(X, Y), vL(X, Y), and
vFP(X, Y) projected on the plane of (X, Y) in Fig. 4.

The steady-state probability surface in −log p(x, t) is shown in
Figs. 4(a), 4(d), and 4(g), where high probability regions are in red
and regions where probability is close to zero in white. The tra-
jectories of the flux field at the steady state are shown in blue for
the universal discrete flux field Js(x, t) in Figs. 4(a)–4(c), for the
Liouville flux field JL(x, t) in Figs. 4(d)–4(f), and for the Fokker-
Planck flux field JFP(x, t) in Figs. 4(g)–4(i). In Figs. 4(b), 4(e), and
4(h), regions with large absolute values of flux are shown in purple
and regions with low absolute values of flux are shown in turquoise
blue. In Figs. 4(c), 4(f), and 4(i), regions with large absolute val-
ues of velocity are shown in turquoise blue. In Figs. 4(c), 4(f), and
4(i), regions with small absolute values of velocity are shown in
purple.

1. Universal discrete stochastic flux
and velocity fields

The heatmaps of the universal discrete probability flux in
log |Js(x, t)| and velocity in log |vs(x, t)| are shown in Figs. 4(b) and
4(c), respectively. We note that locations with larger flux values also
have higher probability. Unlike the previous case of strong promoter
binding, we observe the presence of stochastic oscillations around
both “On-Off” and “Off-On” states. In addition to the oscillations
between the states “Off-On” (“On-Off”) and “On-On,” the system
also fluctuates from the state “On-On” to “Off-Off” and then to
“Off-On”/“On-Off.” Figure 4(c) [log |vs(X, Y)|] shows that the veloc-
ity drops significantly when the trajectories make turns [turquoise
regions, Fig. 4(c)].

There are more states with large flux values compared to the
condition of strong promoter binding, i.e., there are more purple
regions of higher probability mass in Fig. 4(b) than in Fig. 2(b).
With more distributed probability mass and the observation of oscil-
lations, the steady state of the toggle switch system with weak pro-
moter binding is overall markedly less stable than that with strong
promoter binding.

2. Liouville flux
In the heat map of Liouville flux, larger values are associated

with higher probabilities [Figs. 4(d) and 4(e)]. The states “Off-Off,”
“On-Off,” “Off-On,” and “On-On” are the attractors of the flux.
While the stochastic discrete flux exhibits strong oscillations, Liou-
ville flux trajectories converge to the probability peak at the “On-On”
state after traveling through peaks at “On-Off,” “Off-On,” and “Off-
Off” states. The source of the flux is at both infinity and the states
(X = 35, Y = 35). The sink is located at the states (X = 49, Y = 49). The
absolute values of the velocity function log |vL(X, Y)| are larger at
locations where the flux trajectories are close to straight lines [purple
regions, Fig. 4(f)] but drop significantly when the trajectories make
turns [turquoise regions, Fig. 4(f)].

The Liouville flux trajectories and the universal discrete
flux trajectories exhibit significantly different behavior. Due to
fast unbinding relative to binding at this condition of promi-
nent stochasticity, the toggle switch system constantly alternates
between the bounded and unbounded states for genes x and
y. However, this phenomenon is not captured by the Liouville
flux.

3. Fokker-Planck flux for the toggle switch network
In the heat map of the Fokker-Planck probability flux, larger

values are associated with higher probabilities [Figs. 4(g)–4(i)]. The
states “Off-Off,” “On-Off,” “Off-On,” and “On-On” are the attrac-
tors of the flux. While the stochastic discrete flux exhibits strong
oscillations, Fokker-Planck flux trajectories, as the Liouville flux,
converge to the probability peak at the “On-On” state after travel-
ing through peaks at “On-Off,” “Off-On,” and “Off-Off” states. The
source of the flux is at both infinity and the states (X = 30, Y = 30).
The sink is located at the states (X = 50, Y = 50). The absolute value
of the velocity function log |vL(X, Y)| is larger at locations where the
flux trajectories are close to straight lines [purple regions, Fig. 4(i)]
but drop significantly when the trajectories make turns [turquoise
regions, Fig. 4(i)].

The Liouville flux trajectories and the Fokker-Planck trajecto-
ries depict almost identical behavior of the system. There are some
small differences. The sink for the gene state (x = 1, y = 1) for the
Liouville flux is at (X = 49, Y = 49), which is different for the sink
for the Fokker-Planck flux, which is at (X = 50, Y = 50) [Figs. 4(g)–
4(i)]. There are significant differences between the Fokker-Planck
flux and the discrete stochastic flux. Whereas the stochastic dis-
crete flux exhibits oscillations, Fokker-Planck flux trajectories con-
verge to the system probability peak at the state “On-On” (X = 50,
Y = 50).

4. Flux in different genetic states
We now examined the fluxes in each of the specific genetic

states. At the “Off-Off” state (x = 0, y = 0) [Figs. 5(a), 5(d), and 5(g)],
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FIG. 4. The probability surfaces, fluxes, and velocities of the toggle switch system with weak promoter binding (b = 1 × 10−4) at the steady state. The probability value is
given by the color scale, and the fluxes/velocities are shown by blue solid lines. The discrete stochastic flux model with probability surface in −log(p(x, y)) (a), flux in log |Js(x,
y)| (b), and velocity in log |vs(x, y)| (c); the Liouville flux model with probability surface in −log(p(x, y)) (d), flux in log |JL(x, y)| (e), and velocity in log |vL(x, y)| (f); and the
Fokker-Planck flux model with probability surface in −log(p(x, y)) (g), flux in log |JFP(x, y)| (h), and velocity in log |vFP(x, y)| (i).

we observe the existence of the sink at (X = 0, Y = 0) for all three
models of fluxes. This is expected, as it is the state where both genes
are bound, and the probability peak is located at (X = 0, Y = 0).
The Fokker-Planck and the Liouville flux trajectories converge to
this state (X = 0, Y = 0) following straight lines, which are evenly

spread off in the X–Y plane, whereas the discrete flux trajectories
bend toward the axes of X = 0 and Y = 0.

At the “On-Off” state (x = 1, y = 0) [Figs. 5(b), 5(e), and
5(h)], we observe the existence of a flux sink at (X = 50, Y = 0) for
the Liouville and Fokker-Planck models [Figs. 5(d) and 5(e)]. The
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FIG. 5. Fluxes of the toggle switch system described at weak promoter binding of b = 1 × 10−4. The “Off-Off” gene state (x = 0, y = 0): (a) heat map of −log p(X, Y, 0, 0)
and flux lines of Js(X, Y, 0, 0), (d) heat map of −log p(X, Y, 0, 0) and flux lines of JL(X, Y, 0, 0), and (g) heat map of −log p(X, Y, 0, 0) and flux lines of JFP(X, Y, 0, 0). The
“On-Off” gene state (x = 1, y = 0): (b) heat map of −log p(X, Y, 1, 0) and flux lines of Js(X, Y, 1, 0), (e) heat map of −log p(X, Y, 1, 0) and flux lines of JL(X, Y, 1, 0), and (h)
heat map of −log p(X, Y, 1, 0) and flux lines of JFP(X, Y, 1, 0). The “On-On” gene state (x = 1, y = 1): (c) heat map of −log p(X, Y, 1, 1) and flux lines for Js(X, Y, 1, 1), (f)
heat map of −log p(X, Y, 1, 1) and flux lines for JL(X, Y, 1, 1), (i) heat map of −log p(X, Y, 1, 1) and flux lines for JFP(X, Y, 1, 1).

discrete stochastic flux trajectories converge to an area of states near
(X = 50, Y = 0).

At the “On-On” state where both genes are unbound [Figs. 5(c),
5(f), and 5(i)], the three flux models give markedly different results,

with sinks at different locations. The Liouville flux has the sink at
(X = 50, Y = 50) [Fig. 5(f)], and the Fokker-Planck flux has the sink
at (X = 49, Y = 49) [Fig. 5(i)]. The discrete flux appears to have a sink
at (+∞, +∞) [Fig. 5(c)].
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It is informative to examine the condition of high copy num-
bers of PX and PY , where the law of mass action applies. We can
obtain the critical points for each of the four genetic states. For the
state “Off-Off,” we have ⟨X⟩ = ux/dX ≈ 0, ⟨Y⟩ = uy/dY ≈ 0. For the
state “On-Off,” we have ⟨X⟩ = (sX + uy)/dX ≈ 50, ⟨Y⟩ = 0. For the
state “Off-On,” we have ⟨X⟩ = 0, ⟨Y⟩ = (sY + ux)/dY ≈ 50. For the
state “On-On,” we have ⟨X⟩ = (−dX +

√
d2

X + 4sXby)/(2by) ≈ 50,
⟨Y⟩ = (−dY +

√
d2

Y + 4sY bx)/(2bx) ≈ 50. The eigenvalues at all
four critical points are negative, indicating that they are sinks. At
the states “On-On” and “Off-Off,” the eigenvalues are equal and
matrices are multiples of the unit matrix and then flux lines form
a star.75

These critical points are where the sinks of Liouville and
Fokker-Planck fluxes located. The sink (X = 0, Y = 0) at the state
“Off-Off” exists for all flux models. For the “On-Off”/“Off-On” state,
the sink at (X = 50, Y = 0)/(X = 0, Y = 50) exists for the Liouville and
Fokker-Planck fluxes, while the discrete flux lines converge to a set
of the states near (X = 50, Y = 0) [(X = 0, Y = 50)]. For the “On-On”
state, the Liouville and Fokker-Planck fluxes converge to (X = 50,
Y = 50) and (X = 49, Y = 49), respectively. The discrete stochastic
flux does not converge to any sink.

IV. STOCHASTIC FLUCTUATION AND OSCILLATIONS
IN THE TOGGLE SWITCH
A. Strong promoter binding

With strong promoter binding (b = 1 × 10−2), the three flux
models are overall similar but with important differences in details.
Discrete flux trajectories exhibit small fluctuations around the “On-
Off” peak at (X = 50, Y = 0) [and symmetrically at (X = 0, Y = 50),
Fig. 6(a)]. While changes in Y are just a handful copies of the
molecule, the amount of molecules of X fluctuates more significantly
[Fig. 6(a)].

To gain better understanding of the observed fluctuations, we
examine reaction trajectories sampled using the SSA algorithm from
the initial state of (X = 50, Y = 0, x = 1, y = 0), where the “On-Off”
peak is located. Figure 6(b) shows how trajectories of copy numbers
of protein PX (red lines) and protein PY (black lines) fluctuate. PX
fluctuates around X = 50. This is due to stochasticity in the syn-
thesis and the degradation of PX at the genetic state of x = 1. The
trajectories of copy number of protein PY (black lines) also fluctu-
ate around Y = 0 but with overall much smaller magnitude. This is
because gene Gy occasionally becomes unbound (X > 0), upon which
PY is synthesized. However, since promoter binding is strong and
at this condition, PX is in a much larger amount than PY , gene Gy
rapidly becomes inhibited by PX again.

The fluctuations observed in reaction trajectories are well
explained by the flux lines shown in Fig. 6(a), which form closed,
x-axis-oriented horizontal ellipses around the state (X = 50, Y = 0)
[Fig. 6(a)]. The major axis of the ellipse corresponds to the
stochastic fluctuations with larger magnitude in copies of PX and
the minor axis to fluctuations with smaller magnitude in copies
of PY .

While the behavior of stochastic fluctuation observed in reac-
tion trajectories is well captured in the flowmap of computed dis-
crete stochastic flux, these fluctuations, however, are not captured

by either the Liouville flux [Fig. 6(c)] or the Fokker-Planck flux
[Fig. 6(d)], where both converge to a single state (X = 50, Y = 0)
[and symmetrically to (X = 0, Y = 50)].

B. Weak promoter binding
With weak promoter binding (b = 1 × 10−4), there are sig-

nificant differences between the discrete flux and fluxes based on
continuum approximations. The discrete flux lines [Fig. 4(a) and
enlarged in Fig. 6(a)] exhibit strong oscillations between (X = 50,
Y = 50) and (X = 50, Y = 0) and symmetrically between (X = 50,
Y = 50) and (X = 0, Y = 50). Furthermore, probability flux also flows
from (X = 50, Y = 50) to (X = 0, Y = 0), then to (X = 50, Y = 0),
and back to (X = 50, Y = 50). A symmetric oscillatory pattern is also
seen, where flux lines flow back to (X = 50, Y = 50) via (X = 0, Y = 0)
and (X = 0, Y = 50). In addition, occasionally oscillation can be seen
between (X = 50, Y = 0) and (X = 0, Y = 50) via the state of (X = 50,
Y = 50).

To gain better understanding of the stochastic oscillations
uncovered from the discrete flux model, we examine the reaction
trajectories sampled from the initial state of (X = 50, Y = 0, x = 1,
y = 0), where the “On-Off” peak is located. Figure 6(f) shows tra-
jectories of copy numbers of protein PX (red lines) and protein PY
(black line). PX fluctuates with small magnitude around X = 50. This
is due to stochasticity in PX synthesis and degradation at x = 1. This
is similar to the fluctuation in PX shown in Fig. 6(b) where promoter
binding is fast. PY exhibits similar fluctuation around Y = 50.

However, there is significant oscillation in PY (black line) of
larger magnitude between Y = 50 and Y = 0. This is due to stochas-
tic switching between the gene state of y = 1 and y = 0. Similarly,
PX (red) also oscillates between X = 50 and X = 0 due to switching
between x = 1 and x = 0. Unlike that of strong promoter binding
[Fig. 6(b)], the trajectory of PY (black line) exhibits no fluctuations
around Y = 0 [Fig. 6(f)]. This is because when gene Gy becomes
unbound (y = 1), the system has sufficient time to transit from (Y
= 0) to (Y = 50) before gene Gy becomes bound again (y = 0), as
promoter binding of PX to Gy is slow. Furthermore, the durations of
simultaneous high copies of PX and PY (X = 50, Y = 50) are relatively
short.

The oscillations observed in reaction trajectories are well-
explained by the flowmap of the discrete flux [Figs. 6(e) and 4(a)].
The closed vertical ellipses with foci at states (X = 50, Y = 0) and
(X = 50, Y = 50) correspond to the larger stochastic fluctuations in
Y (black line) and smaller magnitude fluctuations in X (red line)
[Fig. 6(f)]. Shown in Fig. 4(a) but not in Fig. 6(e) for clarity, the
closed horizontal ellipses with foci at states (X = 0, Y = 50) and (X =
50, Y = 50) correspond to the larger stochastic fluctuations in X (red
line) and smaller magnitude fluctuations in Y (black line). Further-
more, corresponding to the shorter durations in trajectories when
both PX and PY are high at 50 [Fig. 6(f)], the state (X = 50, Y =
50) indeed is a transient state in the flow maps of the discrete flux
[Figs. 4(a)–4(c)].

Overall, the behavior of stochastic oscillations and fluctuations
observed in reaction trajectories is well captured in the computed
discrete stochastic flux. These oscillating behaviors, however, are not
captured by either the Liouville flux [Fig. 6(c)] or the Fokker-Planck
flux [Fig. 6(d)], where in either case the system converges to a single
state of (X = 50, Y = 50).
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FIG. 6. The flow maps of the prob-
ability fluxes and trajectories of the
toggle switch system near the state
“On-Off” with strong promoter binding
(b = 1 × 10−2) shown in log |Js(x,
y)| (a), log |JL(x, y)| (c), log |JFP(x, y)|
(d) and with weak promoter binding
(b = 1 × 10−4) shown in log |Js(x, y)|
(e), log |JL(x, y)| (g), and log |JFP(x, y)|
(h). Sampled Gillespie trajectories start-
ing from the state (X = 50, Y = 0, x = 1,
y = 0) are also shown for strong binding
(b) and for weak binding (f).
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V. CONCLUSION
In this work, we studied three different models of probabil-

ity flux, one directly based on the discrete chemical master equa-
tion (dCME) and two based on the continuum approximation of
the dCME. While continuum probability flux in stochastic mod-
els has been mostly based on Fokker-Planck formulations, we
introduce here the Liouville flux based on mass-action kinetics.
Using the toggle-switch system, we constructed global flow maps
of probability flux at the nonequlibrium steady state for all three
models.

Under the conditions when the rates of transcription factor to
promoter binding are much faster than the unbinding rates, all three
flux models show overall similar patterns, but with some impor-
tant differences: the flux lines of the continuum models flow to
single-states for both the “On-Off” and “Off-On” states [Figs. 6(c)
and 6(d)], while the flux lines of the discrete model form ellipses
[Fig. 6(a)], with better correspondence to the exhibited fluctuations
of uneven magnitude in the two proteins as seen in SSA-generated
reaction trajectories [Fig. 6(b)]. In the region of large copy num-
bers of proteins, the flux lines of the discrete model converge to
infinity (Figs. 2 and 4), whereas the flux lines of continuum mod-
els converge to the sinks at “Off-Off,” “On-Off,” or “Off-On” states.
States with large copy numbers have very low probability for the
toggle switch system, and the behavior of the system in these states
is not representative to the overall system behavior. Furthermore,
examination of details of the flow maps at different genetic states
reveals significant differences among these three models for the
(1, 1) genetic state: the discrete flux flows to infinite, the Liouville
flux flows to one sink, and the Fokker-Planck flux flows to three
sinks.

Under the highly stochastic condition of slow promoter bind-
ing, the differences between the discrete and the continuum flux
models are more prominent. The discrete flux model reveals the
existence of stochastic oscillations, where flux lines form ellipses,
with the “On-On” and “On-Off” states as foci, which are consis-
tent with the SSA-generated reaction trajectories. In contrast, both
Fokker-Planck and Liouville fluxes converge to the “On-On” state
and do not exhibit oscillatory behavior.

Overall, our results show that fluxes computed with these three
different models can exhibit significantly different results. Although
the Fokker-Planck flux model and the discrete flux model have
been shown to have similar behavior in several well-studied net-
works, including the Schnakenberg system,24,37 this work reveals
that there can be significant differences between them. Using the
universal discrete stochastic flux model, we uncovered the strong
oscillating behavior of the toggle switch at the nonequilibrium steady
state, which is due to strong fluctuations between binding and
unbinding events. In contrast, Fokker-Planck and Liouville models
fail to capture this phenomenon. Simulated stochastic trajectories
fully confirmed the findings obtained using the universal discrete
models.
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