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ABSTRACT

Complex spatiotemporal dynamics of physicochemical processes are often modeled at a microscopic level (through, e.g., atomistic, agent-
based, or lattice models) based on first principles. Some of these processes can also be successfully modeled at the macroscopic level using,
e.g., partial differential equations (PDEs) describing the evolution of the right few macroscopic observables (e.g., concentration and momen-
tum fields). Deriving good macroscopic descriptions (the so-called “closure problem”) is often a time-consuming process requiring deep
understanding/intuition about the system of interest. Recent developments in data science provide alternative ways to effectively extract/learn
accurate macroscopic descriptions approximating the underlying microscopic observations. In this paper, we introduce a data-driven frame-
work for the identification of unavailable coarse-scale PDEs from microscopic observations via machine-learning algorithms. Specifically,
using Gaussian processes, artificial neural networks, and/or diffusion maps, the proposed framework uncovers the relation between the rel-
evant macroscopic space fields and their time evolution (the right-hand side of the explicitly unavailable macroscopic PDE). Interestingly,
several choices equally representative of the data can be discovered. The framework will be illustrated through the data-driven discovery of
macroscopic, concentration-level PDEs resulting from a fine-scale, lattice Boltzmann level model of a reaction/transport process. Once the
coarse evolution law is identified, it can be simulated to produce long-term macroscopic predictions. Different features (pros as well as cons)
of alternative machine-learning algorithms for performing this task (Gaussian processes and artificial neural networks) are presented and
discussed.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5126869

The behavior of microscopic complex systems is often described
in terms of effective, macroscopic governing equations, leading
to simple and efficient prediction. Yet, the discovery/derivation
of such macroscopic governing equations generally relies on
deep understanding and prior knowledge about the system, as
well as extensive and time-consuming mathematical justification.
Recent developments in data-driven computational approaches
suggest alternative ways toward uncovering useful coarse-scale
governing equations directly from fine-scale data. Interestingly,
even deciding what the “right” coarse-scale variables are may

present a significant challenge. In this paper, we introduce and
implement a framework for systematically extracting coarse-scale
observables from microscopic/fine-scale data and for discover-
ing the underlying governing equations using machine-learning
techniques (e.g., Gaussian processes and artificial neural net-
works) enhanced by feature selection methods. Intrinsic rep-
resentations of the coarse-scale behavior via manifold learning
techniques (in particular, diffusion maps) generating alternative
possible forms of the governing equations are also explored and
discussed.
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I. INTRODUCTION

The successful description of the spatiotemporal evolution of
complex systems typically relies on detailed mathematical mod-
els operating at a fine scale (e.g., molecular dynamics, agent-
based, stochastic, or lattice-based methods). Such microscopic,
first-principles models, keeping track of the interactions between
huge numbers of microscopic level degrees of freedom, typically
lead to prohibitive computational cost for large-scale spatiotemporal
simulations.

To address this issue (and since we are typically interested
in macroscale features—pressure drops, reaction rates—rather than
the position and velocity of each individual molecule), reduced,
coarse-scale models are developed and used, leading to significant
computational savings in large-scale spatiotemporal simulations.1

Macroscopically, the fine-scale processes may often be success-
fully modeled using partial differential equations (PDEs) in terms of
the right macroscopic observables (“coarse variables”: not molecules
and their velocities, say, but rather pressure drops and momen-
tum fields). Deriving the macroscopic PDE that effectively models
the microscopic physics (the so-called “closure problem”) requires,
however, deep understanding/intuition about the complex system
of interest and often extensive mathematical operations; the discov-
ery of macroscopic governing equations is typically a difficult and
time-consuming process.

To bypass the first-principles discovery of a macroscopic PDE
directly, several data-driven approaches provide ways to effec-
tively determine good coarse observables and the approximate
coarse-scale relations between them from simulation data. In the
early 1990s, researchers (including our group) employed artifi-
cial neural networks for system identification (both lumped and
distributed).2–6 Projective time integration in dynamical systems7

and fluid dynamics8,9 also provides a good data-driven approxima-
tion of long-time prediction based not on closed-form equations,
but rather on a “black box” simulator. Furthermore, the equation-
free framework for designing fine-scale computational experiments
and systematically processing their results through “coarse time-
steppers” has proven its usefulness/computational efficiency in
analyzing macroscopic bifurcation diagrams.10,11 The easy avail-
ability of huge simulation data sets, and recent developments in
the efficient implementation of machine-learning algorithms, has
made the revisiting of the identification of nonlinear dynamical
systems from simulation time series an attractive—and success-
ful—endeavor. Working with observations at the macroscopic level,
hidden macroscopic PDEs can be recovered directly by artificial
neural networks6 (see also Ref. 12). Sparse identification of nonlinear
dynamics (SINDy)13 as well as Gaussian processes14,15 have also been
successfully used, resulting in explicit data-driven PDEs. All these
approaches rely on macroscopic observations.

In this paper, we discuss the identification of unavailable
coarse-scale PDEs from fine-scale observations through a combina-
tion of machine learning and manifold learning algorithms. Specif-
ically, using Gaussian processes, artificial neural networks, and/or
diffusion maps, and starting with candidate coarse fields (e.g., den-
sities), our procedure extracts relevant macroscopic features (e.g.,
coarse derivatives) from the data and then uncovers the relations
between these macroscopic features and their time evolution

(the right-hand side of the explicitly unavailable macroscopic
PDE).

To effectively reduce the input data domain, we employ two
feature selection methods: (1) a sensitivity analysis via Automatic
Relevance Determination (ARD)16–18 in Gaussian processes and (2)
a manifold learning technique, diffusion maps.19 Having selected the
relevant macrofeatures in terms of which the evolution can be mod-
eled, we employ two machine-learning algorithms to approximate a
“good” right-hand side of the underlying PDEs: (1) Gaussian process
regression and (2) artificial neural networks.

Our framework is illustrated through the data-driven discovery
of the macroscopic, concentration-level PDE resulting from a fine-
scale, lattice Boltzmann (LB) model of a reaction/transport process
[the FitzHugh-Nagumo (FHN) process in one spatial dimension].
Long-term macroscopic prediction is enabled by numerical simu-
lation of the coarse-scale PDE identified from the lattice Boltzmann
data. Different possible feature combinations (leading to different
realizations of the same evolution) will also be discussed.

The remainder of the paper is organized as follows: In Sec. II,
we present an overview of our proposed framework and briefly
review theoretical concepts of Gaussian process regression, artifi-
cial neural networks, and diffusion maps. Two methods for feature
selection are also presented. In Sec. III, we describe two simulators at
different scales: (1) the FitzHugh-Nagumo model at the macroscale
and (2) its lattice Boltzmann realization at the microscale. In Sec. IV,
we demonstrate the effectiveness of our proposed framework and
discuss the advantages and challenges of different feature selection
methods and regression models for performing this task. In Sec. V,
we summarize our results and discuss open issues for further devel-
opment of the data-driven discovery of the underlying coarse PDE
from microscopic observations.

II. FRAMEWORK FOR RECOVERING A COARSE-SCALE

PDE VIA MACHINE LEARNING

A. Overview

The workflow of our framework for recovering hidden coarse-
scale PDEs from microscopic observations is schematically shown
in Figs. 1 and 2. Specifically, this framework consists of two sub-
sections: (1) computing coarse-scale observables and (2) identifying
coarse-scale PDEs and then numerically simulating them.

To clarify the algorithm, consider a single field (the activator u;
later in this paper, we will use two densities, u and v, for the activa-
tor and the inhibitor, respectively). As shown in Fig. 1, we compute
the coarse-scale observable (here, the u concentration field) through
the zeroth moment of the microscopic LB simulation [averaging
the particle distribution functions (fi) on a given lattice point, see
Sec. III B for more details].

Given the coarse-scale observable, we estimate its time deriva-
tive and several of its spatial derivatives (e.g., ut, ux, and uxx),
typically using finite difference schemes in time and space as nec-
essary. A PDE of the form ut = L(u) = F(u, ux, uxx, . . .) is a relation
between the time derivative and a number of spatial derivatives;
this relation holds at every moment in time and every point in
space. For a simple reaction-diffusion equation, say, ut = uxx − u,
the data triplets (u, ut, uxx) will in general lie on a two-dimensional
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FIG. 1. Schematic illustration of the extraction of coarse-scale observables u
from microscopic observations. Through a lattice Boltzmann model (here, D2Q9),
we obtain particle distribution functions (fi ) on a given lattice. Using the zeroth
moment field of the particle distribution function at the grid point xn, we extract
the coarse observable u (in this paper, we have two coarse observables, u and v,
which represent the density of the activator and the inhibitor, respectively).

manifold in a three-dimensional space, since ut is a function of u
and uxx. Knowing that this manifold is two-dimensional suggests (in
the spirit of the Whitney and Takens embedding theorems20,21) that
any five generic observables suffice to create an embedding—and

thus learn ut, a function on the manifold, as a function of these
five observables. One might choose, for example, as observables the
values of u at any five spatial points at a given time moment, pos-
sibly the five points used in a finite difference stencil for estimating
spatial derivatives. In the study of time series through delay embed-
dings, one uses observations on a temporal stencil; it is interesting
that here, one might use observations on a spatial stencil—encoding
information analogous to spatial derivatives (see Ref. 12). Moti-
vated by this perspective, in order to learn the time derivative ut,
we use an original input data domain including several (say, all up
to some order) spatial derivatives. We also consider the selection of
a reduced input data domain via two feature selection methods: (1) a
sensitivity analysis by automatic relevance determination (ARD) in
Gaussian processes16,18,22 and (2) a manifold learning approach, dif-
fusion maps,23,24 with a regression loss (see Sec. IV B in more detail).
Then, we consider two different machine-learning methods (Gaus-
sian process regression and artificial neural networks) to learn ut

based on the selected feature input data domain.
After training, simulation of the learned coarse-scale PDE

given a coarse initial condition u0(x, t), v0(x, t) can proceed with
any acceptable discretization scheme in time and space (from sim-
ple finite differences to, say, high order spectral or finite element
methods).

B. Gaussian process regression

One of the two approaches we employ to extract dominant fea-
tures and uncover the RHS of coarse-scale PDEs is Gaussian process
regression. In Gaussian processes, to represent a probability distri-
bution over target functions (here, the time derivative), we assume
that our observations are a set of random variables whose finite col-
lections have a multivariate Gaussian distribution with an unknown

FIG. 2. Workflow for uncovering coarse-scale PDEs. First,
we compute macroscopic variables u and v from the lattice
Boltzmann simulation data [see Eq. (18) and Fig. 1] and esti-
mate their spatial derivatives (e.g., by finite difference schemes
on the lattice). After that, we employ machine-learning algo-
rithms (here, Gaussian process regression or artificial neural
networks) to identify “proper” time derivatives ut and vt from an
original input data domain directly (no feature selection among
several spatial derivatives) or from a reduced input data domain
(feature selection among several spatial derivatives) using ARD
in Gaussian processes or diffusion maps. We then simulate the
identified coarse-scale PDE for given coarse initial conditions
(u0, v0).
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mean (usually set to zero) and an unknown covariance matrix K.
This covariance matrix is commonly formulated by a Euclidean
distance-based kernel function κ in the input space, whose hyper-
parameters are optimized by training data. Here, we employ a radial
basis kernel function (RBF), which is the de facto default kernel
function in Gaussian process regression, with ARD,17

Kij = κ(xi, xj; θ) = θ0 exp

(

−
1

2

k
∑

l=1

(xi,l − xj,l)
2

θl

)

, (1)

where θ = [θ0, . . . , θk]
T is a k + 1 dimensional vector of hyperpa-

rameters and k is the number of dimensions of the input data
domain. The optimal hyperparameter set θ∗ can be obtained by min-
imizing a negative log marginal likelihood with the training data set
{x, y},

θ∗ = argminθ {− log p(y|x, θ)}

=
1

2
yT(K + σ 2I)

−1
y +

1

2
log |(K + σ 2I)| +

N

2
log 2π , (2)

where N is the number of training data points and σ 2 and I repre-
sent the variance of the (Gaussian) observation noise and an N × N
identity matrix, respectively.

To find the Gaussian distribution of the function values (here,
the time derivative) at test data points, we represent the multivari-
ate Gaussian distribution with the covariance matrix constructed by
Eq. (1) as

[

y
y∗

]

= N

(

0,

[

K + σ 2I K∗

KT
∗ K∗∗

])

, (3)

where y∗ is a predictive distribution for test data x∗ and K∗ repre-
sents a covariance matrix between training and test data while K∗∗

represents a covariance matrix between test data.
Finally, we represent a Gaussian distribution for time deriva-

tives at the test point in terms of a predictive mean and its variance,
through conditioning a multivariate Gaussian distribution as

ȳ∗ = K∗(K + σ 2I)
−1

y, → ȳ∗ = KT
∗(K + σ 2I)

−1
y, (4)

K(y∗) = K∗∗ − KT
∗(K + σ 2I)

−1
K∗, (5)

and we assign the predictive mean (ȳ∗) as the estimated time deriva-
tive for the corresponding data point.

C. Artificial neural networks

Next, we consider (artificial, possibly deep) neural networks
(ANNs or NNs or DNNs) for identifying the RHS of coarse-scale
PDEs. Generally, neural networks consist of an input layer, one
or more hidden layers, and an output layer, all comprising several
computational neurons, typically fully connected by weights (ω),
biases (b), and an activation function [ψ(·)]. Macroscopic observ-
ables and their spatial derivatives are assigned at the input layer,
while the corresponding time derivative is obtained at the out-
put layer (here, we are considering only first order PDEs in time;
higher order equations, like the wave equation, involving second
derivatives in time can also be accounted for within the frame-
work). In (feedforward) neural networks, a universal approximation

theorem25 guarantees that for a single hidden layer with (sufficient) a
finite number of neurons, an approximate realization ỹ of the target
function, y, can be found. Here, approximation implies that the tar-
get and learned functions are sufficiently close in an appropriately
chosen norm (∀δ > 0 : ‖y − ỹ‖ < δ). The approximate form of the
target function obtained through the feedforward neural net can be
written as

ỹ(x) =

N
∑

i=1

ψ
(

ω
T
i x + bi

)

. (6)

The root-mean-square error cost function,

ED =
1

N

N
∑

j=1

(yj − ỹ(xj))
2, (7)

typically measures the goodness of the approximation.
In order to obtain a generalizable network, with good per-

formance on the test data set as well as on the training data set
(e.g., preventing overfitting), several regularization approaches have
been proposed, mostly relying on modifications of the cost func-
tion. Foresee and Hagan26 showed that modifying the cost function
by adding the regularization term Eω = 6

Nω
j=1ω

2
j results in a network

that will maximize the posterior probability based on Bayes’ rule. We
thus trained our network based on a total cost function of the form

Etotal = β1ED + β2Eω , (8)

in which β1 and β2 are network tuning parameters. Here,
we employ Bayesian regularized backpropagation for train-
ing, which updates weight and bias values through Levenberg-
Marquardt optimization;27 we expect that, for our data, compara-
ble results would be obtained through other modern regulariza-
tion/optimization algorithms.

D. Diffusion maps

Diffusion maps (DMAPs) have successfully been employed for
dimensionality reduction and nonlinear manifold learning.23,24,28,29

The diffusion maps algorithm can guarantee, for data lying on a
smooth manifold—and at the limit of infinite data—that the eigen-
vectors of the large normalized kernel matrices constructed from the
data converge to the eigenfunctions of the Laplace-Beltrami opera-
tor on the manifold on which the data lie. These eigenfunctions can
also provide nonlinear parametrizations (i.e., sets of coordinates)
for such (Riemannian) manifolds. To approximate the Laplace-
Beltrami operator from scattered data points on the manifold, a nor-
malized diffusion kernel matrix between observation (data) points is
commonly used,

Wij = exp

(

−
‖yi − yj‖

2
2

ε

)

, (9)

where yi are real-valued observations and ε is the kernel width. After
that, one obtains a normalized matrix W(α) by

W(α) = D−αWD−α , (10)

where D is a diagonal matrix whose ith entry is the sum of corre-
sponding row of W. Here, α ∈ {0, 1} is a tuning parameter: α = 0
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corresponds to the classical normalized graph Laplacian,30,31 while
α = 1, which takes into account the local data density, yields the
Laplace-Beltrami operator;24 in this paper, we set α = 1. Then, W̃ is
calculated simply as

W̃ = D̃−1W(α), (11)

where D̃ is a diagonal matrix whose ith entry is the sum of the
corresponding row of W(α).

Finally, an embedding of the manifold is constructed by the
first few (say, m) nontrivial eigenvectors of W̃,

yi 7→
(

λt
1φ1,i, . . . , λ

t
mφm,i

)

, i = 1, . . . , n, (12)

where t corresponds to the number of diffusion steps (here, t = 0)
with descending ordered eigenvalues λi.

Instead of using the Euclidean distance between the data points
in the diffusion map algorithm, it has recently been proposed to use
a different, kernel-based similarity metric;32 the associated kernel-
based embeddings allow for control of the distortion of the result-
ing embedding manifold; we will return to this and its possible
implications in our Conclusions (Sec. V).

E. Feature selection

Describing the coarse-scale spatiotemporal dynamics in the
form of a (translationally invariant) PDE involves learning the local
field time derivatives as a function of a few, relevant local field
spatial derivatives. Starting with a “full” input data domain consist-
ing of all local field values as well as all their coarse-scale spatial
derivatives (up to some order), we must extract the few “relevant”
spatial derivatives as dominant features of this input data domain.
Such feature selection will typically reduce the dimensionality of the
input data domain. Among various feature selection methods, we
employ two algorithms based on (1) sensitivity analysis via ARD in
Gaussian processes16,18,22 and (2) manifold parametrization through
input-output-informed diffusion maps.19

First, we employ sensitivity analysis via automatic relevance
determination (ARD) in Gaussian processes, which effectively
reduces the number of input data dimensions. In Gaussian pro-
cesses, we obtain the optimal hyperparameter set θ∗ by minimizing a
negative log marginal likelihood [see Eq. (2)]. ARD assigns a differ-
ent hyperparameter θi for each input dimension di. As can be seen
in Eq. (1), a large value of θi nullifies the difference between tar-
get function values along the di dimension, allowing us to designate

this dimension as “insignificant.” Practically, we select the input
dimensions with relatively small θj to build a reduced input data
domain, which can still successfully represent the approximation of
the right-hand side on the underlying PDEs.

Alternatively, we employ a manifold learning technique to
find the intrinsic representation of the coarse-scale PDE and
then examine the relation between these intrinsic coordinates and
given input features (spatial field derivatives). Specifically, diffu-
sion maps will provide an intrinsic parametrization of the combined
input-output data domain (here, {ut, u, ux, uxx, v, vx, vxx} for u and
{vt, u, ux, uxx, v, vx, vxx} for v). Selecting leading intrinsic coordinates
(eliminating higher harmonic eigenfunctions), we can then find the
lowest-dimensional embedding space for the PDE manifold (the
manifold embodying ut and vt as a function of the embedding intrin-
sic coordinates). We then test several combinations of subsets of
the input domain coordinates (spatial derivatives) as to their abil-
ity to parametrize the discovered intrinsic embedding coordinates.
Each set of such inputs, which successfully parametrize the intrinsic
embedding coordinates (see Fig. 3), provides us a new possibility
of learning a PDE formulation that describes the spatiotemporal
dynamics of our observation data set.

In principle, any subset of intrinsic coordinates that success-
fully parametrize the manifold can be used to learn functions on the
manifold and, in particular, ut and vt. The success of any particu-
lar subset of leading intrinsic coordinates in describing ut and vt is
confirmed through regression, via a mean-squared-error loss (L).

Next, we investigate which set of features of the input domain
(which sets of spatial derivatives) can be best used to parametrize the
intrinsic embedding (and thus learn the PDE right-hand side). One
can find the subset of features from a user-defined dictionary (here,
spatial derivatives) to parametrize the intrinsic embedding coordi-
nates through a linear group LASSO.33 In this paper, we examine
several combinations of input domain variables and find subsets that
can minimally parametrize the intrinsic embedding; this is quanti-
fied through a total regression loss (LT) based on a mean-squared
error as

LT =





d
∑

j=1

L2
φj





1
2

, (13)

where Lφj
represents a GP regression loss for representing the intrin-

sic coordinate φj using selected input features and d represents the
number of intrinsic coordinates we chose.

FIG. 3. Feature selection via input-output-informed diffusion maps. Diffusion maps provide intrinsic coordinatization of the output (the time derivatives) from combined
input-output data. Guided by a regression loss (L), we find a low-dimensional intrinsic embedding space in which ut (and vt ) can be represented as a function of just a
few intrinsic diffusion map coordinates. After that, we search and find minimal subsets of the input data domain that can parametrize the selected intrinsic coordinates
(e.g., φ1,φ4,φ5) as quantified by a small total regression loss [see Eq. (13)].
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ARD for Gaussian processes suggests the “best” input domain
subset in terms of which we will try and predict ut and vt. In the
manifold learning context, we may find several different input sub-
sets capable of parametrizing the manifold on which the observed
behavior lies. Different minimal parametrizing subsets will lead to
different (but, in principle, on the data, equivalent) right-hand sides
for the PDE evolution. One expects that some of them will be “better
conditioned” (have better Lipschitz constants) than others.

III. DIFFERENT SCALE SIMULATORS FOR

ONE-DIMENSIONAL REACTION-DIFFUSION SYSTEMS

A. Macroscale simulator: FitzHugh-Nagumo model

To describe a one-dimensional reaction-diffusion system that
involves an activator u and an inhibitor v, the FitzHugh-Nagumo
model consists of two coupled reaction-diffusion partial differential
equations,

∂u

∂t
= Du ∂

2u

∂x2
+ u − u3 − v,

∂v

∂t
= Dv ∂

2v

∂x2
+ ε(u − a1v − a0),

(14)

where a1 and a0 are model parameters, ε represents a kinetic bifur-
cation parameter, and Du and Dv represent diffusion coefficients
for u and v, respectively. Here, we set these parameters to a1 = 2,
a0 = −0.03, ε = 0.01, Du = 1, and Dv = 4.11 We discretize a spa-
tial domain on [0, 20] with1x = 0.2 and a time domain on [0, 450]
with 1t = 0.001, respectively. We impose homogeneous Neumann
boundary conditions at both boundaries and solve these equations
(for various initial conditions) numerically via the finite element
method using the COMSOL Multiphysics® software.34

B. Microscale simulator: The lattice Boltzmann model

We also introduce a lattice Boltzmann model (LBM),35,36 which
can be thought of as a mesoscopic numerical scheme for describ-
ing spatiotemporal dynamics using finite-difference-type discretiza-
tions of Boltzmann-Bhatnagar-Gross-Krook (BGK) equations,37

retaining certain advantages of microscopic particle models. In this
paper, the lattice Boltzmann model is our fine-scale “microscopic
simulator,” and its results are considered to be “the truth” from
which the coarse-scale PDE will be learned.

The time evolution of the particle distribution function on a
given lattice can be described by

fli(xj+i, tk+1) = fli(xj, tk)+�l
i(xj, tk)+ Rl

i(xj, tk) l ∈ {u, v}, (15)

where a superscript l indicates the activator u and the inhibitor v and
�l

i represents a collision term defined by Bhatnagar-Gross-Krook
(BGK),37

�l
i(xj, tk) = −ωl(fli(xj, tk)− f

l,eq
i (xj, tk)), (16)

where ωl represents a BGK relaxation coefficient defined as38

ωl =
2

1 + 3Dl 1t
1x2

. (17)

To compute our coarse-scale observables u and v, we employ
the D1Q3 model, which uses three distribution functions on the

one-dimensional lattice as (fl−1, f
l
0, f

l
1) for each density (totalling 6

distribution functions). Through the zeroth moment (in the velocity
directions) of the overall distribution function, finally, we compute
the coarse-scale observable u and v as

u(xj, tk) =

1
∑

i=−1

fui (xj, tk),

v(xj, tk) =

1
∑

i=−1

fvi (xj, tk).

(18)

Based on spatially uniform local diffusion equilibrium, for
which f

eq
i is homogeneous in all velocity directions, the weights are

chosen all equal to 1/3,

f
u,eq
i (xj, tk) =

1

3
u(xi, tk),

f
v,eq
i (xj, tk) =

1

3
v(xi, tk).

(19)

Thus, the reaction terms Rl
i in Eq. (15) are modeled by

Ru
i (xj, tk) =

1

3
1t(u(xj, tk)− u(xj, tk)

3 − v(xj, tk)),

Rv
i (xj, tk) =

1

3
1tε(u(xj, tk)− a1v(xj, tk)

3 − a0).

(20)

All model parameters (a0, a1, ε, D
u, Dv) are the same as the FHN

PDE. The corresponding spatiotemporal behavior of these coarse
observables u and v is shown in Figs. 4(a) and 4(c), while the FHN
PDE simulation for the same coarse initial conditions is shown in
Figs. 4(b) and 4(d).

IV. RESULTS

A. Learning without feature selection

We begin by considering our proposed framework without
feature selection, so as to later contrast with the results including
feature selection. The data come from the fine-scale lattice Boltz-
mann simulation. For the parameter values selected, the long-term
dynamics of the LB simulation lie, for all practical purposes, on (or
very close to) a stable time-periodic solution. To predict the coarse
time derivatives ut and vt, we collect training data from five differ-
ent initial conditions near this stable periodic solution (see Fig. 5)
with the following LB spatiotemporal discretization—in space, 99
discretized points on [0.2, 19.8] with dx = 0.2 and in time, 451 dis-
cretized points on [0, 450] with dt = 1 for each initial condition.
Since our data come from the fine-scale LB code, we need to ini-
tialize at the fine, LB scale of particle distribution functions (and not
just of the concentrations u and v). To initialize the particle distri-
bution functions in the lattice Boltzmann model, we apply the equal
weights rule, 1/3 for f−1, f0, and f1, motivated by near-equilibrium
considerations. We do expect that such initialization features will
soon be “forgotten” as higher distribution moments become quickly
slaved to the lower (here, the zeroth) moments (see, for example,
Ref. 39). To ensure that our results are not affected by the initial-
ization details, we only start collecting training data after relaxation
by short time simulation (here, 2000 time steps with 1t = 0.001 or
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FIG. 4. Spatiotemporal behavior of u and v simulated by the lattice Boltzmann
model and by the FitzHugh-Nagumo PDE. (a) and (c) u and v from the lattice
Boltzmann model (LBM). (b) and (d) u and v from the FitzHugh-Nagumo PDE. (e)
and (f) Normalized absolute difference between the simulations of the twomodels.

t = 2) (see the Appendix). We estimate the local coarse fields and
their (several) spatial and temporal derivatives through finite differ-
ences and then apply machine-learning algorithms (here, Gaussian
processes as well as neural networks) to learn the time derivatives of
the activator ut and the inhibitor vt using as input variables the local
u, v and all their spatial derivatives up to and including order two
(u, ux, uxx, v, vx, vxx),

ut(x, t) = fu(u, ux, uxx, v, vx, vxx),

vt(x, t) = fv(u, ux, uxx, v, vx, vxx).
(21)

Specifically, for the neural network approach, we build two
different networks, one for the prediction of the activator and
one for the inhibitor. For both the activator and the inhibitor, we
set 2 hidden layers each consist of 6 neurons using a hyperbolic
tangent sigmoid activation function; as mentioned above, we use
Levenberg-Marquardt optimization with a Bayesian regularization
(see Sec. II C). Both networks use the mean-squared error as their
loss function. For Gaussian processes, we employ a radial basis ker-
nel function with ARD [see Eq. (1)]. Regression results obtained by
each of the two methods for the time derivatives in the training data

FIG. 5. Five different coarse initial conditions (y0i ) for training and a test coarse
initial condition (colored in black). (a) Coarse initial conditions for u. (b) Coarse
initial conditions for v. Five initial conditions are randomly chosen near the stable
periodic solution.

set are shown in Fig. 6. Both methods provide good approximations
of the target time derivatives ut and vt. Given the test coarse ini-
tial condition (black curves in Fig. 5), simulation results with the
learned PDE from t = 0 to t = 450 with 1t = 0.001 and their nor-
malized absolute differences from the “ground truth” LB simulations
are shown in Fig. 7. The order of magnitude of these absolute differ-
ences for both models is the same as those between the LB FHN and
the explicitly known FHN PDE [see Figs. 4(e) and 4(f)].

B. Learning with feature selection

Now, we consider the possibility of feature selection in an
attempt to learn the RHS of coarse-scale PDEs with a minimal num-
ber of input domain variables (spatial derivatives). First, we apply

FIG. 6. No feature selection: ut = f u(u, ux , uxx , v, vx , vxx) and vt = f v(u, ux ,
uxx , v, vx , vxx). Regression results of the two methods for time derivatives: Gaus-
sian processes (GPs) and neural networks (NNs).
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FIG. 7. No feature selection: ut = f u(u, ux , uxx , v, vx , vxx) and vt = f v(u, ux ,
uxx , v, vx , vxx). (a)–(d) Simulation results of the two methods for u and v. (e)–(h)
The normalized absolute differences from the “ground truth” LB simulations for u
and v.

the sensitivity analysis via ARD in the case of Gaussian process
approximation. The optimal ARD weights (θ∗) for ut and vt are tab-
ulated in Table I. ut has three relatively small weights for (u, uxx, v),
and vt has also three relatively small weights for (u, v, vxx). It is

FIG. 8. Feature selection 1: ut = f u1 (u, uxx , v) and vt = f v1 (u, v, vxx). These
selected variables are the same as those that appear in the right-hand side of
the explicitly known FHN PDE. Regression results of the two methods for time
derivatives: Gaussian processes (GPs) and neural networks (NNs).

interesting to observe that the selected features via ARD are the same
as those in the explicitly known FHN PDE [see Eq. (14)]. This shows
that ARD can effectively guide in selecting the appropriate dimen-
sionality of the input data domain, resulting here in the same spatial
derivative choices as in the explicitly known FHN PDE. Now, we use
the reduced input data domain (u, uxx, v) for ut and (u, v, vxx) for vt

to recover the RHS of the coarse-scale PDEs as

ut(x, t) = fu1(u, uxx, v),

vt(x, t) = fv1(u, v, vxx).
(22)

Regression results of our two methods for the time derivatives are
shown in Fig. 8. Results of long time simulation of the learned PDEs
by each method, from t = 0 to t = 450, as well as normalized abso-
lute differences from the simulation of the “ground truth” LB are
shown in Fig. 9.

The two machine-learning methods operating with a reduced
input data domain can still provide good approximations of the time
derivatives and of the resulting dynamics. The order of magnitude of
these absolute differences is effectively the same as the difference of
the FHN LB from the explicitly known FHN PDE. It is, therefore,

TABLE I. Optimal ARD weights [θ∗ for ut and v t in Eq. (2)]. As mentioned in Sec. II E, features that have relatively small ARD weights can be regarded as dominant features for

the target functions ut and v t.

u ux uxx v vx vxx

ut 5.28 × 1000 4.23 × 1006 9.13 × 1002 2.13 × 1003 5.32 × 1008 4.78 × 1007

vt 1.33 × 1002 6.69 × 1006 1.94 × 1006 5.09 × 1002 4.20 × 1006 1.75 × 1002
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FIG. 9. Feature selection 1: ut = f u(u, uxx , v) and vt = f v(u, v, vxx). (a)–(d) Sim-
ulation results of the two methods for u and v. (e)–(h) The normalized absolute
differences from the “ground truth” LB simulations for u and v.

clear that our framework effectively recovers the coarse-scale PDE
from fine-scale observation data; the difference is that the right-hand
side of the PDE is now given in terms of the ANN right-hand side,
or in terms of the observed data and the GP kernel/hyperparameters,
rather than the simple algebraic formula of Eq. (14).

Next, we consider an alternative approach for feature selec-
tion, via our manifold learning technique, diffusion maps. The
best candidate set among different combinations of intrinsic

TABLE II. The best candidates and the corresponding regression loss (L) for ut and

v t with respect to the number of diffusion map coordinates.

Optimal intrinsic coordinates Regression loss (L)

ut vt ut vt

1d (φu
5 ) (φv

2) 4.60 × 10−04 7.69 × 10−06

2d (φu
1 ,φu

5 ) (φv
1 ,φv

2) 1.40 × 10−06 1.50 × 10−06

3d (φu
1 ,φu

4 ,φu
5 ) (φv

1 ,φv
2 ,φv

3) 2.18 × 10−08 4.74 × 10−08

4d (φu
1 ,φu

3 ,φu
4 ,φu

5 ) (φv
1 ,φv

2 ,φv
3 ,φv

4) 1.64 × 10−08 5.71 × 10−09

coordinates (varying the number of leading independent intrin-
sic dimensions and recording the corresponding Gaussian process
regression loss) is shown in Table II. Since the three-dimensional
intrinsic embedding space exhibits a (tiny) regression loss of
order 10−8, we choose an input domain for ut consisting of
(φu

1 ,φu
4 ,φu

5 ) as shown in Fig. 10(a). For vt, by the same token,
we choose the three-dimensional embedding space consisting of
(φv

1 ,φv
2 ,φv

3) as shown in Fig. 10(b). Based on these identified
intrinsic embedding spaces, we examined several subsets of input
domain features (spatial derivatives) using the total loss of Eq.
(13). “Good” subsets of input features (those that result in small
regression losses with minimal input dimension) are presented
in Table III. Clearly, different choices of such input feature sub-
sets can give comparable total losses; this suggests that we may
construct different right-hand sides of the unknown coarse-scale

FIG. 10. Three leading diffusion map coordinates: Colors represent ut in (a) and
vt in (b).
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TABLE III. The best candidates and corresponding total loss for ut = (φu
1 ,φ

u
4 ,φ

u
5 )

and vt = (φv
1 ,φ

v
2 ,φ

v
3 ) with respect to the number of features.

ut = (φu
1 ,φu

4 ,φu
5 ) vt = (φv

1 ,φv
2 ,φv

3)

Features Total loss (LT) Features Total loss (LT)

1d (u) 6.51 × 10−05 (u) 7.93 × 10−05

2d (u, v) 1.65 × 10−08 (u, v) 1.49 × 10−05

3d (u, uxx, v) 6.52 × 10−09 (u, v, vxx) 3.32 × 10−07

(u, ux, v) 7.39 × 10−09 (u, ux, vxx) 6.21 × 10−07

4d (u, ux, uxx, v) 2.68 × 10−09 (u, v, vx, vxx) 4.47 × 10−09

PDE, which are comparably successful in representing the observed
dynamics.

The good candidates for ut and vt identified this way, consist-
ing of three input features, are (u, uxx, v) and (u, v, vxx); they are the
same as those found from GPs via ARD and also the same as the
ones in the explicitly known FHN PDE. Interestingly, another pos-
sible alternative candidate set is also identified: (u, ux, v) for ut and
(u, ux, vxx) for vt.

Using these alternative candidate feature sets, we model differ-
ent “versions” of what, on the data, is effectively the same coarse-
scale PDE. The “alternative” version of the PDE can be symbolically
written as

ut(x, t) = fu2(u, ux, v),

vt(x, t) = fv2(u, v, vxx),
(23)

FIG. 11. Feature selection 2: ut = f u2 (u, ux , v) and vt = f v2 (u, v, vxx). Regression
results of the two methods for time derivatives: Gaussian processes (GPs) and
neural networks (NNs).

FIG. 12. Feature selection 2: ut = f u(u, ux , v) and vt = f v(u, v, vxx). (a)–(d)
Simulation results of the twomethods for u and v. (e)–(h) The normalized absolute
differences from the “ground truth” LB simulations for u and v.

and the corresponding regression results of the time deriva-
tives are shown in Fig. 11. Specifically, we use the first spa-
tial derivative ux instead of the second spatial derivative uxx for
learning ut.

As shown in Fig. 12, both models provide good predictions of
the “ground truth” LB simulations; we observe, however, that the
accuracy of the neural network based predictions is enhanced. These
results confirm that, on the data, alternative coarse-scale PDE forms
can provide successful macroscopic description.

To further explore this possibility of alternative PDE forms
that represent the observed data with qualitatively comparable accu-
racy, we also explored the efficacy of a third coarse-scale PDE
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FIG. 13. Feature selection 3: ut = f u3 (u, uxx , v) and vt = f v3 (u, ux , vxx). Regres-
sion results of the two methods for time derivatives: Gaussian processes (GPs)
and neural networks (NNs).

description, in terms of a yet different input feature set: (u, uxx, v) for
ut and(u, ux, vxx) for vt so that the PDE can symbolically be written
as

ut(x, t) = fu3(u, uxx, v),

vt(x, t) = fv3(u, ux, vxx).
(24)

The corresponding prediction results of the time derivatives are
shown in Fig. 13.

As shown in Fig. 13, both regression methods provide an inac-
curate approximation of vt near vt = 0; the order of magnitude
of this error is 10−3. The long-term prediction results are not as
accurate representations of the ground truth LB simulation as the
previous two coarse-scale PDE realizations; yet they may still be
qualitatively informative. Normalized absolute differences of long-
time simulation for both machine-learning methods are shown in
Fig. 14. As was the case in the previous alternative PDE realizations,
the NN model appears more accurate than the GP one.

To compare our identified coarse-scale PDEs with the explicitly
known FHN PDE [see Eq. (14)], we also compare the predictions of
our coarse-scale PDEs to those of the FHN PDE via mean normal-
ized absolute differences for the test coarse initial condition followed
from t = 0 to t = 450 as

MNADu =
1

NT

99
∑

i=1

450
∑

j=0

|u(i, j)− uf(i, j)|

max(uf)− min(uf)
,

MNADv =
1

NT

99
∑

i=1

450
∑

j=0

|v(i, j)− vf(i, j)|

max(vf)− min(vf)
,

(25)

FIG. 14. Feature selection 3: ut = f u(u, uxx , v) and vt = f v(u, ux , vxx). (a)–(d)
Simulation results of the twomethods for u and v. (e)–(h) The normalized absolute
differences from the “ground truth” LB simulations for u and v.

where NT is the total number of data points and uf and vf represent
simulation results of the FHN PDE, respectively. The comparison of
these representative simulations of our various coarse-scale PDEs is
summarized in Table IV. The differences across our various coarse-
scale identified PDEs are of order 10−2 and below, comparable to
the difference between each of them and the FHN PDE. Specifically,
“feature selection 1” (Fig. 9), whose variables are the same as those
of the explicit FHN PDE, provides the best PDE realization via both
the GP and the NN models.
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TABLE IV. Mean normalized absolute difference (MNAD) for different coarse-scale

PDEs. “GP” and “NN” represent “Gaussian processes” and “Neural networks,” respec-

tively.

MNADu MNADv

No feature selection with GPs 1.59 × 10−02 1.62 × 10−02

No feature selection with NNs 1.53 × 10−02 1.56 × 10−02

Feature selection 1 with GPs 1.58 × 10−02 1.62 × 10−02

Feature selection 1 with NNs 1.54 × 10−02 1.57 × 10−02

Feature selection 2 with GPs 2.39 × 10−02 2.20 × 10−02

Feature selection 2 with NNs 2.00 × 10−02 2.11 × 10−02

Feature selection 3 with GPs 3.20 × 10−02 3.31 × 10−02

Feature selection 3 with NNs 2.08 × 10−02 2.16 × 10−02

V. CONCLUSION

In this paper, we demonstrated the data-driven discovery
of macroscopic, concentration-level PDEs for reaction/transport
processes resulting from fine-scale observations (here, from
simulations of a lattice Boltzmann mesoscopic model). Long-term
macroscopic prediction is then obtained by simulation of the identi-
fied (via machine-learning methods) coarse-scale PDE. We explored
the effect of input feature selection capability on the effectiveness of
our framework to identify the underlying macroscopic PDEs.

Our framework suggests four different PDEs (one without
and three with feature selection), all comparable with the explicit
FitzHugh-Nagumo PDE on the data: all of them provide good
approximations of sample coarse-scale dynamic trajectories. The
FHN PDE terms have a well-established mechanistic physical mean-
ing (reaction and diffusion); it would be interesting to explore if any
physical meaning can be ascribed to our alternative parametriza-
tions of the right-hand side of the coarse-scale evolution PDE.
Clearly, the identified PDE depends on our choice of observ-
ables—for example, our diffusion map embedding coordinates. We
plan to explore the use of kernel-based embeddings (as discussed
in Ref. 32 mentioned above) as an approach that can control the
well-posedness of the embedding and the distortion of the result-
ing manifold; this will clearly affect the identified PDE, and it will
be interesting to study the interplay between differently distorted
embedding manifolds and different identified approximate PDEs.

In our framework, we employed finite differences to estimate
spatial derivatives in the formulation of the PDE. Instead of numer-
ical spatial derivatives, we may use the values of coarse observables
at neighboring points directly to uncover the coarse evolution law.
The effect of this alternative embedding for the PDE right-hand
side, explored in Ref. 12, on the accuracy of the identified model
predictions, is the subject of ongoing research.

We believe that the framework we presented is easily gener-
alizable to multiscale and/or multifidelity data. Here, we worked
across a single scale gap and a single fine-scale simulator providing
the ground truth. We envision that data fusion tools can be com-
bined with the approach to exploit data at several cascaded scales
and taking advantage of simulation data from several heterogeneous
simulators.9,40
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APPENDIX: “HEALING” FOR THE LATTICE

BOLTZMANN MODEL

An important assumption underlying our work is that the fine-
scale model can “close” at a coarse-scale level. In our particular case,
this means that, even though our fine-scale Lattice Boltzmann model
(LBM) evolves particle distribution functions, one can be predictive
at the coarse level of the zeroth moments of these functions and
the concentrations u and v of the activator and the inhibitor. The
hypothesis that allows this reduction is that the problem is singularly
perturbed in time: higher order moments of these distribution func-
tions become quickly slaved to the “slow,” governing, zeroth order
moment fields. Yet, while initializing the FHN PDE only requires
spatial profiles of u and v at the initial time, initializing the full
FHN LBM requires initial conditions for all the evolving particle
distributions. Constructing such detailed fine-scale initializations
consistent with the coarse initial conditions is an important con-
ceptual component of equation-free computation; the term used is
“lifting.”7,41

Here, in lifting the coarse-scale observable (a concentration
field ρ) to the microscopic description (particle distribution func-
tion f) on each node, we employ an equal weight rule, i.e., the
three particle distribution function values at the node xn are chosen
to be

f−1(xn) = f0(xn) = f1(xn) =
ρ(xn)

3
. (A1)

This equal weight choice (the local, spatially uniform diffusive equi-
librium distribution) is not, in general, consistent with the (spatially

FIG. 15. Evolution of the L2 norm [see Eq. (A2)] of the coarse difference between
trajectories with the same coarse but different fine initial conditions. After the initial
small (but violent) oscillation in error abates (for t . 0.1), the perturbed system
relaxes to the vicinity of the base solution over t ≈ 2.
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nonuniform and not simply diffusive) macroscopic PDE model
(here, the FitzHugh-Nagumo PDEs); yet, we expect that the fine-
scale simulation features will become rapidly slaved to the local
concentration field.39 To estimate the appropriate slaving/relaxation
time, we compare the L2 norm of the density predicted by two
differently initialized LBM simulations: the one that lies on the
long-term stable limit cycle and the one that results from it by retain-
ing the coarse state, but perturbing the associated fine-scale states
according to the local diffusive equilibrium 1

3
rule [for ε = 0.01 in

Eq. (20)].
To explore the slaving time scale, we trace the L2 norm of

the difference between the simulations resulting from these two
initializations. This L2 norm is defined as

‖err‖2 = ‖ρeq(x, t)− ρ(x, t)‖2, (A2)

where ρeq and ρ represent the density with equal weights and the
density without equal weights (reference solution), respectively. As
shown in Fig. 15, after a fast transient oscillation of L2 (for t < 0.1),
the norm decays smoothly until t ≈ 2. There is still a small inher-
ent bias (the trajectory will come back to a nearby point along the
limit cycle); this does not affect our estimate of the slaving time. We,
therefore, chose a relaxation time t = 2 (or 2000 LB time steps), and
we started collecting coarse observations as training data from our
various initializations only after t = 2.
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