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ABSTRACT

In this study, we analyze a nonlinear map model of intracellular calcium (Ca) and voltage in cardiac cells. In this model, Ca
release from the sarcoplasmic reticulum (SR) occurs at spatially distributed dyadic junctions that are diffusively coupled. At these
junctions, release occurs with a probability that depends on key variables such as the SR load and the diastolic interval. Using
this model, we explore how nonlinearity and stochasticity determine the spatial distribution of Ca release events within a cardiac
cell. In particular, we identify a novel synchronization transition, which occurs at rapid pacing rates, in which the global Ca
transient transitions from a period 2 response to a period 1 response. In the global period 2 response dyadic junctions fire in
unison, on average, on alternate beats, while in the period 1 regime, Ca release at individual dyads is highly irregular. A close
examination of the spatial distribution of Ca reveals that in the period 1 regime, the system coarsens into spatially out-of-phase
regions with a length scale much smaller than the system size, but larger than the spacing between dyads. We have also explored
in detail the coupling to membrane voltage. We study first the case of positive coupling, where a large Ca transient promotes a
long action potential duration (APD). Here, the coupling to voltage synchronizes Ca release so that the system exhibits a robust
period 2 response that is independent of initial conditions. On the other hand, in the case of negative coupling, where a large
Ca transient tends to shorten the APD, we find a multitude of metastable states which consist of complex spatially discordant
alternans patterns. Using an analogy to equilibrium statistical mechanics, we show that the spatial patterns observed can be
explained by a mapping to the Potts model, with an additional term that accounts for a global coupling of spin states. Using this
analogy, we argue that Ca cycling in cardiac cells exhibits complex spatiotemporal patterns that emerge via first or second order
phase transitions. These results show that voltage and Ca can interact in order to induce complex subcellular responses, which
can potentially lead to heart rhythm disorders.
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The heart can exhibit a variety of heart rhythm abnormal-

ities that are responsible for cardiac arrhythmias. One of

them is a beat-to-beat alternation in the action potential

duration (APD), which is referred to as alternans. Often, its

origin lies in a dysregulation of intracellular calcium cycling,

which is mediated by stochastic signaling between ion chan-

nels in thousands of sub-micron scale domains. We show

that these signaling units exhibit complex spatiotemporal

dynamics that depends on the interaction between voltage

and calcium. We argue that these subcellular patterns may

promote arrhythmias by inducing spatial heterogeneity in
heart tissue.

I. INTRODUCTION

The contraction of a cardiac cell is tightly controlled
by the voltage across the cell membrane. This process is
mediated by Ca ions which flow across the membrane and
activate a variety of intracellular signaling cascades.1,2 The key
players in this signaling process are the L-type Ca channel
(LCC), which is a voltage sensitive Ca channel located at the
cell membrane, and the Ryanodine receptor (RyR), which con-
trols the flow of Ca from the major intracellular Ca store,
the sarcoplasmic reticulum (SR). In heart cells, these channels
are situated within thousands of dyadic junctions which are
roughly pill box sized regions of height ∼10 nm and diameter
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∼100nm. Within these junctions, there are roughly 10–100RyR
channels which form a tight cluster and which face 1–5 LCC
channels [Fig. 1(a)]. RyR channels have the important property
that they transition from a closed to open state in a Ca depen-
dent manner. Thus, a single opening (or a few openings) of
an LCC channel in the dyad is sufficient to induce a domino-
like opening of the nearby RyR cluster. This process leads to
a release of Ca into the cell which then diffuses and initiates
downstream signaling processes. Once the Ca is released into
the cell, then powerful transporters pump the Ca back into
the SR. This process allows electrical activity on the cell mem-
brane to activate internal cellular processes at each beat of the
cardiac cycle.

An important feature of the signaling between LCC and
RyR is that it is highly nonlinear.3–5 This is because RyRs tran-
sition to the open state with a rate that is a nonlinear function
of the local Ca concentration. This nonlinearity originates at
the single channel level, where multiple Ca binding processes
are required to induce a transition to the RyR open state. Thus,
a high degree of molecular cooperativity is required to induce
channel openings. This nonlinearity is amplified further since
RyRs form tight clusters so that if one RyR channel opens,
then the Ca flux from the SR, which is four orders of magni-
tude larger than in the cell, will raise the Ca concentration and
stimulate further channel openings.4 This domino-like process
is highly cooperative and makes the response of the RyR clus-
ter a nonlinear function of the local concentration variables. A
second important feature of the signaling process at the scale
of the dyad is that it is stochastic. This is because channel
numbers within the dyadic junction are small and so that fluc-
tuations of just a few channels can have a substantial effect
on the activation rate of the cluster. Therefore, Ca signal-
ing between LCC and RyR channels is inherently a stochastic
process. While there has been some work in the literature
describing the stochastic features of this system, it is still
not completely understood how stochasticity and nonlinearity
interact to induce different cell wide phenomena.

In a previous study, Alvarez-Lacalle et al.6 showed that
a population of diffusively coupled dyads, when driven peri-
odically, can exhibit a phase transition to a global alternating
phase, where most dyads fire in unison only every other beat.
When this occurs, the aggregate behavior of the population
exhibits an alternating beat-to-beat response referred to as
Ca alternans. This transition to alternans in the global sig-
nal is important since an alternating sequence of Ca release
can induce a corresponding alternating sequence of the action
potential duration (APD) in cardiac tissue. When this occurs,
the APD in different parts of tissue can change substantially
from beat to beat. This heterogeneity in the voltage activity in
cardiac tissue makes the heart more prone to abnormal elec-
trical excitations, which can lead to cardiac arrhythmias. In
fact, numerous experimental and clinical studies have shown
that these APD alternans are correlated with the risk for
ventricular fibrillation.7,8 Interestingly, the work of Alvarez-
Lacalle et al.6 suggests that this synchronization transition to
alternans is a phase transition in the Ising universality class.
The relevance of the Ising transition was first pointed out

by Restrepo and Karma,9 who showed that during alternans,
the local signaling dynamics exhibits an Ising symmetry. To
explain this symmetry, we first note that a single stochastic
dyadic junction, which is driven periodically, can release Ca
due to a spark, or remain refractory and do not release. Thus,
during alternans, the local SR load will alternate between two
values, which we will denote here by x1 and x2. During pacing,
a local junction can exhibit the two alternating sequences

. . . x1, x2, x1, x2, . . . (sequence 1), (1)

. . . x2, x1, x2, x1, . . . (sequence 2), (2)

which differ only by a shift of one beat and are therefore
dynamically equivalent. It is this dynamical equivalence of the
two types of alternating sequences that endows the system
with Ising symmetry. Now, for sufficiently strong coupling,
there can be a global phase transition such that the major-
ity of dyadic junctions exhibit one of these sequences. When
this occurs, most dyads in the system will alternate with the
same phase and exhibit a whole cell period 2 response, in
much the same way that a spin system undergoes a ferromag-
netic transition to an ordered state. This transition exhibits
all the features that are observed near the critical point of
second order phase transition, such as a diverging correla-
tion length and critical slowing down. Recent studies10 show
further that these critical properties are insensitive to the
underlying mechanism for calcium alternans and can likely
be applied to a broad range of detailed computational models
used to describe Ca dynamics in cardiac cells.11–15

In this study, we introduce a two dimensional (2D) cou-
pled map system to explore the dynamics of Ca signaling
within dyadic junctions. In this model, the local Ca concentra-
tion variables evolve from beat-to-beat using a nonlinear map
describing the release and uptake of Ca between the cytosol
and the SR. A key feature of this model is that release occurs
with a probability that is a nonlinear function of the local con-
centration and voltage variables. Using this model, we extend
the work of Alvarez-Lacalle et al.6 to analyze the dynam-
ics of the system in the strongly nonlinear regime, where
the Ca cycling system can exhibit more complex dynamics.
Also, we explore in detail the important role played by the
bi-directional coupling between membrane voltage and sub-
cellular Ca. In the case where Ca and voltage are uncoupled,
we identify a novel synchronization-desynchronization tran-
sition, which occurs when the underlying dynamics exhibits
an approximate period-3 or higher response. We show fur-
ther that when this transition occurs, the system coarsens into
synchronized patches of a characteristic length scale that is
much larger than the dyadic junction spacing but smaller than
the system size. We analyze this length scale and show that it
depends only on the extent of diffusive coupling and the non-
linearity of the underlying dynamics. In the case, when voltage
is coupled to Ca, we consider two distinct cases. The first case
is the scenario of positive coupling, where a large Ca transient
promotes a longer APD.16 In this case, we find that the cou-
pling between voltage and Camakes the systemmore unstable
to alternans but tends to eliminate higher order periodicities.
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Furthermore, voltage coupling tends to spatially synchronize
out-of-phase alternans by driving domain walls (or nodal lines)
out of the system. This result explains the prevalence of exper-
imental findings that show that cardiac myocytes are prone
to alternans at rapid pacing rates but rarely exhibit higher
order periodicities.17–19 The second scenario that we analyze
is the case of negative coupling, where a large Ca transient as
the effect of shortening the APD. In this case, we show that
the system can exhibit a wide range of complex metastable
spatial patterns, which are dependent on initial conditions.
We argue further that these complex spatially patterns can
be explained using an analogy to the well known Potts model
in equilibrium statistical mechanics.20 Interestingly, we show
that various transitions in our model can be mapped to dis-
continuous first order phase transitions, in sharp contrast to
the transition to alternans, which is a continuous second order
phase transition. These results demonstrate that stochastic
nonlinear signaling units exhibit rich spatiotemporal behavior
that can be understood using the tools of statistical mechanics
and which may be relevant to the emergence of heart rhythm
disorders.

II. METHODS

A. Nonlinear stochastic maps describing Ca signaling

Ca cycling in the cardiac cell is due to the stochastic
dynamics of thousands of synapse like junctions, where Ca

signaling takes place. The basic architecture of local Ca signal-
ing is illustrated in Fig. 1(a). Here, Ca is released at the dyadic
junction (dashed rectangle), where LCC channels are in close
proximity to an RyR cluster. Ca released from the junction
then diffuses into the cytosol and is then pumped back into
the SR. In this study, we will refer to the region surrounding
the dyadic junction as a Ca release unit (CRU). To model their
spatiotemporal dynamics, we will simplify the system to a two
dimensional (2D) lattice of CRUs. To describe the dynamics of
each CRU, we will apply a nonlinear map that relates Ca con-
centration variables from one beat to the next. To describe the
state of a CRU, we will denote xij(n) to be the total amount of
Ca ions in the SR at site i, j and at the beginning of beat n [see
Fig. 1(b)], also cij(n) will represent the total Ca in the cell inte-
rior before Ca is released, and c

p
ij(n) is the peak of the total Ca.

Also, the voltage dynamics of the cell will be characterized by
the action potential duration (APD) and the diastolic interval
(DI), which are denoted at a given beat n as An and Dn, respec-
tively. As a starting point, we will first consider the case where
there are no diffusive interactions between CRUs. In this case,
the beat to beat evolution of the SR load and diastolic Ca at
site i, j is described by a mapping

xij(n + 1) = xij(n) − Rij(n) + Uij(n), (3)

cij(n + 1) = cij(n) + Rij(n) − Uij(n), (4)

where Rij(n) is the total Ca released at beat n and Uij(n) is the
total Ca pumped back into the SR. Typically, the release of Ca

FIG. 1. (a) The architecture of Ca signaling in cardiac myocytes. Each dyadic junction contains LCC channels in close proximity to an RyR cluster. Calcium is released into
the dyadic junction (dashed rectangle) due to Ca sparks that are initiated by the LCC openings. The released Ca then diffuses into the cell and is pumped back into the SR
via uptake pumps. NCX denotes the sodium-calcium exchanger that couples the Ca released to the voltage across the membrane. (b) Illustration of the mapping variables
used to describe the beat-to-beat dynamics of voltage and Ca at a single dyad. Top trace shows that the voltage waveform which is characterized by the APD at beat n is
denoted as An, which depends on the previous diastolic interval Dn−1. Blue trace denotes the SR load at the beginning [xij(n)] and at the end [xij(n + 1)] of beat n. Red trace

denotes the total Ca in the cytosol at the beginning of beat n[cij(n)], at the peak c
p

ij (n), and at the beginning of the next beat cij(n + 1).

Chaos 29, 023125 (2019); doi: 10.1063/1.5063462 29, 023125-3

Published under license by AIP Publishing.

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

occurs on a time scale of tens of milliseconds, while the uptake
of Ca back into the SR is slower and requires several hundred
milliseconds. Here, we assume that the fluxes into and out of
the cell are small, so that the total Ca is conserved and can be
conveniently fixed at

xij(n) + cij(n) = 1. (5)

This constraint is a good approximation close to the periodic
fixed point, where Ca entry must balance Ca extrusion so that
total Ca is constant from one beat to the next. Here, we point
out that when the periodic fixed point becomes unstable to
alternans, or higher order periodicities, then this constraint
may not hold since Ca entry and extrusion will in general not
be equal. However, if the flux of Ca across the cell membrane
is much smaller than that across the SR, then the nonlin-
ear dynamics of the system will be driven primarily by the
internal Ca cycling. In this case, the model reduction due to
Eq. (5) should preserve the main dynamical features of the
system. For a more complete analysis, see Qu et al.,15 who
have analyzed a deterministic nonlinear map model without
the constraint given by Eq. (5).

The release of Ca into the cell is typically taken to be a
function of the SR load before release and also on the amount
of LCC current. This is because Ca release from an RyR clus-
ter is initiated by LCC channel openings so that the larger the
LCC current then the more Ca released into the cell. However,
LCC channels inactivate and must recover from inactivation in
order to open on the next beat. Therefore, the LCC is sensitive
to the previous DI, which is denoted as Dn−1. Thus, Ca release
at beat n is well approximated by a function

Rij(n) = R[Dn−1, xij(n)]. (6)

To model the release function R in more detail, we note that
release is stochastic, so that there is a probability that the local
RyR cluster will fire or not. To incorporate these physiological
observations, we will take the probability of release to be a
product

P[Dn−1, xij(n)] = PCa(Dn−1) · Psr[xij(n)]. (7)

To model the voltage dependence of release, we follow the
approach of Qu et al.21 and use a simple functional form

PCa(D) =
1

1 + Ae−D/τCa
, (8)

where τCa is the time scale of recovery of the LCC channel and
A is an adjustable constant that depends on the current kinet-
ics. To model the SR load dependence, we rely on the previous
experimental data showing that the amount of Ca released in
the cell increases substantially at high SR loads.22–25 To model
this nonlinear dependence, we use a functional form

Psr(xij) =
1

1 +
(

x∗
xij

)ν , (9)

where ν is the Hill coefficient that controls the strength of the
nonlinearity and x∗ is the threshold SR load. To proceed, we

write the release at each beat as

Rij(n) = r ηij(n) xij(n), (10)

where r is a constant and ηij(n) is a random variable generated
at each beat that satisfies

ηij(n) =

{

1 with probability P[Dn−1, xij(n)],

0 with probability 1 − P[Dn−1, xij(n)].
(11)

Thus, local release is modeled as a discrete process with
probability that is a nonlinear function of the DI and the SR
load.

To complete the map, we note that the total uptake flux
Uij(n) is the amount of Ca current that the sarcoplasmic retic-
ulum Ca2+-ATPase (SERCA) pumps back into the SR during one
pacing interval T. The strength of the uptake pump increases
with the Ca concentration in the cell so that uptake can be
approximated as a function

Uij(n) = U[c
p
ij(n),T], (12)

where the peak of the Ca transient is just the diastolic concen-
tration plus the amount released, i.e., c

p
ij(n) = cij(n) + Rij(n). To

simplify further, we see that the peak Ca is just

c
p
ij(n) = 1 − xij(n) + Rij(n) = 1 − x′

ij(n), (13)

where

x′
ij(n) = xij(n) − R[xij(n),Dn−1]. (14)

To model the total uptake flux, we will use a simple linear
relation

Uij(n) = u(T)[1 − x′
ij(n)], (15)

where u(T) gives the dependence of the total uptake flux at
beat n on the pacing period T. SinceU is the total amount of Ca
ions pumped into the SR, then we expect that Umust increase
with period T, since this will give more time for the SERCA
channels to pump Ca. Here, we will model this effect using
a simple linear relationship so that u(T) = a · T, where a is a
constant. Also, we note that the uptake flux should go to zero
when all the Ca is in the SR. Thus, we impose the additional
condition that U = 0 for x′

ij ≥ 1. Using this formulation, we can
now write

xij(n + 1) = x′
ij(n) + U[1 − x′

ij(n), T], (16)

which combined with Eq. (14) gives the beat-to-beat mapping
of the SR load.

B. Diffusive coupling between dyadic junctions

In this study, a cardiac cell will be modeled as a 2D lat-
tice of N = m × m CRUs with periodic boundary conditions.
To account for diffusive coupling between nearest neighbors,
we will include a spatial coupling between lattice sites. For
generality, we will introduce a number l that is the number
of nearest neighbors that Ca can diffuse during a given beat.
Now, since Ca release is much faster than the uptake then
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we can assume that local averaging occurs during the uptake
process, so we can replace

x′
ij(n) → 〈x′

ij(n)〉
l
, (17)

where 〈x〉l denotes averaging over l nearest neighbors in
our 2D lattice. In this study, we will average the SR load by
computing the local average

〈x′
ij〉l =

1

(2l + 1)2

l
∑

k1=−l

l
∑

k2=−l

x′
i+k1 ,j+k2 , (18)

where l can be interpreted as roughly the distance Ca diffuses
during the duration of uptake. Therefore, the beat-to-beat
evolution of our SR load obeys the stochastic coupled map

x′
ij(n) = xij(n) − R[xij(n),Dn−1], (19)

xij(n + 1) = 〈x′
ij(n)〉l + a T[1 − 〈x′

ij(n)〉
l
]. (20)

Thus, the SR load on the next beat xij(n + 1) is the average
release over l nearest neighbors, combined with an uptake
amount that is determined by this average.

C. Coupling voltage and Ca

To incorporate voltage dynamics, we rely on the classic
restitution function where the APD depends on the diastolic
interval on the previous beat Dn.26,27 However, Ca release can
also modulate the APD via two mechanisms.16,28 The first is
due to the sodium-calcium exchanger (NCX), which is a trans-
porter that pumps Ca ions out of the cell in exchange for
the entry of sodium (Na) ions. The effect of this current is to
prolong the APD when Ca is released into the cell. The sec-
ond mode of coupling between Ca release and APD is due
to Ca-induced inactivation of LCC. Here, Ca release tends to
decrease the whole LCC current and therefore has the effect
of shortening the APD. Thus, a given Ca transient can prolong
or shorten the APD depending on which effect is dominant
in that cell. These cases have been observed experimentally
under different physiological conditions and cell types.17,29

Here, we follow Shiferaw and Karma16 and refer to prolonga-
tion (shortening) of the APD as the positive (negative) coupling.
To incorporate this coupling between the voltage and Ca, we
will use a functional form

An = F(Dn−1, c
p
n), (21)

where c
p
n is the peak of the average Ca concentration in the

cell at beat n. This is just

c
p
n =

1

N

∑

ij

cij(n) + Rij(n) ≈
1

N

∑

ij

Rij(n), (22)

where N is the total number of CRUs in our system. Here,
we have made the approximation that cij(n) � Rij(n) since
the amount of Ca released is typically much larger than the
concentration levels before release. We will also consider

an explicit model for the APD as a sum of a purely voltage
dependent term and a Ca dependent term. So, we will use

An = FV(Dn−1) + γ c
p
n, (23)

where FV(D) represents only the voltage contribution and γ

represents the coupling between the local Ca release and the
APD. In this case, we have that γ > 0 denotes positive coupling
and γ < 0 denotes negative coupling. Following Qu et al.,21 we
will model the voltage dependence using a functional form

FV(D) = Ao

(

1

1 + A1e− D
τ

)

, (24)

which models the shape of the restitution curve typically
measured in cardiac cells.30

III. RESULTS

A. The deterministic limit

An important feature of our coupled map system is that
the release is a stochastic variable governed by the random
variable ηij. Here, we will consider the limit where diffusion is
fast and the spatial average 〈x〉l is over the full lattice so that
l = m. In this case, at the end of each beat, all CRUs have the
same SR load which we denote as xn = 〈xij(n)〉m. Therefore, we
can write

〈r ηij(n) xij(n)〉 m = r · xn〈ηij(n)〉
m
, (25)

where 〈ηij(n)〉m is simply the fraction of units in our 2D lattice
which fires at that beat. To compute this fraction, we note that
the number of dyads which release at a given beat is the num-
ber of successes in N trails with probability P = P(Dn−1, xn).
This obeys a binomial distribution B(P, N), where N is the
number of trials and P is the probability of success. In the
limit of large N, this distribution is approximately Gaussian
with average NP and variance σ =

√
NP(1 − P). Therefore, for

large N, we have that

〈ηij(n)〉
m

≈ P +
√

P(1 − P)

N
ξn, (26)

where ξn is a Gaussian distributed random variable that sat-
isfies 〈ξkξl〉 = δk,l. We can now take the large N limit, and the
system is described by the deterministic map

x′
n = xn − rP(Dn−1, xn)xn, (27)

xn+1 = x′
n + aT(1 − x′

n), (28)

An = FV(Dn−1) + γ rP(xn,Dn−1)xn. (29)

Hereafter, this 2D map will be referred to as the deterministic
limit of the stochastic coupled map system.

B. The periodic action potential clamp

We explore now the spatiotemporal dynamics of our lat-
tice in the case where there is no feedback from Ca to voltage,
so that γ = 0. In addition, we will consider the case where
there is also no coupling between voltage on Ca so that
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TABLE I. Ca map model parameters.

Parameter Description Value

x∗ Threshold SR concentration 0.7

ν Hill coefficient for SR load dependence 40

r Release coefficient 0.7

a Uptake strength 10−3 (ms−1)

PCa(D) = 1. Experimentally, this corresponds to the case where
the system is driven by a periodic action potential clamp in
which the system dynamics is dictated entirely by the Ca
cycling system. In this case, the SR load is described by the
1D map

x′
n = xn − rPsr(xn)xn, (30)

xn+1 = x′
n + aT(1 − x′

n), (31)

where

Psr(xn) =
1

1 +
(

x∗
xn

)ν . (32)

Here, we will focus on the strongly nonlinear regime, where
the probability of firing Psr is a sharp sigmoid function of the
SR load. All model parameters in the simulation are shown in
Table I. In Fig. 2(a), we plot the steady state SR load xn for the
last 100 beats after pacing to steady state (1000 beats). Here,
we observe that the deterministic map possesses a period
doubling bifurcation cascade to chaos. This follows from the
nonlinearity due to Psr(xn) which yields a nonmonotonic map-
ping between xn+1 and xn, so that the system dynamics is
qualitatively similar to the standard logistics map.

To explore the dynamics of our stochastic map system,
we iterate a system of size m = 200 with periodic boundary
conditions. At each beat, we measure the average SR load of
the system defined as

xn =
1

N

m
∑

i,j=1

xij(n). (33)

Here, we will first consider spatially uniform initial condi-
tions so that the lattice is initialized at xij(0) = 1. In a later
section, we will explore in detail the system dynamics with
non-uniform initial conditions. To plot the bifurcation dia-
gram of the system, we plot xn for the last 100 beats after
pacing for 1000 beats, so that the system has reached steady
state, at a range of pacing period T. In Figs. 2(b) and 2(c), we
show the case where the coupling length is l = 2 and l = 8,
respectively. In the case l = 2, we see that for T > T1 ≈ 600ms,
the steady state xn has a narrow distribution around a well
defined average so that the system can be said to converge a
period 1 (P1) steady state. At faster pacing rates, so that T < T1,
then xn fluctuates around two well defined average values,
which we will refer to as a period 2 (P2) response. Finally, for
T < T2 ≈ 350ms, xn once again returns to an effective P1 state
with narrow fluctuations around a well defined average. For
stronger nearest neighbor coupling (l = 8), the steady state

FIG. 2. (a) Bifurcation diagram of the deterministic map. Nonlinear map given
by Eqs. (30)–(32) is paced for 1000 beats, and the steady state SR load xn is
plotted for the last 100 beats. (b) Bifurcation of the stochastic map with diffusion
coupling set to l = 2. The 200 × 200 system is initialized with uniform initial con-
ditions then paced for 1000 beats. The steady state average xn transitions from
an approximate period 1 to a period 2 response beginning at T1 ≈ 600ms then
back to period 1 for T < T2 ≈ 350ms. (c) Increasing coupling to l = 8 uncovers
higher order periodicities ranging between P1 and P4.

dynamics is even richer and can transition between approx-
imate P1, P2, P3, and P4 regimes. To summarize these results,
we measure the steady state values of xn for a range of pacing
periods T and diffusion lengths l. In Fig. 3, we plot the phase
diagram of the system identifying the periodicity of the steady
state SR load. On top, we show the bifurcation diagram of
the deterministic system in order to compare to the stochas-
tic lattice simulation. Here, we see that the stochastic system
eliminates the chaotic response observed in the deterministic
limit but can still exhibit a broad range of behaviors including
period 3 and period 4, depending upon the coupling strength l.

1. The spatial distribution of the SR load

In order to understand the phase diagram of the cou-
pled map system, it is necessary to explore the spatiotemporal
dynamics of the system. In Figs. 4(a)–4(d), we plot on the left
column the spatial distribution of the SR load xij at steady
state. On the right, we plot the probability density distribu-
tion ρ(x), so that ρ(x)1x gives the probability that xij falls in
an interval [x, x + 1x]. In Fig. 4(a), we consider the case l = 2
and with T = 650ms > T1, which corresponds to the P1 state
shown in the bifurcation diagram in Fig. 2(b). On the right
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FIG. 3. The phase diagram of the stochastic map system identifying the bound-
aries of higher order periodicities of the steady state SR load. The bifurcation of
the deterministic map is shown on top for comparison.

panel, we plot the density distribution ρ(x) showing that it
has a jagged shape with an overlap that is mostly peaked at a
well defined average. This jagged distribution can be explained
from the fact that we are iterating a discrete beat-to-beat
map. Thus, the SR load xij at the end of each beat depends on
a discrete number of previous release (or no release) events.
In Fig. 4(b), we pace the system into the P2 regime (T = 450)

and find that the SR load alternates from one beat to the next,
and it is effectively spatially uniform with fluctuations around
two well defined values. On the right panel, we show the den-
sity ρ(x) during steady state, showing that the distribution
of the SR loads separates into two distinct peaks. Finally, in
Fig. 4(c), we chose T = 275ms < T2, where the system exhibits
a global P1 behavior. Here, we find that the SR load loses its
strong spatial correlation observed for T > T2 and appears to
coarsen into a spatially disordered state with large fluctua-
tions on scales much smaller than the system size. On the
right panel, we show the density distribution which shows that
xij is broadly distributed. In particular, xij is distributed in the
range [0.45 − 0.75], while for T > T2, the range of loads is much
sharper and in the range [0.7–0.8]. Thus, our numerical simu-
lations reveal that the spatiotemporal behavior of the P1 state
above T1 is distinct from the state below T2. In the case where
the spatial coupling has been increased (l = 8), we find that the
steady state SR load can exhibit even richer spatial patterns. In
Fig. 4(d), we show steady state plots of the SR load when T is

picked so that the system exhibits a global P3 pattern. Here,
we see that the SR load is effectively spatially uniform, and the
steady state xij is distributed around 3 distinct peaks.

2. Dependence on initial conditions

The spatiotemporal dynamics observed in Figs. 4(a)–4(d)
was computed by setting the initial conditions to be spatially
uniform [xij(0) = 1]. Here, we will explore the case where xij(0)

is chosen from a uniform distribution in the interval [0, 1].
In Fig. 5(a), we plot the spatial distribution of the SR load
after 1000 iterations using the same model parameters as that
used to compute Fig. 4(b), in which the spatially uniform ini-
tial condition evolves to a homogeneous P2 pattern. In this
case, we find that starting from random initial conditions, the
system typically evolves to a heterogeneous spatial pattern
in which different regions alternate out-of-phase [Fig. 5(a)].
These out-of-phase regions are demarcated by domains walls
(nodal lines) which can form complex spatiotemporal patterns.
These domain walls proceed to fluctuate and evolve in the sys-
tem and can last for thousands of beats. In Fig. 5(b), we show
the SR load distribution on alternate beats along the dashed
line shown in Fig. 5(a). Indeed, we see that the SR load alter-
nates out of phase across a nodal point, which corresponds to
the intersection of the domain wall. Here, we note that while
the spatial distribution of xij exhibits rich patterns dictated by
the domain wall dynamics, the SR load distribution fluctuates
around the two peaks shown in Fig. 4(b). In the case of higher
periodicities, we find that random initial conditions robustly
evolve to a spatially disordered state. In Fig. 5(c), we show the
steady state distribution of the SR load when the system is
paced to steady state at T = 270ms, so that spatially uniform
initial conditions evolve to a global P3 pattern. In this case, we
find that the system evolves to a complex disordered pattern,
where the system coarsens into regions that are out-of-phase
or desynchronized. In Fig. 5(d), we show the spatial profile
along the dashed line on 3 alternate beats, showing that the
steady state spatial distribution is spatially desynchronized.

3. Spatial correlations

A main result of this study is the observation that the
transition from P2 to P1, which occurs when T < T2 [Fig. 2(b)],
yields a spatially disordered state that is distinct from the P1
dynamics that occurs when T > T1. To characterize the sys-
temmore fully, we have also computed the spatial correlations
between different points of our lattice. Specifically, we have
computed the Pearson correlation between the SR load at sites
xij and xkl. This quantity is defined as

C(i, j : k, l) =
∑K2

n=K1
[xij(n) − 〈xij〉][xkl(n) − 〈xkl〉]

{

√

∑K2
K1
[xij(n) − 〈xij〉]2

}{

√

∑K2
K1
[xkl(n) − 〈xkl〉]2

} ,

(34)

where we consider iterations starting at beat K1 to beat K2.
Here, we consider K1 = 500 and K2 = 1000 in order to capture
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FIG. 4. Spatiotemporal dynamics of the 2D stochastic map at steady state. The system is initialized with uniform initial conditions with xij(0) = 1. (a) Coupling strength
is set to l = 2, and the system is paced at T = 650ms corresponding to the P1 case. Snapshots of the system after 1000 beats show that steady state Ca is spatially
uniform with small fluctuations. Color bar indicates the local SR load xij . The probability density plotted to the right captures the distribution of xij at steady state and shows
that it is sharply peaked in the range [0.7–0.8]. (b) The system is paced at T = 450ms corresponding to the period 2 regime. The SR load is spatially uniform at steady
state with the distribution showing two peaks in the range [0.55–0.60] and near 0.75. (c) At T = 275ms, the system exhibits global period 1 behavior as in the case for
T = 650ms although the system is spatially disordered. (d) Increasing the spatial coupling to l = 8 and pacing the system at T = 270ms yield period 3 behavior. The SR
load is effectively spatially uniform at each beat and the steady state xij is distributed around 3 distinct peaks.

the correlations at steady state. Similarly, the average is com-

puted at steady state so that xij = [1/(K2 − K1)]
∑K2

n=K1
xij(n) .

This correlation function is computed in our lattice for 5
different points, and the correlation length ξ is determined
by fitting an exponential function f(r) ∝ exp(−r/ξ) , where

r =
√

(i − k)2 + (j − l)2. In Fig. 6(a), we compute ξ as a function

of T for the case l = 2. Indeed, we find that the correlation
length increases substantially near the border to the P2 phase,

which indicates that the system undergoes a synchronization
transition near T1. This result is consistent with previous find-
ings of Alvarez-Lacalle et al.,6 who show that the P1 to P2
transition occurs via a synchronization transition that is likely
in the Ising universality class. Additionally, here we find that ξ

once again substantially decreases as T < T2, which suggests
that the system once again undergoes a phase transition from
a synchronized to desynchronized state. This desynchronized
state is characterized by large fluctuations in the local SR load,
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FIG. 5. (a) Starting with random initial conditions, the system can evolve to a steady state heterogeneous pattern. Snapshots of the system show a domain wall that separates
two regions that are out-of-phase. (b) 1D cross section of the system along the dashed line shown in (a). Here, the SR load is plotted at beat 1000 (red) and the next beat
(black). (c) The system evolves into disordered patterns with regions that are out of phase, when the coupling strength is increased and paced in the period 3 regime. (d) 1D
Cross section showing the desynchronized patterns at steady state for beats 1000, 1001, and 1002. Color bars indicate the SR load.

which coarsen according to a length scale ξ . This state is dis-
tinct from the T > T1 state, where the SR load is sharply peaked
around a well defined average. In Figs. 6(b) and 6(c), we plot ξ

for increasing values of the spatial coupling parameter. For the
case l = 4, we notice that ξ ∼ 14 for T > T1, while for T < T2,
we find that ξ ∼ 23 just below the transition. Similarly, when
l = 8, we find that ξ increases substantially near the P2 and P3
transitions.

C. The free running AP: The case of positive coupling

In this section, we will explore the dynamics of the sys-
tem when the voltage is free running and coupled to the Ca
cycling system. In this case, the deterministic limit is given
by the 2 variable map given by Eqs. (27)–(29). In this section,
we will consider the case γ > 0, which is the case of posi-
tive coupling, where a large Ca transient promotes a longer
APD. This coupling is believed to be the typical relationship
observed in cardiac myocytes across a range of species.17,30,31

All model parameters describing the voltage map are given
in Table II. In Fig. 7(a), we plot the bifurcation diagram of
the deterministic system, where the Ca cycling system sim-
ulated in Fig. 2 is coupled to the voltage model with a coupling

parameter γ = 50ms. Here, we observe that positive cou-
pling expands the parameter range of the P2 and P4 regimes,
while eliminating higher order periodicities. In Fig. 7(b), we
show the phase diagram of the stochastic system where the
initial conditions are chosen to be spatially uniform [xij(0) = 1].
Here, we see that the stochastic system shows a broad range
of P2 dynamics, with a small region of P4 dynamics which
can be observed for strong spatial coupling l ≥ 8. It should
be noted here that the P4 regime is sensitive to fluctuations
near the phase boundaries and the 4 distinct states are only
intermittently observed. In Fig. 7(c), we repeat the same com-
putations using a larger Hill coefficient ν = 50 in order to
induce higher order period doubling bifurcations in the deter-
ministic dynamics. In Fig. 7(d), we compute the phase diagram
and again observe that the P2 regime is expanded, with a small
region of approximate P4 dynamics observed at high spatial
coupling. We have repeated these simulations using random
initial conditions and find that the steady state phase diagram
remains unchanged. Also, visualization of the SR load reveals
that at steady state, the system is effectively spatially uni-
form and domain walls are not observed. These findings show
that the coupling between voltage and Ca tends to expand the
P2 region of the phase diagram and makes the steady state
P2 response independent of initial conditions. We note here
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FIG. 6. The correlation length ξ plotted as a function of T. (a) The case l = 2
showing that ξ increases to the system size as T approaches the period 2 phase
boundary (red dashed lines). (b) Increasing coupling strength to l = 4 increases
the correlation length, with ξ ∼ 23 for T < T2 and ξ ∼ 14 for T > T1. (c) When
l = 8 ξ increases near the period 2 and 3 transition. Red dashed lines indicate
the period at which the transition occurs between the indicated periodicities.

that this result is consistent with electrophysiological stud-
ies of Ca and voltage alternans, which show that the dominant
response pattern at high pacing rates is P2 and that higher
order periodicities are rarely observed.24

1. Dependence on initial conditions

An important feature of the positive coupling case is that
the steady state spatial distribution of the SR load is inde-
pendent of initial conditions. This is in sharp contrast to the
uncoupled Camapmodel, which exhibited long lasting domain
walls [Fig. 5(a)]. In Figs. 8(a)–8(d), we plot the spatiotempo-
ral distribution of the SR load for a system paced at a period
of T = 500ms, in which the steady state of the system is in
the P2 regime. Here, we consider initial conditions where
our 200 × 200 system is heterogeneous with a domain wall
through the center of the system. To construct these initial
conditions, we have simply set the SR load on the left and
right sides of the lattice at xij = 0.65 and xij = 0.80 on the
right side. Upon pacing, we find that the domain wall grad-
ually drifts until after 1200 beats the system is dominated by
one alternans phase. In Fig. 8(e), we show the global average

SR load xn as a function of beat number. Here, we see that the
global alternans amplitude gradually increases as the domain
wall is pushed out of the system. We also show that as γ is
reduced, the rate at which the domain walls drift out of the
system becomes slower, which demonstrates clearly that the
bi-directional coupling to voltage is responsible for the grad-
ual synchronization of the system. These results demonstrate
that the global voltage coupling tends to eliminate domain
walls in order to favor the dominant phase in the system. This
dominant phase is essentially determined by the initial con-
ditions, which randomly picks a phase during the first few
iterations of the system. Therefore, when xij is taken from
a random distribution, domain walls will typically form and
will in time drift out of the system in order to favor the
global average that was established randomly due to the initial
conditions.

D. The free running AP: The case of negative coupling

In this section, we analyze the case of negative cou-
pling, where a large Ca transient tends to decrease the APD.
This scenario is not commonly observed in electrophysio-
logical studies but has been noted in the literature in some
animal types.29 To model this case, we use the model param-
eters in Tables I and II and set γ = −55ms. To achieve higher
order periodicities, we have also increased the instability of Ca
cycling by increasing the Hill coefficient to ν = 50. In Fig. 9(a),
we show the deterministic limit of the map that displays a typ-
ical period doubling cascade to chaos. In Fig. 9(b), we show the
bifurcation diagram for the stochastic map model with spatial
coupling l = 2. Here, we have considered uniform initial con-
ditions with xij(0) = 1. In this case, we observe that the steady
state global average xn is not unique and can attain a range of
values. In effect, the system is multistable and does not evolve
to a unique steady state. To uncover the source of this mul-
tistability, we have visualized the SR load on the lattice for 3
independent simulation runs at T = 400ms (red dashed line)
and with an initial APD of 250ms. We find that these differ-
ent simulation runs, with identical initial conditions, evolve to
distinct steady state patterns. It should be pointed out here
that the spatial patterns formed are also sensitive to the initial
value of the APD. If the initial APD is chosen such that there are
large initial beat-to-beat changes in APD, then these complex
subcellular patterns are washed out by the voltage feedback,

TABLE II. Ca-V model parameters.

Parameter Description Value

A LCC kinetics constant 2

τCa LCC channel recovery time 100ms

τ Restitution decay time 100ms

Ao Restitution parameter 250ms

A1 Restitution parameter 2

γ (positive) Coupling parameter 50ms

γ (negative) Coupling parameter −55ms
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FIG. 7. (a) Bifurcation diagram of deterministic system when Ca cycling and voltage are positively coupled. When γ = 50, the period 2 and period 4 regimes are expanded,
while higher order periodicities are eliminated. (b). Phase diagram of the stochastic map model showing that the dominant behavior is period 2, while stronger coupling is
needed to access the period 4 regime. (c) A larger Hill coefficient (ν = 50) introduces higher order period doubling bifurcations in the deterministic dynamics. (d) Phase
diagram of the corresponding stochastic map model showing again the expansion of the P2 phase.

and the system will tend to evolve toward a spatially homoge-
nous state. However, if the APD does not alternate during
the initial beats, then the observed spatial discordant patterns
are formed. In Fig. 9(c), we repeat the same simulations using
initial conditions so that xij(0) is taken from a uniform dis-
tribution in the interval [0, 1], and the initial APD is taken to
be 250ms. On the right hand side, we show the steady state
spatial distribution of the SR load at T=520ms, for 3 indepen-
dent simulation runs with identical initial conditions. In this
case, we observe again that the steady state pattern is not
unique and varies between simulation runs. Thus, in the pres-
ence of negative coupling, subcellular Ca can display complex
spatiotemporal patterns which are dependent on the initial
conditions.

To uncover the underlying mechanism for these patterns,
we study the time evolution of domain walls that we intro-
duce into the system by hand. In Fig. 10(a), we consider the
spatiotemporal dynamics with initial conditions such that a
domain wall joins two sides of our 2D system. In this case, the
yellow region is started with xij(0) = 0.8, and the purple region
is xij(0) = 0.6. For these initial conditions, we observe that
the bifurcation diagram [Fig. 10(b)] displays only very small
amplitude alternans in the global average SR load xn. Here,
we see that the domain wall evolves so that effectively half
of the system exhibits alternans in the opposite phase, with
two effectively straight domain walls joining two sides of the
system. Once the steady state pattern forms, we find that the
global alternans amplitude is small due to the almost exact
cancellation of the two regions of spatially discordant alter-
nans. In Fig. 10(b), we repeat the same simulation but this time

initialize the system with the square pattern shown. In this
case, we find that the steady state bifurcation diagram dis-
plays a small amplitude alternans that is much larger than
in Fig. 10(a). Visualization of the subcellular structure shows
that the initial square pattern evolves into a circular region
out-of-phase with its surroundings. This region then proceeds
to grow until it stops at a fixed radius. A close examination
of the steady state pattern reveals that the circular region
has a smaller area than the remainder of the 2D system. This
explains why the bifurcation diagram [Fig. 10(d)] settled at a
small amplitude of alternans at steady state. These results
show that the time evolution of patterns is highly sensitive
to initial conditions. In particular, here we find that a closed
domain wall evolves into a circular region at steady state, while
a domain wall joining two sides of the system drifts to the
center so as to lead to cancellation in the global alternans
amplitude.

IV. DISCUSSION

A. Analogy to equilibrium statistical mechanics

In a previous study, Alvarez-Lacalle et al.6 studied the
onset of the alternans (P2 response) and showed that it
occurred via a synchronization transition with critical expo-
nents consistent with the Ising universality class.32 A detailed
numerical analysis of the dynamics near the P2 transition
revealed important features consistent with a second order
phase transition, such as a diverging correlation length and
critical slowing down. These findings reveal that impor-
tant features of the steady state spatial patterns of the
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FIG. 8. (a)–(d) Time evolution of a domain wall that is placed at the center of a 200 × 200 system. The pacing rate is T = 500 ms, and l = 3, so that the system is in the
P2 regime shown in Fig. 7(d). The steady state distribution is spatially synchronized and alternates between two SR loads. Color bar indicates the local SR load. (e) The
global average SR load xn as a function of beat number n for two γ values. Here, we observe that when γ is reduced, the domain walls remain longer in the system.

coupled map system can be understood using an analogy to
equilibrium statistical mechanics. To extend this approach to
the nonlinear regime explored in this study, let us first con-
sider the dynamics of the system in the P3 regime. In this
regime, the local SR load will acquire, on average, a sequence
of 3 different values which we will denote here by x1, x2, and
x3. For a given set of parameters, we can have three distinct
beat-to-beat sequences that we can label as

. . . (x1, x2, x3), (x1, x2, x3), . . . (sequence 1), (35)

. . . (x2, x3, x1), (x2, x3, x1), . . . (sequence 2), (36)

. . . (x3, x1, x2), (x3, x1, x2), . . . (sequence 3). (37)

These sequences differ by a shift of one beat and are there-
fore dynamically equivalent. Furthermore, diffusive coupling
between neighboring units will favor alignment of these
sequences, while fluctuations of the SR load will tend to
prevent synchronization by randomly introducing a shift in
the sequence. In the case of P2 dynamics, the alignment of
alternating sequences [Eqs. (1) and (2)] can be viewed as an
order-disorder transition, where thermal fluctuations take the
role of the beat-to-beat stochasticity, and where decreasing
temperature is equivalent to increasing the diffusive cou-
pling between sites. Similarly, in the case of P3 dynamics, we

expect that there is a critical coupling strength after which
sequences will tend to align in order to form a global P3
response. This expectation is confirmed by our numerical sim-
ulations [Fig. 6(c)] which show that indeed the Pearson cor-
relation length increases rapidly near the P1 to P3 transition.
To gain a deeper understanding of this transition, it is use-
ful to look for an analogous system in equilibrium statistical
mechanics. To proceed in this direction, we can consider a
mapping to a discrete system where a site i in our lattice
can attain 3 possible values represented by a “spin state” σi.
These spin states will correspond to each dynamically equiva-
lent sequence given by Eqs. (35)–(37). For this 3 state system,
we can consider the equilibrium behavior described by the
Hamiltonian

H = −
∑

〈ij〉

J δ (σi, σj), (38)

where δ (σi, σj) = 1, if σi = σj, and zero otherwise, and where
〈ij〉 refers to a summation over nearest neighbors. Here, we
will consider an interaction energy J > 0, so that the system
is Ferromagnetic and favors alignment of spin states by intro-
ducing an energy penalty for two nearest neighbors to be in
different states. Therefore, as the temperature of the system
is decreased, we expect a transition to an ordered phase, in
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FIG. 9. (a) Bifurcation diagram of deterministic system when Ca cycling and voltage are negatively coupled (γ = −55ms). The map shows a typical period doubling
bifurcation at higher pacing rates. (b) Bifurcation diagram for the stochastic map model with uniform initial conditions xij(0) = 1 and spatial coupling l = 2. To the right are
snapshots of three independent simulation runs at T = 400ms, showing distinct steady state patterns after 1000 beats. (c) Bifurcation diagram for the case of random initial
conditions and spatial coupling l = 2. Snapshots of three independent runs at T = 520ms also evolve to distinct steady state patterns. Vertical dashed lines indicate the
pacing rate at which snapshots are taken.

direct analogy to a synchronization transition of the 3 dis-
tinct beat-to-beat sequences at a critical diffusive coupling
strength. To proceed with this analogy, we first note that the
Hamiltonian given by Eq. (38) is well known in the literature
and is referred to as the Potts model.20 In general, the Potts
model can be formulated in terms of a discrete number of
spin states, denoted as q, so that the specific model given by
Eq. (38) is the q=3 Potts model, while q= 2 gives the stan-
dard Ising model. The mean field theory of this model has
been studied in detail and yields key insights into the nature of
the phase transition in this system.20 In particular, the model
exhibits a finite temperature phase transition to an ordered
phase for all q> 1. On a square lattice, the critical temperature
for q= 2 is Tc(2) = 2J/k, where k is the Boltzmann constant,
and Tc(q) = (2J/k)[(q − 2)/(q − 1) log(q − 1)] for q> 2. Evalua-
tion of this expression reveals that the transition temperature

occurs at lower temperatures as the number of spin compo-
nents q is increased. This result can be understood intuitively
from the fact that the configurational entropy of the system
increases with q due to the increased multiplicity of states.
Thus, a lower temperature is required to induce the phase
transition from the disordered to the ordered state. In the
context of our stochastic coupled map, the tendency of neigh-
boring sites to align is controlled by the diffusive length scale
l, so that increasing l is analogous to decreasing temperature
in the statistical mechanics picture. This result explains why
a larger l is required to observe the P3 phase, at a fixed pac-
ing rate, than is required to observe the P2 phase. In effect, a
larger diffusive coupling is required to overcome the increased
entropy of the 3 state system. Now, in the case where l is
fixed and where the pacing period is decreased, then the P2
to P1 transition occurs because of the increased complexity
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FIG. 10. Time evolution of different initial conditions in the case of negative voltage Ca coupling. (a) Evolution of a domain wall that joins two opposite sides of the square
lattice. Here, the system is paced at T = 500ms for the beats indicated. (b) Bifurcation diagram of system where the initial condition is the same as that in (a). Bifurcation
diagram is shown after 1000 beats. Vertical dashed line indicates the pacing rate at which snapshots in (a) are taken. (c) Evolution of a square domain wall at a pacing rate
of T = 500ms. The domain walls evolve to form a circular region until reaching a fixed radius. (d) Bifurcation diagram of the system with the initial condition given in (c).
Steady state is after 1000 beats. Verical dashed line indicates the pacing rate at which snapshots in (c) are taken.

of the underlying dynamics. In the statistical mechanics pic-
ture, decreasing the pacing period is equivalent to increasing
the number of spin states q at a fixed temperature. In this
case, there will be a transition from the ordered to disordered
phase since the critical temperature decreases with increas-
ing q. This analogy suggests that the P2 to P1 transition that
we observe at fast rates is effectively an entropic transition
that is driven by the increased complexity of the underlying
dynamics.

Here, we mention that when the P2 to P1 transition
occurs, then the system coarsens into synchronized regions of
length scale ξ which is much smaller than the system size, but
larger than the lattice spacing. When these patterns form, we
find that the local SR load can vary substantially from beat-to-
beat, since the dynamics of a single unit on the lattice becomes
highly irregular. In the deterministic limit, the dynamics in this
regime likely exhibits a higher order periodicity consistent
with the period doubling cascade to chaos. This behavior is in
sharp contrast to the P1 to P2 transition at slow pacing rates,

where the P1 state above the transition point is characterized
by a narrow distribution of the SR load.

To carry the analogy to statistical mechanics, further, we
note that the mean field approximation to the Potts model
predicts that the order-disorder transition occurs via a dis-
continuous first order phase transition for q> 2.20 This is in
sharp contrast to the second order continuous phase transi-
tion from P1 to P2 at slow pacing rates. This result is consistent
with our numerical findings which indicate that the onset of
the P3 state is discontinuous and sensitive to initial condi-
tions. In effect, the system is bistable and transitions between
the ordered and disorder states occur in an abrupt and dis-
continuous manner. To date, the role of first order phase
transitions in the cardiac system has not been studied. Our
findings indicate that these transitions can occur when the
underlying dynamics for local Ca signaling is unstable to P3
dynamics or higher. The implications of this finding to the
onset of cardiac arrhythmias deserves further investigation.
In particular, we point out that a first order phase transition
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implies bistability. Thus, a P3 response can coexist with a P1
response, and discontinuous transitions can occur between
these two dynamical states. In cardiac tissue, this feature is
likely highly arrhythmogenic since different parts of tissue can
attain different dynamical states and therefore induce abrupt
spatial variations of APD, which can form a substrate to induce
wave break or triggered activity.

The analogy to statistical mechanics also sheds light on
the spatiotemporal dynamics of dyadic junctions in the pres-
ence of voltage coupling. Our numerical simulations reveal
that turning on a positive voltage coupling (γ > 0) favors
an approximate P2 response (alternans) for a wide range of
parameters. Hence, we will first consider the spatiotempo-
ral dynamics of the P2 regime in the presence of voltage
coupling. In this case, we can assign explicit spin states
σi = +1 and σi = −1 which will corespond to the two pos-
sible alternans phase [see Eq. (1)]. Here, we claim that the
steady state of the coupled map system can be under-
stood by analogy to an equilibrium statistical system with
Hamiltonian

H = Hising + Hglobal, (39)

where

Hising = −
∑

〈ij〉

J σiσj, (40)

and

Hglobal = −h

∣

∣

∣

∣

∣

∑

i

σi

∣

∣

∣

∣

∣

. (41)

Here, we will take h>0 so that a global alignment of spin
states will be favored by Hglobal. This global coupling originates
from the fact that the APD alternans phase is determined by
the summation of Ca release over all dyads in the system.
The summed effect on the APD then feeds back on the local
Ca alternans, via the coupling mediated by the term PV(D),
in order to drive the local response in phase with the global
signal. Thus, Hglobal captures the key interactions between
local Ca and global voltage. Note here that this model is dis-
tinct from the standard Ising model in an external magnetic
field, in which the global alternans phase will tend to align
with the fixed direction of the external field. Here, the sys-
tem can evolve toward either a global spin up or spin down
state depending on initial conditions. More precisely, initial
conditions will pick a dominant phase, which will tilt the
Hamiltonian and proceed to drive more spin variables in that
direction. This result is consistent with our numerical sim-
ulations, which showed that domain walls are driven out of
the system after the Ising symmetry is broken by the choice
of initial conditions. Here, we point out that the Hamilto-
nian in Eq. (40) is symmetric under spin reversal, so that the
ground state of the system consists of all spin states to be
either σi = +1 or σi = −1. This symmetry has important impli-
cations in the tissue setting. In particular, given an array of
thousands of electrically coupled cells, we expect that regions
that are separated by distances longer than the electrotonic
length are effectively independent. Thus, these regions will

evolve toward the local dominant phase which is picked by the
initial conditions in that region. Therefore, these regions will
evolve toward a global phase σi = ±1 with equal probability,
so that spatially discordant alternans will form over a length
scale consistent with the electrotonic length. This mechanism
has been pointed out previously by Sato et al.33 as a possible
mechanism for spatially discordant alternans in cardiac tis-
sue. Here, we point out that from an energetic point of view,
these spatially discordant alternans patterns are a direct con-
sequence of the Ising symmetry of the coupled voltage-Ca
system.

In the case of negative coupling, the Hamiltonian describ-
ing the steady state of our coupled map lattice is given by
Eq. (41) but with the requirement that h < 0. The rationale
for this choice is that when γ < 0, then APD alternans, which
are driven by the summation of the local Ca response, will
alternate out-of-phase with the summed Ca signal. Therefore,
the resulting APD alternans will drive local junctions with a
phase that is opposite to the phase that induced the global
APD alternans phase. This negative feedback between voltage
and Ca is captured by the Hamiltonian given by Eq. (41) since
Hglobal introduces an energy penalty to form a global align-
ment of spins. Thus, the global coupling term will make it
more energetically favorable for the system to form domain
walls. On the other hand, there is also an energy penalty to
form domain walls due to the contribution from Hising. Thus,
the minimum energy configuration of the system will consist
of the shortest domain wall such that Hglobal = 0. This argu-
ment explains Fig. 10(a), where a jagged domain wall evolved
toward two straight lines which divided the square lattice
into two equal areas of opposite phase so that the alternans
amplitude at steady state was zero. To proceed with this anal-
ogy, we can predict further that on a rectangular lattice, the
domain wall will orient itself so as to divide the system into
half, while joining the closest distance between two sides of
the system. In Fig. 11, we demonstrate this effect by consider-
ing a rectangular geometry, with aspect ratio 1:6, in which case
the domain walls, which are initially oriented along the long
axis, always reorient in order to join the minimum distance
between two boundaries. Now, if a small circular domain wall
is formed due to initial conditions, then that droplet radius
will increase in order to minimize Hglobal. However, this reduc-
tion in Hglobal due to the size increase comes at the expense
of the growth of the domain wall boundary and an increase in
Hising in the form of surface tension. In effect, the growth of the
droplet will stop when the surface tension energy balances the
total energy due to Hglobal. However, when this balance occurs,
then the system will exhibit a dominant alternans phase such
that the total Hglobal will be equal to the total surface ten-
sion in the system. This argument explains Fig. 10(c), where
the square initial condition always evolved to a finite steady
state alternans pattern with a circular domain wall. This result
reveals that the case of negative coupling can evolve to a
multitude of metastable states, depending on the initial condi-
tions of the system. This explains why we found a hierarchy of
complex shapes for both random and spatially uniform initial
conditions.
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FIG. 11. A rectangular lattice with aspect ratio 1:6 initialized with a domain wall
along the long axis. The domain walls reorient to join the minimum distance
between the two boundaries and divide the system into half. This corresponds
to the minimum energy configuration in the case of negative coupling.

B. Comparison to the previous work

In a previous study, Shiferaw and Karma16 have analyzed
the spatiotemporal dynamics of Ca when voltage and Ca are
bidirectionally coupled. In that model, each sarcomere in the
cell was described by a deterministic ionic model and dif-
fusively coupled to its nearest neighbor sarcomere. In that
study, they focused on the negative coupling regime and iden-
tified a Turing-like instability, which induced the formation of
subcellular nodes. By considering the dynamics of small ampli-
tude voltage and Ca alternans, they cast the pattern formation
process as an activator-inhibitor partial differential equation
(PDE), with Ca alternans playing the role of a short range acti-
vator and APD alternans the role of a long range inhibitor.
Here, we point out that this activator-inhibitor picture is con-
sistent with our Hamiltonian given by Eq. (39). In that case,
the low energy configurations are precisely those with a sin-
gle domain wall that reduces the energy penalty due to Hglobal.
Thus, the equilibrium configurations generated by our Hamil-
tonian should be consistent with the patterns that form using
the PDE describing the motion of small amplitude alternans.
However, a key difference between these approaches is that
the PDE picture does not include local stochasticity and there-
fore does not capture the phenomenology associated with
phase transitions. We also note here that the patterns shown
in Figs. 9(b) and 9(c) are formed with both spatially uniform ini-
tial conditions and random initial conditions, respectively. In
this case, the system is initialized in the fully nonlinear regime,
where the local alternans amplitude needed is not small. Here,
the negative coupling between Ca and voltage forces different
regions in the cell to alternate out-of-phase via a mechanism
analogous to the activator-inhibitor interaction that drives the
Turing instability. In the original work of Shiferaw and Karma,
the spatial patterns developed from a zero alternans state,
where small noise perturbations were amplified by the pattern

forming instability. Hence, the steady state patterns attained
in that study were obtained using different initial conditions.
Using our mapping model, we can also explore the develop-
ment of spatially discordant patterns from the zero amplitude
state. To observe the growth of patterns from this initial state,
it is necessary to first pace the system to steady state in the P1
regime, and then to change the pacing rate to the P2 regime so
that alternans develops gradually from a spatially homogenous
P1 state. Indeed, using this pacing protocol, we find that spa-
tially discordant alternans develop in much the same way as
that predicted in the Shiferaw-Karma study. Finally, we men-
tion here that the emergence of multiple steady state patterns,
in the negative coupling scenario, has been observed by Zhao34

in cable simulations. In that study, it was found that a rapidly
paced cable of cells could evolve to a multitude of steady state
patterns depending upon initial conditions and pacing history.
This result is similar to the multiple steady states shown in
Fig. 9. In both cases, it is the negative coupling between Ca
and voltage that drives the formation of spatially discordant
regions in a manner that is sensitive to the pacing history and
initial conditions of the system.

In a later study, Restrepo and Karma9 applied a physio-
logically detailed three dimensional (3D) model to analyze the
movement of domain walls. They showed that in the regime
of positive coupling, nodes were expelled from the system,
while in the case of negative coupling, nodes drifted to the
center. These results are consistent with the findings here,
which reproduced essentially the same phenomenology for
the different coupling signs. Thus, the main spatiotempo-
ral processes observed in detailed computational models are
captured using our stochastic coupled map model and the
corresponding statistical mechanics analogy.

In a relevant study, Qu et al.15 applied a detailed stochastic
model of subcellular Ca cycling to show that the Ca transient
can exhibit higher order periodicities during rapid pacing. As
a function of increasing pacing rate, they observe a transi-
tion from P2 to P4, which is followed by a clear transition to
P1 and P3 [see Fig. 7(e) in Qu et al.15]. This result is consis-
tent with the current findings in the case where l = 8 shown
in Fig. 2(c). Thus, the transition to P1 at fast pacing rates,
observed in their study, is likely the entropic transition identi-
fied in this work. This result confirms the universality of these
transitions that should also occur in physiologically detailed
models of subcellular Ca. Furthermore, their finding suggests
that in the detailed computational model, and perhaps in real
myocytes, the spatial coupling between release units is much
larger than nearest neighbor. This is likely because of the
rapid diffusion of Ca in the SR which may serve to strongly
couple release units. In the future, it will be interesting to
explore further how Ca diffusion in both the SR and cytosol
can influence the spatial organization of Ca release in cardiac
myocytes.

V. SUMMARY AND CONCLUSIONS

In this study, we have explored the dynamics of a
stochastic coupled map system that mimics key features of
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Ca signaling in cardiac cells. The key feature of the model is
that Ca release in the SR is modeled as discrete release events
which occur with a probability that is a nonlinear function of
the SR load. The combination of nonlinearity and stochastic-
ity leads to complex spatiotemporal dynamics. The main new
finding is that we identify a novel transition, at fast pacing
rates, from a global P2 response to P1 response. We argue
further that this transition can be understood using an anal-
ogy to the phase transitions described by the q state Potts
model. This perspective indicates that this transition is driven
by the increase in entropy due to the increasing complexity
of the underlying dynamics at fast pacing rates. Our map-
ping to the Potts model also predicts that various transitions
that occur on our coupled map lattice can be interpreted
as first order phase transitions. This observation may have
important implications in the onset of cardiac arrhythmias
since these transitions are discontinuous with large changes
in system parameters in response to very small parameter
changes. This high sensitivity to parameters should lead to
pronounced heterogeneities in cardiac tissue and are likely
highly arrhythmogenic. Finally, we have also investigated the
coupling between voltage and Ca to reveal rich spatiotempo-
ral dynamics depending on the sign of the coupling. Our main
finding is that positive coupling tends to synchronize subcel-
lular dynamics via the gradual elimination of domain walls. In
the tissue setting, this result implies that subcellular alternans
will tend to be locally synchronized and can only be desyn-
chronized on a scale that is larger than the electrotonic length.
On the other hand, negative coupling drives the formation of
subcellular domain walls, and we expect in this case that APD
alternans amplitude on the tissue scale will be small. However,
in both cases, it is clear that the detailed implications of the
complex spatiotemporal patterns that emerge requires further
study.
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