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ABSTRACT
We present an algorithm for efficient calculation of analytic nonadiabatic derivative couplings between spin-adiabatic, time-dependent density
functional theory states within the Tamm-Dancoff approximation. Our derivation is based on the direct differentiation of the Kohn-Sham
pseudowavefunction using the framework of Ou et al. Our implementation is limited to the case of a system with an even number of electrons
in a closed shell ground state, and we validate our algorithm against finite difference at an S1/T2 crossing of benzaldehyde. Through the
introduction of a magnetic field spin-coupling operator, we break time-reversal symmetry to generate complex valued nonadiabatic derivative
couplings. Although the nonadiabatic derivative couplings are complex valued, we find that a phase rotation can generate an almost entirely
real-valued derivative coupling vector for the case of benzaldehyde.
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I. INTRODUCTION

After a molecular system is photoexcited, it can undergo two
types of nonradiative transitions between electronic states. An inter-
nal conversion (IC) is a transition between electronic states of the
same spin multiplicity (e.g., singlet to singlet or triplet to triplet),
while an intersystem crossing (ISC) is a transition between elec-
tronic states of different spin multiplicities (e.g., singlet to triplet
or conversely). ISCs are forbidden in spin-free quantum mechan-
ics but can be mediated by spin-orbit coupling (SOC). SOC tends
to be small for systems without heavy metals, which historically
led many to believe that ISC would be slow compared with IC
rates, but recent work has shown that ISC can occur at short
times, even in small molecules,1 and may compete with IC in
some systems.2 Moreover, even though most photoexcited sys-
tems start in a singlet state, excited state triplets are usually lower
in energy than excited state singlets due to antisymmetry and
exchange; thus, ISC is usually possible thermodynamically.3 Thus,
whether an ISC event occurs is dictated by dynamics and not by
thermodynamics.

A popular tool for elucidating nonradiative relaxation dynam-
ics is Tully’s fewest switches surface hopping (FSSH) algorithm,
an intuitive and computationally efficient approach.4 According to
FSSH, the total nuclear plus electronic wavefunction of a system is
simulated by a swarm of trajectories. The inputs to the FSSH calcula-
tion are adiabatic energies, adiabatic gradients, and the nonadiabatic
derivative couplings (NADC),

d[x]IJ = ⟨ΨI ∣Ψ[x]J ⟩.

Propagation is along the adiabatic potential energy surfaces (hence
the need for adiabatic nuclear gradients), with stochastic hops
between adiabats. Even though the NADCs are not required to
integrate the electronic Schrödinger equation,5–8 they are needed
to determine the direction of momentum rescaling when a hop
occurs.9–12 Thus, the goal of this manuscript is to provide the
necessary electronic structure matrix elements (especially NADCs)
for ISC processes so that one can model ISC dynamics with
FSSH.13–19
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Now, the standard electronic structure software usually gen-
erates eigenstates of the spin-free electronic Hamiltonian, which
we will also sometimes refer to as the “usual” electronic Hamilto-
nian. Without SOC, these eigenstates do not mix spin, and so we
will call them spin-diabats. Obviously, the standard FSSH dynam-
ics along these surfaces will never capture an ISC event, as there
will always be zero probability to hop between the spin-diabats.
Therefore, in order to capture ISC, we must first include some spin-
coupling. With this obvious fact in mind, the most straightforward
and computationally efficient approach would be to run dynam-
ics on the spin-diabats (singlet, triplet, etc.) and switch surfaces
with a rate determined by both diabatic spin orbit coupling and
nonadiabatic derivative coupling. Indeed, this approach has pre-
viously been followed by Gonzalez and co-workers17,20 as well as
by Cui and Thiel.14 More generally, however, this approach carries
risk: the diabatic couplings are usually delocalized (which is subop-
timal for surface hopping). Furthermore, surface hopping can only
be derived approximately in an adiabatic representation21,22 which
must make one question the validity of spin-diabatic surface hop-
ping. In addition, practical questions arise: for instance, if the SOC
is large, what direction should we choose for momentum rescal-
ing with spin-diabatic FSSH? Last, as shown by Granucci et al.13

for spin-diabatic FSSH, one must take great care to enforce rota-
tional invariance of the hopping rate. And in particular, if the SOC
matrix elements change sign, it may be almost fruitless to work with
a spin-diabatic representation.

For all the reasons mentioned above, it is now commonly
accepted23 that even when running ISC dynamics, it is preferable to
use a spin-adiabatic basis. In other words, one should calculate spin-
electronic eigenfunctions of the entire (usual + SOC) Hamiltonian
and then generate adiabatic gradients and NADCs for FSSH. With
such a spin-adiabatic approach, one will not only avoid the many
pitfalls discussed above but also be guaranteed to enjoy the usual
benefits of FSSH dynamics: low energy barrier crossings will be pos-
sible (which is important in the case of large SOC), detailed balance
will be enforced approximately,24 etc.

Of course, the downside to working with spin-adiabatic wave-
functions is the extra computational cost. Nevertheless, recently,
we presented a computationally efficient algorithm (with an addi-
tional roughly two-fold computational cost) for the generation of
spin-adiabat energies and gradients by including SOC within config-
uration interaction singles (CIS).25 In this work, we will now extend
the algorithm in Ref. 25 to time-dependent density functional the-
ory (TD-DFT) within the Tamm-Dancoff approximation (TDA),
which corrects the orbital energies relative to Hartree-Fock and CIS
and yields better excitation energies while retaining the same struc-
ture as the CIS.26 Moreover, we will also calculate CIS and TDA
NADCs, extending the previous work with semiempirical27 or MR-
CISD wavefunctions28 into the realm of modern TD-DFT calcula-
tions (where calculating NADCs has been a hot topic in the recent
years29–34 given the formal absence of a TD-DFT wavefunction). In
principle, our algorithm should also be extendable to spin-flip meth-
ods.35–37 Note that we are far from the first to consider SOC effects
in the context of TD-DFT/TDA calculations (e.g., see Ref. 38), but
we believe our focus on generating matrix elements for nonadia-
batic nuclear dynamics in the context of SOC TD-DFT calculations
is new. Importantly, we have also chosen to add the effect of a mag-
netic field B through B ⋅ S coupling. Without the magnetic field,

the Hamiltonian for a system with an even number of electrons
will obey time-reversal symmetry and so can be transformed into
a basis in which all its elements are real-valued.39,40 Thus, for a sys-
tem with an even number of electrons, one should never recover a
complex NADC; the hypothetical appearance of any such complex
NADC would only imply an artificial introduction of the imaginary
number i to the spin-electronic basis. That being said, by introduc-
ing a magnetic field, we allow the new spin-coupled Hamiltonian
to break time-reversal symmetry, and so we will need to gener-
ate complex-valued NADCs—which can introduce some rich new
physics.41

A few more words are now appropriate regarding complex
electronic Hamiltonians. The original FSSH algorithm was clearly
designed around real-valued electronic structure. For example, a
real Hamiltonian ensures that the NADCs are real and the momen-
tum rescaling direction is well defined. Nevertheless, one must
presume that semiclassical mechanics are possible with complex
NADCs, and a recent work has explored various ansätze for the
extension of FSSH with complex-valued NADCs.42 Since the over-
all phases of the adiabats are not well defined, the total phase of
the derivative coupling is not well-defined, and choosing a direc-
tion of momentum rescaling is not obvious. Previous work in Ref. 42
has suggested that one possible choice for momentum rescaling
is the direction of the NADC between the participating states, as
rotated to have the maximum norm in the real-valued compo-
nent; and yet, (unpublished) data suggest that this ansatz may not
be completely general. To date, the optimal direction for rescal-
ing momenta likely remains unknown. Nevertheless, such a direc-
tion must lie within the two-dimensional space spanned by Re[dIJ]
and Im[dIJ]. Moreover, for the case of a real-valued NADC, there
is ample evidence that rescaling in the wrong direction can lead
to erroneous results,43 especially for upward hops where velocity
reversal is important,6,44–48 and so calculating the derivative cou-
pling will be absolutely essential for any and all versions of FSSH
dynamics.

With this background in mind, in the present paper, we will
derive and implement a computationally efficient algorithm to com-
pute the complex-valued NADC of TDA spin-adiabats in the pres-
ence of a magnetic field. For the analytic gradient, see Appendix C.
We will use the framework developed in Ref. 34, deriving the
NADCs for TDA states by treating the TDA Kohn-Sham wave-
function as a true wavefunction. Our derivation will not be com-
pletely self-contained; we will rely on some derivations from Refs. 25
and 49. As a simple application, we will explore the complex
nature of the NADC in the context of benzaldehyde at an S1/T2
crossing.

A. Notation
Before we dive into the theory, it will be helpful to define our

notation. Lowercase Greek letters {μ, ν, λ, γ, ω} index atomic orbitals,
and the two-electron integrals will be written in physics notation:50

Πμνλσ = ∫dr1∫dr2χμ(r1)χν(r2) 1
∣r1−r2 ∣

χλ(r1)χσ(r2). Lowercase Roman
letters {p, q, r, s} index general molecular orbitals from a restricted,
closed-shell ground state, ∣Φgs⟩. Lowercase {a, b, c, d} index specif-
ically virtual orbitals, and {i, j, k, l, m} index specifically occupied
orbitals. The Greek letters {σ, τ, υ} will index spin, with up spin
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denoted by α and down by β. Spin orbitals are represented by bold
type as p or μ, or when explicitness is required, with a subscript as
pσ or μσ . A singly excited determinant is defined by ∣Φa

i ⟩ ≡ a†
aai∣Φgs⟩.

The singlet spin-diabat is indexed by (s) and triplet spin-diabats (t)
are indexed by ms = −1, 0, +1. The four spin-diabats (one singlet and
three triplets) will be indexed by ϵ ∈ {s, t(ms=0), t(ms=1), t(ms=−1)}.
A superscript [x] implies the derivative with respect to x. A vector
quantity in three dimensional space will be indicated by an arrow,
(v⃗). Finally, note that some quantities below will be complex; an
asterisk (∗) will denote the complex conjugate.

II. THEORY: ANALYTIC NONADIABATIC DERIVATIVE
COUPLINGS FOR TDA SPIN-ADIABATS
A. Coupling spin

Below, we will include the effects of two spin operators, the
spin-orbit coupling Vso and an external magnetic field Vm:

V = Vso + Vm. (1)

To model spin-orbit coupling, a one-electron (usually mean field)
operator has been shown to capture many effects of the full SOC
coupling operator (both the one- and two-electron terms).36,51 For
the present paper, our spin-orbit coupling operator will be the one-
electron component of the Breit-Pauli spin-orbit coupling,52

Vso = −
α2

0

2 ∑j,A
ZA

∣⃗rjA∣3
(r⃗jA × p⃗j) ⋅ s⃗j. (2)

Here, α0 is the fine structure constant and j and A index the electrons
and nuclei, respectively. ZA is the charge of nucleus A, s⃗j is the spin
operator of the j electron, r⃗jA is the distance between electron j and
nucleus A, and p⃗j is the momentum of electron j. We will include the
effects of a magnetic field through B ⋅ S coupling with the standard
assumption of a gyromagnetic coupling equal to 2,

Vm = −
e

me
∑

j
B⃗ ⋅ s⃗j. (3)

Here, e is the charge of an electron, me is the mass of an electron, and
B⃗ is the magnetic field, B⃗ = [Bx, By, Bz].

The components of V are expressed in second quantization
notation as

Vx =∑
pq
(2μB

h̵
Bxδpq −

α2
0

2
L̃xpq) ⋅

h̵
2
(a†

pαaqβ + a†
pβaqα), (4a)

Vy =∑
pq
(2μB

h̵
Byδpq −

α2
0

2
L̃ypq) ⋅

h̵
2i
(a†

pαaqβ − a†
pβaqα), (4b)

Vz =∑
pq
(2μB

h̵
Bzδpq −

α2
0

2
L̃zpq) ⋅

h̵
2
(a†

pαaqα − a†
pβaqβ). (4c)

Here, μB is the Bohr magneton μB = eh̵/2me and L̃ is a com-
pletely imaginary and antisymmetric matrix that captures the angu-
lar momentum of an electron moving around all different nuclei A
with positions r⃗A,25 e.g.,

L̃zpq =∑
A

ZA⟨p∣
[(r⃗ − r⃗A) × p⃗]z
∣⃗r − r⃗A∣3

∣q⟩. (5)

It will be useful to express V in the molecular spin orbital basis,

Vpαqα = (μBBzδpq −
h̵α2

0

4
L̃zpq), (6a)

Vpβqβ = −(μBBzδpq −
h̵α2

0

4
L̃zpq), (6b)

Vpαqβ = (μBBxδpq −
h̵α2

0

4
L̃xpq) +

1
i
(μBByδpq −

h̵α2
0

4
L̃ypq), (6c)

Vpβqα = (μBBxδpq −
h̵α2

0

4
L̃xpq) −

1
i
(μBByδpq −

h̵α2
0

4
L̃ypq), (6d)

where L̃xpq = ∑μν CμpL̃xμνCνq, etc.
Due to our choice of a spatially constant magnetic field, the

gradient of the total spin-coupling operator will include only a
contribution from the spin-orbit coupling,

V[x]pq = −
h̵α2

0

4
L̃[x]pq . (7)

Nevertheless, the derivation outlined below will be general, as appli-
cable to nonuniform magnetic fields.

B. Spin-adiabats within TD-DFT/TDA
Our total Hamiltonian is the sum of the usual electronic Hamil-

tonian and a perturbation that mixes in spin (Htot = Hel + V). Within
the TDA, we diagonalize a modified Kohn-Sham linear response
tensor A to solve the following eigenequation:

AXJ = ωJXJ , (8)

where ωJ is the total energy (ground plus excited) of state J.
The TDA excited states are linear combinations of singly

excited determinants that differ from the ground state by an exci-
tation from an occupied spin orbital i to a virtual spin orbital a.
Because we mix spin states, a TDA state ∣ΨJ⟩ will contain contri-
butions from all possible spin combinations,

∣ΨJ⟩ =∑
ai

XJ
ai∣Φ

a
i ⟩ =∑

ai
∑
στ

XJ
aσ iτ ∣Φ

aσ
iτ ⟩. (9a)

It will be useful to define the spin-diabat basis. The four spin-
diabats include one singlet (s) and three triplets (t(ms=−1,0,1)), and
the wavefunction can be expressed in this basis as

∣ΨJ⟩ =
1√
2
∑
ai

sJ
ai(∣Φ

aα
iα ⟩ + ∣Φaβ

iβ ⟩)

+
1√
2
∑
ai

tJ(ms=0)
ai (∣Φaα

iα ⟩ − ∣Φ
aβ
iβ ⟩)

+∑
ai

tJ(ms=+1)
ai ∣Φaα

iβ ⟩ +∑
ai

tJ(ms=−1)
ai ∣Φaβ

iα ⟩ (9b)

=∑
ϵ
∑
ai

XJ(ϵ)
ai ∣Φ

a(ϵ)
i ⟩. (9c)
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Here,

∣Φa(ϵ)
i ⟩ ≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
√

2
(∣Φaα

iα⟩ + ∣Φaβ
iβ⟩), if ϵ = s

1
√

2
(∣Φaα

iα⟩ − ∣Φ
aβ
iβ⟩), if ϵ = t(ms=0)

∣Φaα
iβ⟩, if ϵ = t(ms=+1)

∣Φaβ
iα⟩, if ϵ = t(ms=−1).

The relationship between the matrix X and the s and t(ms=−1,0,1)

amplitudes is

sJ
ai = XJ(s)

ai =
1√
2
(XJ

aαiα + XJ
aβiβ), (10a)

tJ(ms=0)
ai = XJ(t(ms=0)

)

ai = 1√
2
(XJ

aαiα − XJ
aβiβ), (10b)

tJ(ms=+1)
ai = XJ(t(ms=+1)

)

ai = XJ
aαiβ , (10c)

tJ(ms=−1)
ai = XJ(t(ms=−1)

)

ai = XJ
aβiα . (10d)

Our linear response tensor A can be expressed as the total
Hamiltonian projected into the space of all single excitations ∣Φa

i ⟩,

Aaibj = ⟨Φa
i ∣Htot∣Φb

j ⟩

= ⟨Φa
i ∣Hel∣Φb

j ⟩ + ⟨Φa
i ∣V∣Φb

j ⟩

= Fabδij − Fjiδab + Πajib + Ωaibj + Egsδabδij + Vabδij − Vjiδab.
(11)

Here, F is the Fock matrix, which is diagonal in the molecular orbital
basis,

Fpq = hpq + gpq +∑
m
Πpmqm = εpδpq. (12)

The Fock matrix includes (i) the kinetic energy and external poten-
tial h, (ii) the DFT exchange-correlation matrix g [Eq. (A4)], and (iii)
the Coulomb and fraction of Hartree-Fock exchange Π,

Πpqsr = ⟨pq∣sr ⟩ − cHF⟨pq∣rs ⟩. (13)

Here, cHF represents the fraction of exact exchange present accord-
ing to the DFT functional of choice; for CIS, cHF = 1. Note that the
set {Πpqsr} are not matrix elements for the full two-electron repul-
sion operator but rather screened matrix elements; obviously, these
matrix elements are not fully antisymmetric. As such, one should
not consider Π̂ in Eq. (11) to be a second quantized operator but a
first quantized operator in the space of all single excitations (Πajib

= ⟨Φa
i ∣Π̂∣Φb

j ⟩).
Let us now be more explicit. An essential aspect of the spin-

diabatic basis is that the two-electron tensors are block diagonal.
Using the fact that the nonzero matrix elements of Π in Eq. (13) are

⟨Φaα
iα ∣Π̂∣Φ

bα
jα ⟩ = ⟨Φ

aβ
iβ ∣Π̂∣Φ

bβ
jβ ⟩ = ⟨aj∣ib ⟩ − cHF⟨aj∣bi ⟩, (14a)

⟨Φaα
iα ∣Π̂∣Φ

bβ
jβ ⟩ = ⟨Φ

aβ
iβ ∣Π̂∣Φ

bα
jα ⟩ = ⟨aj∣ib ⟩, (14b)

⟨Φaα
iβ ∣Π̂∣Φ

bα
jβ ⟩ = ⟨Φ

aβ
iα ∣Π̂∣Φ

bβ
jα ⟩ = −cHF⟨aj∣bi ⟩, (14c)

it follows that we can define a simplified block-diagonal notation for
Π as follows:

Π(ϵ)pqsr ≡ {
2⟨pq∣sr ⟩ − cHF⟨pq∣rs ⟩, if ϵ = s
−cHF⟨pq∣rs ⟩, if ϵ ∈ {t(ms=0), t(ms=1), t(ms=−1)}.

(15)

With this definition, we can say that the operator Π̂ in Eq. (11)
satisfies

⟨Ψ(ϵ)I ∣Π̂∣Ψ
(ϵ′)
J ⟩ = δϵϵ′∑

aijb
XI(ϵ)∗

ai XJ(ϵ′)
jb Π(ϵ)ajib. (16)

Note that in Eq. (12), if p and q have spin α, then

∑
m
Πpmqm =∑

m
∑
σ
Πpαmσqαmσ

=∑
m
(2⟨pαmα∣qαmα ⟩ − cHF⟨pαmα∣mαqα ⟩)

=∑
m
Π(s)pmqm.

Of course, the same holds true when p and q have spin β. Thus,
when dealing with the closed shell ground state, the correct screened
interaction tensor is Π(s).

Last, the DFT contributions in Eqs. (11) and (12) are discussed
in detail in Appendix A. The exchange-correlation response func-
tional, Ω̂, is the second derivative of the DFT exchange-correlation
energy [Eq. (A5)]. As above, we can define a similar spin-diabatic
notation for the linear response tensor. Using the fact that the
nonzero matrix elements of Ω in Eq. (11) are

⟨Φaα
iα ∣Ω̂∣Φ

bα
jα ⟩ = ⟨Φ

aβ
iβ ∣Ω̂∣Φ

bβ
jβ ⟩ = Ωaαiαbαjα (17a)

and

⟨Φaα
iα ∣Ω̂∣Φ

bβ
jβ ⟩ = ⟨Φ

aβ
iβ ∣Ω̂∣Φ

bα
jα ⟩ = Ωaαiαbβjβ , (17b)

we can define a block diagonal notation for Ω as follows:

Ω(ϵ)pqsr ≡ {
Ωpαqαsαrα + Ωpαqαsβrβ , if ϵ = s
Ωpαqαsαrα −Ωpαqαsβrβ , if ϵ ∈ {t(ms=0), t(ms=1), t(ms=−1)}.

(18)

Now, given the definition of Ω in Eq. (A5), it should be clear that
Ωpqsr must formally be zero if orbitals p and q are of different
spin value. In other words, we should set Ωt(ms=−1)

pqsr = Ωt(ms=+1)

pqsr = 0.
Nonetheless, we will enforce Eq. (18) as a means of insisting that
we preserve the degeneracy of the pure triplets. In practice, DFT
functionals have almost always been parameterized and bench-
marked for the ms = 0 triplet and should be most accurate with this
choice of Ω tensor. Alternatively, one could work with noncollinear
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exchange-correlation functions, for which there is a large history
going back to Liu and co-workers,53,54 Wang and Ziegler,55–57 and
Vahtras58 and explored by Krylov, Casida, and co-workers;59,60 nev-
ertheless, below, we will keep the standard collinear approximations
in TD-DFT, and we will write

⟨Ψ(ϵ)I ∣Ω̂∣Ψ
(ϵ′)
J ⟩ ≡ δϵϵ′∑

aijb
XI(ϵ)∗

ai XJ(ϵ′)
jb Ω(ϵ)aibj. (19)

All remaining terms on the right-hand side of Eq. (11) are the
result of the one-electron spin-coupling term, V.

In general, for computational efficiency, we find it optimal to
first calculate the spin-diabats with a standard TDA calculation and
then use the resulting TDA spin-diabats as initial guesses for the
larger calculation in Eq. (8) to find the TDA spin-adiabats. Let us
now address the derivative coupling. For the savvy reader already
familiar with analytic gradient theory, the final answer can be found
in Sec. II F.

C. Derivation by direct differentiation
There are two methods to obtain an analytic form for the

nonadiabatic derivative couplings: (i) the nuclear derivative of
the wavefunction can be evaluated directly34 or (ii) one can apply
the Hellmann-Feynman theory.49 Both methods will generate the
same expression after extensive algebra. In this section, we will fol-
low the more straightforward approach in Ref. 34, direct differen-
tiation, followed by conversion to the atomic orbital basis. How-
ever, beyond the limits of Ref. 34, we will also need to add a step
to integrate over many of the spin degrees of freedom as well as
keep track of the conjugation of the complex-valued amplitudes and
coupling terms. Note that we do not allow SOC coupling between
the ground state and excited states, which will make the mathe-
matics a bit simpler. Future work will necessarily include this con-
tribution, following the rigorous response approach of Send and
Furche.29

To begin the derivation, one directly applies the nuclear deriva-
tive to the wavefunction, as in Eqs. (21)–(24) in Ref. 34,

⟨ΨI ∣Ψ[x]J ⟩ =∑
ijab

XI∗
ai ⟨Φa

i ∣(XJ
bj∣Φ

b
j ⟩)
[x]

(20a)

= 1
ΔωJI

∑
abij

XI∗
ai A[x]aibjX

J
bj

−∑
iab

XI∗
ai XJ

biO
R[x]
ba −∑

ija
XI∗
ai XJ

ajO
R[x]
ji . (20b)

The two terms of the derivative coupling are the off-diagonal force
matrix term61 and the right derivative of the molecular orbital over-
lap, OR[x]

pq ≡ ⟨p∣q[x]⟩. We denote the energy difference between states
J and I as ΔωJI ≡ ωJ − ωI . The derivative of the response tensor can
be broken up into the derivatives of all of the tensor’s components,

A[x]aibj = F[x]ab δij − F[x]ji δab + Π[x]ajib + Ω[x]aibj

+ V[x]ab δij − V[x]ji δab + E[x]gs δabδij. (21)

Plugging Eq. (21) into Eq. (20a), we have all of the terms for the
derivative coupling in the molecular orbital basis,

⟨ΨI ∣Ψ[x]J ⟩ =
1

ΔωJI
[∑
abij

XI∗
ai (Π[x]ajib + Ω[x]aibj)X

J
bj

+∑
iab

XI∗
ai XJ

bi(F
[x]
ab + V[x]ab )

−∑
ija

XI∗
ai XJ

aj(F
[x]
ji + V[x]ji )]

−∑
iab

XI∗
ai XJ

biO
R[x]
ba −∑

ija
XI∗
ai XJ

ajO
R[x]
ji . (22)

Most quantum chemistry software is written in the atomic
orbital basis to take advantage of Gaussian-type orbitals with ana-
lytic integral formulas for the two-electron terms. Therefore, it is
necessary to convert Eq. (22) into the atomic orbital basis.

D. The atomic orbital basis
1. Preliminary definitions

Before conversion to the atomic orbital basis, there are sev-
eral important matrices that must be defined. First, we look at
the terms resulting from the nature of the molecular orbitals. The
molecular orbitals are linear combinations of atomic orbitals with
coefficients C,

∣p⟩ =∑
μ

Cμp∣μ⟩, (23)

and the molecular orbital coefficients diagonalize the atomic orbital
overlap, Sμν = ⟨μ|ν⟩,

Opq = ⟨p∣q⟩ =∑
μν

CμpSμνCνq = δpq. (24)

The ground state density matrix is

Pμν =∑
i

CμiCνi, (25)

and the formal inverse of S is

P̃μν =∑
p

CμpCνp = Pμν +∑
a

CμaCνa. (26)

The molecular orbital coefficients depend on both the atomic
overlap matrix and the occupied-virtual rotation matrix Θbi. There-
fore, the coefficient derivative includes contributions from each of
their derivatives,

C[x]μp = −
1
2∑γλ

P̃μγS[x]γλ Cλp +∑
ck
(Cμkδcp − Cμcδkp)Θ[x]ck . (27)

See Eqs. (63a)–(63b) in Ref. 49. Using Eq. (27) and following the
steps outlined in Eqs. (64)–(69) in Ref. 49, we have an expression for
the right derivative of the overlap in the atomic orbital basis,

OR[x]
pq = ⟨p∣q[x]⟩ =∑

μν
CμpSA[x]

μν Cνq −∑
ck
(δcpδkq − δkpδcq)Θ[x]ck . (28)

Equation (28) breaks the right derivative into two contributions, the
orbital response term Θ[x]bi and the antisymmetrized right derivative
of the atomic orbital overlap matrix, SA[x],
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SA[x]
μν ≡ 1

2
(⟨μ∣ν[x] ⟩ − ⟨ν∣μ[x] ⟩) = ⟨μ∣ν[x] ⟩ − 1

2
S[x]νμ . (29)

Second, all other derivatives of the contributions to the linear
response tensor in Eq. (21) (F[x], Ω[x], V[x], Π[x]) can be expressed
in the atomic orbital basis using the derivations in Eqs. (32)–(37) in
Ref. 25. As an example, since V is expressed in the atomic orbital
basis as Vpq =∑μνVμνCμpCνq, we find using Eq. (27)

V[x]pq =∑
μν

V[x]μν CμpCνq −
1
2 ∑μνγλ

S[x]γλ Vμν(CλpCνqP̃γμ + CγqCμpP̃νλ)

+∑
μνck

Θ[x]ck Vμν((Cμkδcp − Cμcδkp)Cνq+Cμp(Cνkδcq − Cνcδkq)).

(30)

The three contributions in Eq. (30) are as follows: (i) the derivative
of the V matrix elements, (ii) the overlap derivative S[x], and (iii) the
orbital response Θ[x].

Third, it will be helpful to transform the TDA coefficients into
the atomic orbital basis and thus recover the standard transition
density matrix,

RJ
μν =∑

ia
CμaXJ

aiCνi, (31)

and a modified difference density matrix,

BIJ
μν =∑

iab
CμaXI∗

ai XJ
biCνb −∑

ija
CνiXI∗

ai XJ
ajCμj. (32)

The second term in Eq. (32) is the transpose of the more tradi-
tional difference density matrix.25,49,62 See, for example, Eq. (59b) in
Ref. 49.

We can now state (skipping most of the algebra) the remaining
derivatives for the quantities in Eq. (21). To begin with, the Fock
matrix can be expanded in the same way as the spin-coupling in
Eq. (30), using Fpq =∑μνFμνCμpCνq,

F[x]pq =∑
μν

F[x]μν CμpCνq −
1
2 ∑μνγλ

S[x]γλ Fμν(CλpCνqP̃γμ + CγqCμpP̃νλ)

+∑
μνck

Θ[x]ck Fμν((Cμkδcp − Cμcδkp)Cνq+Cμp(Cνkδcq − Cνcδkq)).

(33)
Unlike the spin-coupling in the atomic orbital basis, the Fock matrix
in the atomic orbital basis is dependent on the molecular orbital
coefficients. Therefore, it is necessary to further expand the first term
on the right-hand side of Eq. (33), using Fμν = hμν + gμν +∑

γλ
PγλΠμγνλ

and Eqs. (A6) and (A8):

∑
μν

F[x]μν CμpCνq =∑
μν
(h[x]μν + g0[x]

μν )CμpCνq + ∑
μνγλ

Π[x]μγνλCμpCνqPγλ −
1
2 ∑μνγλδκ

S[x]κδ (P̃γκPλδ + PγκP̃λδ)(Πμγνλ + Ωμνγλ)CμpCνq

− ∑
μνγλck

Θ[x]ck (CγcCλk + CγkCλc)(Πμγνλ + Ωμνγλ)CμpCνq. (34)

Next, the derivative of the two-electron tensors can be expressed similarly as

Π[x]ajib = ∑
μλνγ

CμaCλjΠ
[x]
μλνγCνiCγb −

1
2 ∑μλνγδκ

S[x]δκ (P̃μδCκaCλj + CμaP̃λδCκj)ΠμλνγCνiCγb

− 1
2 ∑μλνγδκ

S[x]δκ CμaCλjΠμλνγ(P̃γδCνiCκb + P̃νδCκiCγb) + ∑
μλνγ
(∑

k
Θ[x]ak CμkCλj −∑

c
Θ[x]cj CμaCλc)ΠμλνγCνiCγb

+ ∑
μλνγ

CμaCλjΠμλνγ(∑
k
Θ[x]bk CνiCγk −∑

c
Θ[x]ci CγbCνc), (35)

Ω[x]aibj = ∑
μλνγ

CμaCνi(Ω0[x]
μνγλ + ΩY[x]

μνγλ)CγbCλj −
1
2 ∑μλνγδκ

S[x]δκ (P̃μδCκaCνi + P̃νδCμaCκi)ΩμνγλCγbCλj

− 1
2 ∑μλνγδκ

S[x]δκ CμaCνiΩμνγλ(P̃γδCκbCλj + P̃λδCγbCκj) + ∑
μλνγ
(∑

k
Θ[x]ak CμkCνi −∑

c
Θ[x]ci CμaCνc)ΩμνγλCγbCλj

+ ∑
μλνγ

CμaCνiΩμνγλ(∑
k
Θ[x]bk CγkCλj −∑

c
Θ[x]cj CγbCλc), (36)

Equation (36) is similar to Eq. (35), with the Π replaced with Ω and some indices relabeled. The only difference is that we split Ω[x] in the
atomic orbital basis into two contributions, the response (ΩY[x]) and nonresponse (Ω0[x]) terms, as seen in Eq. (A9).

2. The nonadiabatic derivative coupling in the atomic orbital basis
Finally, we can use the terms defined above in Eqs. (23)–(32) as well as the formal derivatives in Eqs. (33)–(36) to express Eq. (22) in the

atomic orbital basis. It is helpful to break the final formula into three pieces,
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⟨ΨI ∣Ψ[x]J ⟩ =
1

ΔωJI
Γ[x]IJ −

1
ΔωJI

∑
bi
Θ[x]bi Ybi +∑

μν
BIJ
μνSA[x]

νμ . (37)

The first term contains the nonresponse components to the gradient,

Γ[x]IJ =∑
μν

BIJ
μν(h[x]μν + g0[x]

μν ) +∑
μν

V[x]μν BIJ
μν + ∑

μλνγ
RI∗
μνRJ

γλ(Π
[x]
μλνγ + Ω0[x]

μνγλ) + ∑
μλνγ

BIJ
μνPλγΠ

[x]
μλνγ

− 1
2 ∑μνγλ

S[x]γλ P̃μγ(BIJ
λν + BIJ

νλ)Fμν −
1
2 ∑μνγλ

S[x]γλ Vμν(BIJ
λνP̃γμ + BIJ

μλP̃νγ)

−1
2 ∑λγηδ

S[x]ηδ P̃ληPδγ(BIJ
μν + BIJ

νμ)(Πμλνγ + Ωμνγλ) −
1
2 ∑

μλνγωδ
P̃μωS[x]ωδ (R

I∗
δνRJ

γλ + RI∗
νδRJ

λγ)(Πμλνγ + Ωμνγλ)

− 1
2 ∑

μλνγωδ
P̃λωS[x]ωδ (R

I∗
μνRJ

γδ + RI∗
νμRJ

δγ)(Πμλνγ + Ωμνγλ) −
1
2 ∑δκζη

∑
μλνγ

S[x]ζη (P̃δζPηκ + Pδζ P̃ηκ)RI∗
μνRJ

γλΞμνγλδκ. (38)

The quantities g0[x]
μν and Ω0[x]

μνγλ are defined in Appendix A.
The second term includes all response contributions,

Ybi =∑
ak
∑
μν

XI∗
bkXJ

akCνaVμνCμi +∑
ak
∑
μν

XJ
bkXI∗

akCμaVμνCνi +∑
ak
∑
μν

CμbVμνCνkXI∗
akXJ

ai +∑
ak
∑
μν

CνbVμνCμkXJ
akXI∗

ai

+∑
a
∑
μλνγ

CνbCμa(XI∗
ai RJ

γλ + RI∗
γλXJ

ai)(Πμλνγ + Ωμνγλ) + ∑
μνλγ

CλbCγi(BIJ
μν + BIJ

νμ)(Πμλνγ + Ωμνγλ)

−∑
j
∑
μλνγ

CμiCνj(XI∗
bj RJ

γλ + RI∗
γλXJ

bj)(Πμλνγ + Ωμνγλ) + ∑
μλνγ
∑
δκ
(CδbCκi + CδiCκb)RI∗

μνRJ
γλΞμνγλδκ. (39)

The third term (∑
μν

BIJ
μνSA[x]

νμ ) includes the antisymmetric over-

lap matrix derivative SA[x], which breaks translational invariance
such that ∑x⟨ΨI ∣Ψ[x]J ⟩ ≠ 0. Terms of this form are well known in

the theory of derivative couplings63–65 and are always of the form
“density matrix times antisymmetric overlap derivative.” In general,
it is well established that this term arises because when computing
the derivative coupling, we ignore the momentum of the electron
as imparted by the nucleus moving; however, this term will disap-
pear when missing electron translation factors are included.49,66,67

Furthermore, in the explicit context of CIS/TD-DFT derivative cou-
plings, one can show that this spurious third term arises from the
“Pulay terms” associated with the non-Hellman-Feynman compo-
nent of the derivative coupling.35 In other words, this third term is
associated with neither the Hellman-Feynman terms nor the orbital
response, and for surface hopping calculations, one should ignore
such a term. Nevertheless, this problematic term must be included
when debugging any ab initio derivative coupling code if one wants
to match finite difference simulations.

Most components of Eqs. (37)–(39) are available directly in
quantum chemistry codes, except the derivative of Θ. To calculate
Θ[x] directly, one must solve the coupled-perturbed Hartree-Fock
(CPHF) equation [Eq. (B2)] for each nuclear coordinate. Instead
of solving the CPHF equation 3N times, we will use the standard
Handy and Schaefer “z-vector” approach to replace the response
term with a mixed derivative term,

−∑
bi
∑
σ

Ybσ iσΘ
[x]
bσ iσ
=∑

aj
zajM[x]aj . (40)

Here, M[x] is a mixed derivative [Eq. (B3)]. The construction of the
z-vector requires solving the CPHF equation only once. The details
of the z-vector approach are presented in Appendix B.

At this point, one could naively calculate the NADC by sum-
ming Eq. (37) over all possible spin combinations, and yet, such
a process would be computationally expensive and unnecessary.
Instead, we can use symmetries in the spin degrees of freedom to
further simplify the solution and reduce the nontrivial spin indices.

E. Spin symmetries
To further simplify the form of the NADCs, we take advantage

of three aspects of our choice of spin-adiabats to integrate out many
of the spin degrees of freedom: the fact that we have a restricted
molecular orbital basis (so that orbitals are either spin α or spin β),
the fact that our ground state determinant is a closed-shell singlet (so
that α and β molecular orbitals are spatially identical) and the fact
that the two-electron tensor is block diagonal in the spin-diabatic
basis.

Since we are using a restricted, closed-shell molecular orbital
basis, many of the matrices defined so far will not mix spin and will
be equivalent for either up or down spin. Therefore, we can actu-
ally write these spin orbital matrices as matrices in the spatial orbital
basis times a delta function for spin indices. In other words,

Cμσpτ = Cμpδστ . (41)
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The matrices S, Θ, F, O, P, and P̃ can be expressed similarly, and
these same-spin relationships will simplify all summations below.

In general, the only contributions that will contain mixed spin
terms are the two-electron tensors (Π and Ω), the spin-coupling
(V), and the TDA amplitudes (X). That being said, the modified
two-electron tensor Π and exchange-correlation matrix Ω within the
usual electronic Hamiltonian are block diagonal in the spin-diabatic
basis, so we can in fact separate all terms originating from the usual
electronic Hamiltonian. In other words, for Π and Ω, we can avoid
explicit summation over a set of 4 spin orbitals (with independent
spins) and instead express all Π and Ω matrix elements in the spin-
diabatic basis so as to minimize the number of expensive matrix
multiplication subroutine calls, which are invoked when dotting Π
or Ω into any other spin tensor. To that end, we will express the
spin-diabatic components of the transition density matrix as

RJ(ϵ)
μν =∑

ia
CμaXJ(ϵ)

ai Cνi. (42)

We will also define a total difference density matrix as the sum of the
spin-diabatic components of the modified difference density matrix,

B̄IJ
μν ≡∑

ϵ
∑
iab

CμaXI(ϵ)∗
ai XJ(ϵ)

bi Cνb −∑
ϵ
∑
ija

CνiXI(ϵ)∗
ai XJ(ϵ)

aj Cμj. (43)

Note the bar over the (B̄) in Eq. (43).

F. Calculating the NADC of TDA spin-adiabats
Now that we have the necessary tools, we can explicitly write

the steps to calculate the NADC.
First, the total response vector Y in Eq. (39) is constructed

by breaking it into its usual electronic Hamiltonian contribution,
summed over the spin-diabats, YE, and spin-coupling contribution,
YV , summed over the nontrivial spin indices,

∑
σ

Ybσ iσ = YE
bi + YV

bi , (44a)

YE
bi = ∑

μνλγ
CλbCγi(B̄IJ

μν + B̄IJ
νμ)(Π(s)μλνγ + Ω(s)μνγλ)

+∑
ϵ
∑

aμλνγ
CνbCμa(XI(ϵ)∗

ai RJ(ϵ)
γλ + RI(ϵ)∗

γλ XJ(ϵ)
ai )

× (Π(ϵ)μλνγ + Ω(ϵ)μνγλ) −∑
ϵ
∑

jμλνγ
CμiCνj

× (XI(ϵ)∗
bj RJ(ϵ)

γλ + RI(ϵ)∗
γλ XJ(ϵ)

bj )(Π
(ϵ)
μλνγ + Ω(ϵ)μνγλ)

+∑
ϵ
∑

μλνγδκ
CδbCκi(RI(ϵ)∗

μν RJ(ϵ)
λγ + RI(ϵ)∗

λγ RJ(ϵ)
μν )Ξ(ϵ)μνγλδκ,

(44b)

YV
bi =∑

στυ
∑
akμν

XI∗
bσkτ X

J
aυkτ CνaVμσνυCμi

+∑
στυ
∑
akμν

XJ
bσkτ X

I∗
aυkτ CμaVμυνσ Cνi

+∑
στυ
∑
akμν

CμbVμυνσ CνkXI∗
aτkσ XJ

aτ iυ

+∑
στυ
∑
akμν

CνbVμσνυCμkXJ
aτkσ XI∗

aτ iυ . (44c)

Second, to indirectly evaluate the Θ[x]bi term from Eq. (37),
we solve the CPHF equation [Eq. (B2)] to solve for the z-vector
in Eq. (40). Therefore, as is common, one constructs the modified
relaxed difference density matrix,

DIJ
μν ≡ B̄IJ

μν −∑
aj

zaj(CμaCνj + CνaCμj). (45)

Third, again looking at Eq. (37), we combine Γ [Eq. (38)] and
the mixed derivative terms [Eq. (B6a)] and break the sum into three
terms: ΓD[x] includes the terms that depend on the relaxed differ-
ence density, ΓR[x] includes the terms that depend on the transition
density matrices resulting from the usual electronic Hamiltonian
and summed over the spin-diabats, and ΓV [x] includes the terms
that come from the spin-coupling, summed over two nontrivial spin
indices,

Γ[x]IJ −∑
bi

YbiΘ
[x]
bi = Γ

[x]
IJ +∑

aj
zajM[x]aj ≡ Γ

D[x]
IJ + ΓR[x]

IJ + ΓV[x]
IJ . (46a)

Here,

ΓD[x]
IJ =∑

μν
DIJ

μν(h[x]μν + g0[x]
μν ) + ∑

μνλγ
DIJ

μνPλγΠ
(s)[x]
μλνγ

− 1
2 ∑μνλγ

P̃μγS[x]γλ (D
IJ
λν + DIJ

νλ)Fμν

− 1
2 ∑μνλγδω

P̃λωS[x]ωδ Pδγ(DIJ
μν + DIJ

νμ)(Π(s)μλνγ + Ω(s)μνγλ), (46b)

ΓR[x]
IJ =∑

ϵ
∑
μνλγ

RI(ϵ)∗
μν RJ(ϵ)

γλ (Π
(ϵ)[x]
μλνγ + Ω0(ϵ)[x]

μνγλ )

− 1
2∑ϵ

∑
μνλγδω

P̃λωS[x]ωδ (R
I(ϵ)∗
δγ RJ(ϵ)

νμ + RI(ϵ)∗
γδ RJ(ϵ)

μν )

× (Π(ϵ)μλνγ + Ω(ϵ)μνγλ) −
1
2∑ϵ

∑
μνλγδω

P̃λωS[x]ωδ

× (RI(ϵ)∗
μν RJ(ϵ)

γδ + RI(ϵ)∗
νμ RJ(ϵ)

δγ )(Π
(ϵ)
μλνγ + Ω(ϵ)μνγλ)

− 1
2∑ϵ

∑
μνλγδωζη

P̃λωS[x]ωδ Pδγ

× (RI(ϵ)∗
μν RJ(ϵ)

ζη + RI(ϵ)∗
ηζ RJ(ϵ)

νμ )Ξ(ϵ)μνζηλγ, (46c)

ΓV[x]
IJ =∑

στ
∑
μν

V[x]μσντ B
IJ
μσντ −

1
2∑στ

∑
μνγλ

S[x]γλ Vμσντ(BIJ
λσντ P̃γσμσ + BIJ

μσλτ P̃ντγτ).

(46d)

The last step is to put all these terms together, divide by the
energy difference, and add the electronic translational invariance
term,68 recovering the final answer,

⟨ΨI ∣Ψ[x]J ⟩ =
1

ΔωJI

⎛
⎝
ΓD[x]

IJ + ΓR[x]
IJ + ΓV[x]

IJ
⎞
⎠

+∑
μν

B̄IJ
μνS

A[x]
νμ . (47)
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TABLE I. NADC between TDA spin-adiabats 4th and 7th using ωB97X/STO-3G. These spin-adiabats are primarily composed
of the S1 and T2 spin-diabats. Note that the analytic results agree with finite difference up to 10−4a−1

0 . The full finite difference
results can be found in Tables S2 and S3.

Finite difference Analytic NADC

Atom x y z x y z

Real-valued component (a−1
0 )

C 69.0507 −0.0261 32.7396 69.0507 −0.0261 32.7396
H 7.9082 −0.0012 4.4373 7.9082 −0.0012 4.4373
O −81.1334 0.0269 −41.5192 −81.1333 0.0268 −41.5192

Imaginary-valued component(a−1
0 )

C −0.0535 0.0190 −0.0253 −0.0533 0.0190 −0.0253
H −0.0061 −0.0033 −0.0034 −0.0061 −0.0033 −0.0034
O 0.0630 −0.0125 0.0321 0.0626 −0.0125 0.0321

Equations (44a)–(47) provide a complete framework to calculate the
NADCs between TDA spin-adiabats with the minimum number of
calls to the two electron tensor derivatives (Π[x] and Ω[x]).

III. RESULTS
We have implemented Eqs. (44a)–(47) in a development ver-

sion of the Q-Chem software package.69 We will now validate our
analytic NADC against finite difference and then use the algorithm
to explore the S1/T2 crossing in benzaldehyde. Benzaldehyde has
been widely studied because it is the smallest aromatic carbonyl, and
understanding benzaldehyde’s electronic relaxation is essential for a
broader understanding of the relaxation of other organic phospho-
rescent molecules.70 When benzaldehyde is excited to the S1 state,
it quickly undergoes ISC. Previous work suggests that the transition
between S1 and T2 is favorable due to large SOC and low energy
barriers between the states.70,71

A. Comparison with finite difference
Finite difference is used to verify our equations and imple-

mentation of the analytic NADC. A five-point stencil is used to
approximate the derivative of the ket,

⟨ΨI ∣Ψ[x]J ⟩ =
1

12Δ
⟨ΨI(x)∣ΨJ(x − 2Δ) ⟩ − 2

3Δ
⟨ΨI(x)∣ΨJ(x − Δ) ⟩

+
2

3Δ
⟨ΨI(x)∣ΨJ(x + Δ) ⟩ − 1

12Δ
⟨ΨI(x)∣ΨJ(x + 2Δ) ⟩.

(48)

Here, the overlap between two nuclear geometries x1 and x2 can be
computed using

⟨ΨI(x1)∣ΨJ(x2) ⟩ =∑
ϵ
∑
abij

XI(ϵ)∗
ai (x1)

× ⟨Φa
i (x1)∣Φb

j (x2)⟩XJ(ϵ)
bj (x2)e−iθJ . (49)

The overlap will not mix different spin states, so it is useful to use
the spin-diabatic basis to decrease the number of determinants we
are calculating. The factor e−iθJ is a rotation of the ket invoked to

line up the phases of the adiabats, so they vary smoothly as a func-
tion of geometry. For small changes to the geometry, the overlap of
a state with itself at two different geometries should be close to 1,
real-valued, and positive, which uniquely defines θ ∈ [0, 2π).

Table I presents a comparison of the finite difference results
with that of our analytic formula for the largest components of
the NADC between the 4th and 7th spin-adiabats. Tables S2 and

FIG. 1. Benzaldehyde at an S1/T2 crossing of benzaldehyde using ωB97X/6-
31G∗∗, with black vectors depicting the direction of the reaction coordinate plotted
in Fig. 2.
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S3 present the full results for the real and imaginary components,
respectively. Here, we have chosen a small basis set (STO-3G) to
limit the computational cost of calculating the finite difference
terms. The terms are calculated at an S1/T2 crossing with a magnetic
field of By = 5 T and Δ = 10−4Å. At this value of Δ, the error of the
finite difference is on the order of 10−4a−1

0 .

B. Benzaldehyde: Effects of a magnetic field
on spin-adiabatic PESs and NADCs

We will now explore how an S1/T2 crossing of benzaldehyde
(with a SOC less than 10 cm−1) changes as a function of magnetic
field B. The coordinates of the nuclear geometry are presented in
Table S4 and shown in Fig. 1.

At this geometry, the size of the (Zeeman) coupling to the
external magnetic field is roughly the same magnitude as the SOC.
Figure 1 shows the direction of the reaction coordinate, which lies
along the line from the S1 minimum to the crossing point.

Note that as demonstrated in Fig. 2, the presence of the mag-
netic field splits the degeneracy of the triplet states. In the upper
panel, the spin-diabats and spin-adiabats are shown without the
magnetic field. The triplets are nearly degenerate away from the

FIG. 2. The TDA spin-diabats and spin-adiabats at an S1/T2 crossing of benzalde-
hyde using ωB97X/6-31G∗∗ along a reaction coordinate. The potential energy
surfaces are plotted relative to the energy of the crossing point of the TDA spin-
diabats (Ẽ = −345.317 096 74 Eh). The blue (red) dashed line represents the
singlet (triplet) TDA spin-diabat. The black lines are our TDA spin-adiabats (states
4–7). (Top) The crossing point is shown without a magnetic field. This crossing
point was chosen for its small spin-orbit coupling (less than 10 cm−1). (Bot-
tom) When the magnetic field is applied (By = 5 T), the triplet degeneracy is
broken.

FIG. 3. The spin expectation values (⟨S⃗⟩) for spin-adiabats 4–7 at the crossing
point in Fig. 2 for two field strengths (By = 0.5T and By = 5T) in the two-dimensional
space created by the expectation values. At the crossing point, the spin vec-
tors form collinear pairs that lie in plane with the direction of the magnetic field
(shown in black). As the magnetic field strength is increased, the 4th and 7th spin-
adiabats mix less with other states and the corresponding spin vectors align with
the magnetic field.

crossing. In the lower panel, once the magnetic field is applied, the
triplets split into three nearly parallel surfaces.

Let us now consider the resulting spin of each spin-adiabatic
state at the crossing and assess the direction of each spin state relative
to the magnetic field. On the one hand, if there is no magnetic field
and just SOC, each spin-adiabatic state would have zero total spin
(⟨S⃗⟩ = 0). On the other hand, if one applies a magnetic field but
does not include SOC, the singlet and one triplet would still have
zero total spin, but two triplets would have their spin aligned with
the magnetic field in equal and opposite amounts. When these two

FIG. 4. Comparison of the spin expectation values for the spin-adiabats near the
crossing in Fig. 2 for a strong magnetic field (By = 5 T). (Top) The norm of the
spin for our TDA spin-adiabats (states 4–7), e.g., N4 = ⟨Sx

44⟩
2 + ⟨Sy

44⟩
2 + ⟨Sz

44⟩
2.

(Bottom) The relative angle of the spin vectors with the magnetic field direction (⃗y).
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effects are put together, the resulting spin vectors are coplanar with
the magnetic field, but as can be seen in Fig. 3, the spin vectors of our
spin-adiabats at the crossing point in Fig. 2 are not collinear with the
magnetic field.

At the crossing point, where the spin-diabats are degenerate,
Fig. 3 shows that the four spin-adiabatic spin vectors form a planar
orthogonal set. Figure 4 shows how the norm and relative angles of
the spin vectors change along the reaction coordinate in Fig. 2; note
that when the system is away from a crossing, the triplets are in line
with the magnetic field. Future work will need to address (1) how the
four spin vectors form a plane, (2) how the direction of that plane
can best be characterized as a function of the external magnetic field,
B⃗, and (3) how the magnitudes of the different components depend
on the particular molecule.

IV. DISCUSSION
In this paper, we have presented a complete approach for cal-

culating gradients and NADCs between TDA spin-adiabatic states,
which should be very helpful for running FSSH ISC dynamics.
Future work in our research group will explore systems with large
SOCs where using these NADCs and gradients for spin-adiabatic
FSSH dynamics should yield different results than running FSSH
along spin-diabats. Future work will also no doubt explore the intro-
duction of SOC between the ground and excited states29 such that
one will be able to treat the final step of nonadiabatic, radiationless
transitions.

Now, one interesting aspect of this project is the introduction of
complex-valued NADCs. Recent dynamical work has suggested that

the imaginary component of NADCs can yield very rich new phys-
ical behaviors.42 In particular, whenever the derivative coupling d is
complex, such complexity automatically introduces nontrivial Berry
phase effects,72,73 whereby a given trajectory moving on adiabat J
with momentum p⃗ should feel a force,42,74

FBerry
J = 2h̵∑

K≠J
Im[dJK(

p⃗
m
⋅ dKJ)]. (50)

Thus, whether a derivative coupling is nontrivially complex is abso-
lutely essential as far as understanding the nonadiabatic dynamics.
If d has both a real and imaginary part, the resulting physics will be
different from the standard Tully FSSH prescription.

Unfortunately, in practice, analyzing the phases of NADCs is
complicated since each electronic state’s phase can be picked arbi-
trarily at any given geometry. With that in mind, in Fig. 5, we inves-
tigate the crossing point geometry of Fig. 2 and apply six different
magnetic fields from 5 ⋅ 10−5 T to 5 T. The upper panels present
the norm of the real-valued component of the NADCs between our
states of interest (4–7) on a logarithmic scale, while the middle pan-
els presents the imaginary-valued components. The lower panels
presents the percent contribution of the imaginary component as a
fraction of the total NADC norm squared. On the left, we analyze the
couplings in terms of the (fixed but arbitrary) phases that Q-Chem
chooses for each adiabatic state. On the right, we follow the prescrip-
tion of Ref. 42 and maximize the norm of the real component of
each NADC individually (one at a time). This implies that we give
each adiabatic wavefunction a different phase depending on which
NADC we are looking at. As discussed above, we are interested in

FIG. 5. The norm of the NADCs between
our TDA spin-adiabats (states 4–7) at
an S1/T2 crossing of benzaldehyde using
ωB97X/6-31G∗∗ as the magnetic field is
increased in the y direction. All coordi-
nates are given in Table S4. (Top) The
norm of the real-valued component of the
NADCs before and after rotation. (Mid-
dle) The norm of the imaginary compo-
nents of the NADCs before and after
rotation. (Bottom) The percent contribu-
tion of the imaginary component to the
total norm squared of the derivative cou-
pling. Note that before rotation (left), the
phase of each adiabat is assigned ran-
domly (but in a fixed fashion) by the
Q-Chem electronic structure program for
each adiabatic state; however, after rota-
tion (right), the imaginary component is
nearly zero.
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the real/imaginary nature of the NADC because if the NADC is truly
imaginary, we should find interesting Berry phase physics.42,74 How-
ever, it is clear (disappointingly) that in practice, for the case of ben-
zaldehyde, after rotation there are little to no remaining imaginary
components, and the NADCs can be rotated into an almost entirely
real-valued vector; thus, no Berry phase effects will be strong here,
using the formula in Eq. (50). This statement is quantified in Fig. 6.
On the left, we plot (again using the fixed but arbitrary phases chosen
by Q-Chem) the real-valued component (blue) and the imaginary-
valued component (green) of the NADC between states 4 and 5 with
a magnetic field By = 0.5 T. On the right, we plot the final real-
valued NADC as found after adjusting the phases of states 4 and 5
(orange). The imaginary component is too small to display. Future
work will need to explore conditions for which these NADCs cannot
be rotated into a single real vector.

At this point, one can ask: since the NADCs in Fig. 5 can
each be independently rotated into a real-valued vector, can these
NADCs perhaps be codependently rotated into real-valued vectors?
In other words, can we choose the N phases for the N adiabatic
wave functions such that the derivative coupling matrix is always
real and imaginary numbers are not actually necessary? To answer
this question, note that there are N − 1 degrees of freedom for
the relative phases of adiabatic states, but there are N(N − 1)/2
relative phases. With that in mind, we can perform the follow-
ing experiment. Starting from a set of fixed but arbitrary phases
for the adiabatic wavefunctions, we find the necessary phases
{η45,. . . , η67} that make the matrix of derivative couplings as real as
possible through the equation

d̃JK = dJK eiηJK . (51)

These η quantities are plotted in Fig. 7 on the left.
Then, if it were possible to find a consistent set of phases to

make the derivative coupling real, we must have

FIG. 6. The NADC between spin-adiabats 4 and 5 of benzaldehyde (from Fig. 5)
before and after rotation by η with a magnetic field of 0.5 T. (a) Using the (fixed
but arbitrary) phases that are found by Q-Chem, we plot the real (imaginary)
component of the NADC, shown as vectors in blue (green). The total NADC is nor-
malized. (b) After rotation, the real component of the NADC is shown in orange.
The imaginary component is too small to be displayed.

FIG. 7. Values of η for each NADC in Fig. 5; see Eq. (51) for the definition of η. (a) η
values as a function of magnetic field for the different NADCs. Note that in general,
for the correct η parameter one can rotate each NADC for benzaldehyde into an
almost completely real-valued vector. (b) If it were possible to choose phases for
each adiabatic state such that all NADCs were real, then the sum of any cyclic
choice of phases ηJK would necessarily need to be 0 or π. The fact that such a
choice is not possible implies that the complex nature of the Hamiltonian cannot
be rigorously removed.

η45 + η56 + η67 + η74 = 0 or π

as well as a host of similar identities. In short, for any arrangement of
phases that is cyclic, ηi1i2 +ηi2i3 +ηi3i4 +⋯+ηiN−1iN +ηiN i1 must equal 0 or
π. In Fig. 7, on the right, we plot several such sums; note that none
of them are zero or π. Thus, one clearly cannot choose the phases
of the adiabats such that the derivative coupling matrix is entirely
real.

What are the implications of this last statement and the pres-
ence of complex nonadiabatic couplings? According to the FSSH,
one requires the derivative coupling only insofar as it is needed to
rescale velocities, and so if one hops between states I and J and
dIJ is real, one presumably would not care about the total phase
of the derivative coupling dIJ . Furthermore, if dIJ is real, there
should not be a Berry force according to Eq. (50). Thus, it is safe
to assume that according to the FSSH algorithm, the fact that not
all derivative couplings can simultaneously be real would likely have
no important consequences. Nevertheless, FSSH is not exact dynam-
ics, and at this point, it is not clear to the authors what would
be the implications for the exact Schrödinger equation when a set
of derivative couplings is presented which cannot be made real-
valued simultaneously. Clearly, such a situation can arise only with
three or more electronic states, i.e., when the number of deriva-
tive couplings between electronic states is larger than the num-
ber of electronic states themselves. This statement is a reminder
that when there are more than 2 states, nonadiabatic problems
become more complex75 and semiclassical approaches become more
complicated.76

V. CONCLUSION
In this paper, we have presented a method for constructing

TDA spin-adiabats and their NADCs in the presence of a magnetic
field using a pseudowavefunction ansatz.34 The magnetic field breaks
time reversal symmetry, and thus, the resulting derivative couplings
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should be formally complex valued, even for a system with an even
number of electrons.77 We have verified our algorithm for the gra-
dients and derivative couplings by benchmarking against finite dif-
ference with a small basis set at an S1/T2 crossing. This algorithm
should be very useful for running nonadiabatic dynamics (in the
future) with spin-orbit coupling and complex Hamiltonians.

There are many important questions that will need to be
addressed in the future. First, for the case of benzaldehyde, pre-
liminary calculations suggest that (disappointingly) each of our
NADCs can be rotated by a phase to a vector that is nearly real
for all magnetic field strengths, such that Berry forces will not
obviously appear. Will this be consistently true with small organic
molecules? Or will the imaginary component be larger for other
systems? Many other questions also remain regarding the effect of
the relative phases of the NADCs for dynamics: even though rel-
ative phases may not be important for FSSH, what are their con-
sequences with exact dynamics? Second, more work will need to
be done to understand the nature of spin-adiabatic states and one
must necessarily investigate all underlying symmetries; at present,
we cannot predict the overall spin expectation values a priori.
Third and finally, the most obvious remaining questions are the
following: what will be the practical effect of including an odd
number of electrons, where the V so cannot ever be made into a
real operator? Are the derivative couplings nontrivially complex?
Is there a great deal of new nonadiabatic dynamics to be discov-
ered? This is a very interesting time to be studying ISC and SOC
dynamics.

SUPPLEMENTARY MATERIAL

See the supplementary material for the full geometries and
NADCs results for benzaldehyde, including both the real and imag-
inary components and different magnetic field directions.
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APPENDIX A: SPIN DETAILS OF TD-DFT WITHIN TDA
In this section, we present the important details for the inclu-

sion of density functional theory into our gradient and derivative
coupling derivation. The real space spin density ρσ(r) is

ρσ(r) =∑
μν

Pμσνσϕμσ (r)ϕνσ (r). (A1)

Here, ϕ refers to real space, spin atomic orbitals. The exchange-
correlation energy is an integral over all space,

Exc[ρ] = ∫ fxc(r)dr. (A2)

The exchange-correlation functional f xc can depend on many vari-
ables but is usually a local operator of some kind or another, so that
we can write

Exc[ρ] = ∫ fxc(ρσ(r),∇ρσ(r),∇2ρσ(r), . . . )dr. (A3)

Here, the spin-density is ρσ(r), the electronic gradient of the spin-
density is ∇ρσ(r), and one can move up Jacob’s ladder of DFT
with higher derivatives.78 We will adopt the notation in Ref. 79,
denoting these variables as ξ ∈ {ρσ(r), ∇ρσ(r), . . .}. Note that each
ξ depends linearly on the density matrix, P. See Eq. (A1) for
the case ξ = ρσ(r); for the case ξ = ∇ρσ(r), note that ∇ρσ(r)
= ∑μν Pμσνσ (∇ϕμσ (r)ϕνσ (r) + ϕμσ (r)∇ϕνσ (r)).80

The exchange-correlation matrix g81 can be written as the first
derivative of the energy Exc with respect to the density matrix,

gμσνσ =
∂Exc

∂Pμσνσ
, (A4a)

=∑
ξ
∫

∂fxc

∂ξ
∂ξ

∂Pμσνσ
dr. (A4b)

We note that g is zero if μ and ν have different spins. Similarly, the
TD-DFT/TDA response tensor Ω can be expressed as the derivative
of g with respect to the density matrix,

Ωμσνσδτγτ =
∂gμσνσ
∂Pδτγτ

(A5a)

=∑
ξξ′
∫

∂2fxc

∂ξ∂ξ′
∂ξ

∂Pμσνσ

∂ξ′

∂Pδτγτ
dr. (A5b)

Here, we note that Ω is formally zero if μ and ν or δ and γ have
different spins.

In Secs. II C–II F, we have presented the derivation of the
NADC for our spin-adiabats, culminating in Eqs. (44a)–(47). Within
these equations, we need the nuclear gradients of the elements of the
exchange-correlation matrix and the response tensor.

To that end, it is helpful to break the nuclear gradient of the
exchange-correlation matrix [see Eq. (A4)] into two terms,

g[x]μσνσ = g0[x]
μσνσ + gY[x]

μσνσ , (A6a)

g0[x]
μσνσ = ∑

ξ
∫
[x] ∂fxc

∂ξ
∂ξ

∂Pμσνσ
dr +∑

ξ
∫

∂fxc

∂ξ
( ∂ξ
∂Pμσνσ

)
[x]

dr

+∑
ξξ′
∫

∂2fxc

∂ξ∂ξ′
∂ξ

∂Pμσνσ
ξ′[x]dr, (A6b)

gY[x]
μσνσ = ∑

γλ
∑
τ

Ωμσνσγτλτ P
[x]
γτλτ

. (A6c)

J. Chem. Phys. 152, 044112 (2020); doi: 10.1063/1.5126440 152, 044112-13

Published under license by AIP Publishing

https://scitation.org/journal/jcp
https://doi.org/10.1063/1.5126440#suppl


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

Here, all nonresponse changes in gμσνσ are grouped together in
the quantity g0[x]; these are terms that depend directly on the nuclear
displacement. For instance, the term∑ξ ∫[x]

∂fxc
∂ξ

∂ξ
∂Pμσ νσ

dr reflects how
the electronic grid (for integrating the exchange-correlation func-
tion) induces changes in gμσνσ as the nuclear positions are changed.
Vice versa, we define gY [x] to include all indirect changes in gμσνσ as
induced by the response of the Kohn-Sham orbitals (or equivalently
the density matrix Pμσνσ ) to nuclear displacement.

Although it is slightly confusing, in Eq. (A6b) given above, we
have followed standard convention and defined ξ[x] to be that por-
tion of the full derivative ∂ξ

∂x that does not depend on P[x]. As an
example, consider the case ξ = ρσ(r) = ∑μν Pμσνσϕμσ (r)ϕνσ (r). Here,
obviously

∂ξ
∂x
=∑

μν
P[x]μσνσϕμσ (r)ϕνσ (r) + Pμσνσ (ϕμσ (r)ϕνσ (r))[x]

≡∑
μν

P[x]μσνσϕμσ (r)ϕνσ (r) + ξ[x]. (A7)

Both terms on the right-hand side of Eq. (A7) can be found in
Eq. (A6). Finally, we can use Eqs. (25) and (27) to expand P[x],

gY[x]
μσνσ = −

1
2 ∑γλδη

∑
τ

S[x]λτητ
(P̃δτλτ Pητγτ + Pδτλτ P̃ητγτ)Ωμσνσδτγτ

−∑
δγ
∑
τ
∑
bi
Θ[x]bτ iτ
(Cδτbτ Cγτ iτ + Cδτ iτ Cγτbτ)Ωμσνσδτγτ . (A8)

We also need the nuclear gradient of the response term for the
TDA gradient. We again have a response term and a nonresponse
term,

Ω[x]μσνσδτγτ
= Ω0[x]

μσνσδτγτ
+ ΩY[x]

μσνσδτγτ
, (A9a)

Ω0[x]
μσνσδτγτ

= ∑
ξξ′
∫
[x] ∂2fxc

∂ξ∂ξ′
∂ξ

∂Pμσνσ

∂ξ′

∂Pδτγτ
dr

+∑
ξξ′
∫

∂2fxc

∂ξ∂ξ′
( ∂ξ
∂Pμσνσ

)
[x]

∂ξ′

∂Pδτγτ
dr

+∑
ξξ′
∫

∂2fxc

∂ξ∂ξ′
∂ξ

∂Pμσνσ
( ∂ξ′

∂Pδτγτ
)
[x]

dr

+ ∑
ξξ′ξ′′
∫

∂3fxc

∂ξ∂ξ′∂ξ′′
∂ξ

∂Pμσνσ

∂ξ′

∂Pδτγτ
ξ′′[x]dr, (A9b)

ΩY[x]
μσνσδτγτ

= ∑
λκ
∑
υ
ΞμσνσδτγτλυκυP[x]λυκυ

. (A9c)

Here, Ξ is the derivative of Ω with respect to the density matrix,

Ξμσνσδτγτλυκυ =
∂Ωμσνσδτγτ

∂Pλυκυ
(A10a)

= ∑
ξξ′ξ′′
∫

∂3fxc

∂ξ∂ξ′∂ξ′′
∂ξ

∂Pμσνσ

∂ξ′

∂Pδτγτ

∂ξ′′

∂Pλυκυ
dr. (A10b)

We again expand the response term using Eqs. (25) and (27),

ΩY[x]
μσνσδτγτ

= −1
2 ∑λκζη

∑
υ

S[x]ζυηυ
(P̃λυζυPηυκυ + Pλυζυ P̃ηυκυ)Ξμσνσδτγτλυκυ

−∑
λκ
∑
υ
∑
bi
Θ[x]bυiυ
(CλυbυCκυiυ + CλυiυCκυbυ)Ξμσνσδτγτλυκυ .

(A11)

APPENDIX B: THE RESPONSE TERMS:
THE “z-VECTOR” APPROACH

To construct the derivative of Θ, it is standard in quantum
chemistry software to solve the coupled-perturbed Hartree-Fock
(CPHF) equation, F[x]aj = 0, or more explicitly using the chain rule,

∑
bi

∂2Egs

∂Θaj∂Θbi
Θ[x]bi +∑

μν

∂2Egs

∂Θaj∂Sμν
S[x]μν +∑

μν

∂2Egs

∂Θaj∂hμν

× (h[x]μν + g0[x]
μν ) + ∑

μνγδ

∂2Egs

∂Θaj∂Πμνγδ
Π(s)[x]μνγδ = 0. (B1)

By inversion, one can solve for Θ[x]bi as follows:

Θ[x]bi = −∑
aj
( ∂2Egs

∂Θaj∂Θbi
)
−1

M[x]aj , (B2)

where M[x]aj is the mixed-derivative term,

M[x]aj =∑
μν

∂2Egs

∂Θaj∂Sμν
S[x]μν +∑

μν

∂2Egs

∂Θaj∂hμν
(h[x]μν + g0[x]

μν )

+ ∑
μνγδ

∂2Egs

∂Θaj∂Πμνγδ
Π(s)[x]μνγδ . (B3)

As Eq. (B2) requires a large matrix inversion, it becomes compu-
tationally expensive to calculate the response functions {Θ[x]bi } for
each nuclear coordinate [x]. The “z-vector” approach of Handy and
Schaefer82 significantly decreases this cost by exploiting the fact that
we only consider the product of Ytot and Θ[x],

−∑
bi

Y tot
bi Θ

[x]
bi =∑

abij
Y tot

bi (
∂2Egs

∂Θaj∂Θbi
)
−1

M[x]aj

=∑
aj

⎡⎢⎢⎢⎢⎣
∑
bi

Y tot
bi (

∂2Egs

∂Θbi∂Θaj
)
−1⎤⎥⎥⎥⎥⎦aj

M[x]aj . (B4)

The z-vector is defined as

zaj ≡∑
bi

Y tot
bi (

∂2Egs

∂Θbi∂Θaj
)
−1

. (B5)

This approach allows us to invert the double angle derivative only
once for all atomic coordinates [x] as we have also integrated over
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the spin degrees of freedom (which is allowed because the molecular
orbitals are pure spin and restricted). The three contributions to the
sum in Eq. (B4) can be expressed in terms of zμν =∑ajCμazajCν j,

∑
jaμν

zaj
∂2E

∂Θaj∂hμν
(h[x]μν + g0[x]

μν ) = −∑
μν
(zμν + zνμ)(h[x]μν + g0[x]

μν ),

(B6a)

∑
jaμν

zaj
∂2E

∂Θaj∂Sμν
S[x]μν = ∑

δωμν
P̃δμFδω(zνω + zων)S[x]μν

+
1
2 ∑δωλσμν

(P̃λμPσν + PλνP̃σμ)

× (zδω + zωδ)(Πδλωσ + Ωδωλσ)S[x]μν , (B6b)

∑
jaμνγδ

zaj
∂2E

∂Θaj∂Πμνγδ
Π(s)[x]μνγδ = −∑

μνγδ
(zμγ + zγμ)PδνΠ

(s)[x]
μνγδ . (B6c)

APPENDIX C: THE GRADIENT OF THE TDA
SPIN-ADIABATS

For completeness, we will now outline the steps for calculating
the TDA spin-adiabatic gradient. These terms are derived following
the same procedure as for the NADC starting from,

ω[x]J =∑
abij

XJ∗
ai A[x]iajbXJ

bj (C1)

= Γ[x]JJ −∑
bi
Θ[x]bi Ybi. (C2)

In the same spirit as in Sec. II F, we can explicitly write the
steps to calculate the gradient. Here, we will denote the real-valued
component of a complex quantity as Re[−]. As the gradient is
real-valued, we can quickly decrease our terms using this symmetry.

First, the gradient response vector Y is constructed using
Eq. (39), with I = J. We again break Y into its usual electronic
Hamiltonian contribution, summed over the spin-diabats, YE, and
spin-coupling contribution, YV , summed over the nontrivial spin
indices,

∑
σ

Ybσ iσ = YE
bi + YV

bi , (C3a)

YE
bi = 2∑

μνλγ
CλbCγiRe[B̄JJ

μν](Π(s)μλνγ + Ω(s)μνγλ)

+ 2∑
ϵ
∑

aμλνγ
CνbCμaRe[XJ(ϵ)∗

ai RJ(ϵ)
γλ ](Π

(ϵ)
μλνγ + Ω(ϵ)μνγλ)

− 2∑
ϵ
∑

jμλνγ
CμiCνjRe[XJ(ϵ)∗

bj RJ(ϵ)
γλ ](Π

(ϵ)
μλνγ + Ω(ϵ)μνγλ)

+ 2∑
ϵ
∑

μλνγδκ
CδbCκiRe[RJ(ϵ)∗

μν RJ(ϵ)
λγ ]Ξ

(ϵ)
μνγλδκ, (C3b)

YV
bi =2Re

⎡⎢⎢⎢⎢⎣
∑
στυ
∑
akμν

XJ∗
bσkτ X

J
aυkτ CνaVμσνυCμi

⎤⎥⎥⎥⎥⎦

+ 2Re
⎡⎢⎢⎢⎢⎣
∑
στυ
∑
akμν

CμbVμυνσ CνkXJ∗
aτkσ XJ

aτ iυ

⎤⎥⎥⎥⎥⎦
. (C3c)

Second, to indirectly (but efficiently) evaluate the Θ[x]bi term
from Eq. (C2), we solve the CPHF equation [Eq. (B2)] to solve for
the z-vector in Eq. (40). Therefore, as is common, one constructs the
modified relaxed difference density matrix,

DJJ
μν ≡ B̄JJ

μν −∑
aj

zaj(CμaCνj + CνaCμj). (C4)

Third, looking at Eq. (37), we combine Γ [Eq. (38)] and the
mixed derivative terms [Eq. (B6a)] and break the sum into three
terms: ΓD[x] includes the terms that depend on the relaxed differ-
ence density, ΓR[x] includes the terms that depend on the transition
density matrices resulting from the usual electronic Hamiltonian
and summed over the spin-diabats, and ΓV [x] includes the terms
that come from the spin-coupling, summed over two nontrivial spin
indices,

Γ[x]JJ −∑
bi

YbiΘ
[x]
bi = Γ

[x]
JJ +∑

aj
zajM[x]aj ≡ Γ

D[x]
JJ + ΓR[x]

JJ + ΓV[x]
JJ . (C5a)

Here,

ΓD[x]
JJ =∑

μν
Re[DJJ

μν](h[x]μν + g0[x]
μν ) + ∑

μνλγ
Re[DIJ

μν]PλγΠ
(s)[x]
μλνγ

− ∑
μνλγ

P̃μγS[x]γλ Re[DJJ
λν]Fμν

− ∑
μνλγδω

P̃λωS[x]ωδ PδγRe[DJJ
μν](Π(s)μλνγ + Ω(s)μνγλ), (C5b)

ΓR[x]
JJ =∑

ϵ
∑
μνλγ

Re[RJ(ϵ)∗
μν RJ(ϵ)

γλ ](Π
(ϵ)[x]
μλνγ + Ω0(ϵ)[x]

μνγλ )

−∑
ϵ
∑

μνλγδω
P̃λωS[x]ωδ Re[RJ(ϵ)∗

δγ RJ(ϵ)
νμ +RJ(ϵ)∗

μν RJ(ϵ)
γδ ](Π

(ϵ)
μλνγ+Ω(ϵ)μνγλ)

−∑
ϵ
∑

μνλγδωζη
P̃λωS[x]ωδ PδγRe[RJ(ϵ)∗

μν RJ(ϵ)
ζη ]Ξ

(ϵ)
μνζηλγ, (C5c)

ΓV[x]
JJ =∑

στ
∑
μν

V[x]μσντ B
JJ
μσντ −∑

στ
∑
μνγλ

S[x]γλ Re[Vμσντ B
JJ
λσντ ]P̃μγ. (C5d)

The last step is to put all these terms together recovering the
final answer,

ω[x]J = Γ
D[x]
IJ + ΓR[x]

IJ + ΓV[x]
IJ . (C6)

Equations (C3a)–(C6) provide a complete framework to calculate
the gradients of TDA spin-adiabats with the minimum number of
calls to the two electron tensor derivatives (Π[x] and Ω[x]).
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