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ABSTRACT
The physical chemistry of liquid-liquid phase separation (LLPS) of polymer solutions bears directly on the assembly of biologically functional
dropletlike bodies from proteins and nucleic acids. These biomolecular condensates include certain extracellular materials and intracellu-
lar compartments that are characterized as “membraneless organelles.” Analytical theories are a valuable, computationally efficient tool for
addressing general principles. LLPS of neutral homopolymers is quite well described by theory, but it has been a challenge to develop general
theories for the LLPS of heteropolymers involving charge-charge interactions. Here, we present a theory that combines a random-phase-
approximation treatment of polymer density fluctuations and an account of intrachain conformational heterogeneity based on renormalized
Kuhn lengths to provide predictions of LLPS properties as a function of pH, salt, and charge patterning along the chain sequence. Advancing
beyond more limited analytical approaches, our LLPS theory is applicable to a wide variety of charged sequences ranging from highly charged
polyelectrolytes to neutral or nearly neutral polyampholytes. This theory should be useful in high-throughput screening of protein and other
sequences for their LLPS propensities and can serve as a basis for more comprehensive theories that incorporate nonelectrostatic interactions.
Experimental ramifications of our theory are discussed.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5139661., s

I. INTRODUCTION

Mesoscopic compartmentalization undergirded by liquid-
liquid phase separation (LLPS) of intrinsically disordered proteins
or regions (IDPs or IDRs) and nucleic acids is now recognized as
a versatile means for biomolecular organization and regulation.1–6

Some of these phase-separated dropletlike compartments are intra-
cellular bodies—such as stress granules, P-granules, and nucleoli—
that may be characterized as “membraneless organelles.” Outside
the cell, biomolecular LLPS can be biologically useful as well, as in
the formation of certain extracellular materials. Collectively referred

to as biomolecular condensates, these phase-separated bodies par-
ticipate in many vital functions as highlighted by their recently
elucidated roles in endocytosis,7 silencing chromatin,8 transcrip-
tion,9–11 and translation.12 The repertoire of relevant discoveries
is rapidly expanding.13–15 LLPS of globular proteins, for example,
lens protein solutions, has also been observed and is of biological
importance.16–21

Recent bioinformatics analyses suggest that IDPs and IDRs
comprise a significant fraction of the proteomes of higher organisms
and that functional LLPS is likely ubiquitous.22 The propensity for an
IDP or IDR to phase separate is governed by its amino acid sequence
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and modulated by solution/environmental conditions (temperature,
hydrostatic pressure,23 pH, ionic strength,24,25 etc) as well as their
interactions with other biopolymers such as RNA. Thus, any “big-
picture” survey of the physical basis of biomolecular condensates
requires not only consideration of many different sequences but also
a large variety of environmental conditions. Adding to this com-
binatorial complexity is that even for a given wildtype sequence,
posttranslational modifications, mutations, and splicing4,26 can lead
to diverse LLPS propensities. In this context, analytical theories are
the most computationally efficient tool for large-scale exploration
of sequence-dependent biomolecular LLPS. Although explicit-chain
simulations provide more energetic and structural details27–29 and
field-theory simulations afford more numerical accuracy,30–32 cur-
rently the number of sequences that can be simulated by these
approaches is limited because of their high computational cost.
Moreover, analytical theories are valuable for insights into physi-
cal principles that are less manifest in simulation studies. With this
in mind, we build on recent success in using analytical theories to
account for sequence-dependent biomolecular condensates under
certain limited conditions33,34 so as to develop improved theories
that are more generally applicable.

Building sequence-specific theories of LLPS will also have
implications in phase separation of block polyampholytes and
its comparison with complex coacervation between oppositely
charged homopolyelectrolytes, a topic of intense research in polymer
physics.35–49 Diblock polyampholytes with repeat units of a polyca-
tion segment followed by a polyanion segment can be envisioned to
be equivalent to two oppositely charged homopolyelectrolytes. For
this reason, LLPS of block polyampholytes—a limiting case of our
theory—is often termed self-coacervation31,32 and shares features
similar to complex coacervation of a polycation and polyanion.49

Experiments and simulation have also reported differences between
the phase diagrams of block polyampholytes and homopolyelec-
trolyte coacervation. The observed differences can be explained by
the presence of “charge pattern interfaces” where two segments of
oppositely charged blocks merge in polyampholytes. Homopolyelec-
trolytes, on the other hand, lack such connectivities, thus leading to
different types of salt localization in comparison with block polyam-
pholytes.49 Application of a general sequence-based analytical the-
ory of polyampholyte LLPS will further advance these comparisons
between complex coacervation and self-coacervation. Future effort
in theory development is needed in this direction. Thus, our frame-
work should be useful not only for high-throughput analyses of
the LLPS propensities of naturally occurring biological sequences
but also for the design of artificial biological and nonbiological
heteropolymers with desired LLPS properties.50–52

Inasmuch as sequence-specific analytical theories for biomolec-
ular condensates are concerned, a recent multiple-chain formulation
based on the traditional random phase approximation (RPA)53,54 has
been applied to study the dependence of LLPS of IDPs on the charge
patterns along their chain sequences.55 This approach accounts for
the experimental difference in LLPS propensity between the Ddx4
helicase IDR and its charge-scrambled mutant.55,56 It also provides
insight into a possible anticorrelation between multiple-chain LLPS
propensity and single-chain conformational dimensions57 as well as
the degree of demixing of different charge sequences under LLPS
conditions.58 As an initial step, these advances are useful. As a
heteropolymer theory, however, traditional RPA53,54 is known to

have two main shortcomings. First, the density of monomers of
the polymer chains in solution is assumed to be roughly homoge-
neous as density fluctuations are neglected beyond second order in
RPA. A rigorous treatment proposed by Edwards and Muthuku-
mar has shown the importance of including density fluctuations to
higher orders.59–61 Nonetheless, a recent comparison of field-theory
simulation and RPA indicates that RPA is reasonably accurate for
intermediate to high monomer densities for the cases considered
and that significant deviations between RPA and field theory sim-
ulation occur only for volume fraction <0.02 that of the highest
condensed-phase simulated.30 Second, traditional RPA neglects the
fact that monomer-monomer interactions can cause conformational
variation of individual chains by computing the single-chain struc-
ture factor using a Gaussian chain with no intrachain interaction.
This limitation, which applies to homopolymers as well as het-
eropolymers, is particularly acute for the latter. Indeed, experimental
and computational studies have shown that single-chain confor-
mational heterogeneities and dimensions are sensitive to sequence
specific interactions.62–67 Regarding this shortcoming, recently an
improved analytical approach was developed at the single-chain
level by replacing the Kuhn length l (termed “bare” Kuhn length)
of the Gaussian chain by a set of renormalized Kuhn lengths, l1,
that embodies the sequence-specific interactions approximately.68–70

Renormalized structure factors have also been exploited to improve
homopolymer LLPS theories for polyelectrolytes.71,72

Noting that the first shortcoming described above is likely lim-
ited only to regimes of extremely low polymer concentrations, here
we first focus on rectifying the second shortcoming by combining
the earlier, traditional sequence-dependent RPA theory55,56 with the
sequence-dependent single-chain theory that utilizes a renormalized
Gaussian (rG) chain formulation68–70 for a better account of con-
formational heterogeneity. We refer to this theory as rG-RPA. As
a control, we also study a simpler theory, analogous to our earlier
formulation,55,56 that invokes a Gaussian chain with a fixed Kuhn
length. Following Shen and Wang,72 we refer to this l1 = l theory as
fG-RPA. Extensive comparisons of rG-RPA and fG-RPA predictions
on various systems indicate that rG-RPA represents a significant
improvement over fG-RPA. As will be detailed below, the superior-
ity of rG-RPA is most notable in its ability to account for the LLPSs
of both polyampholytes and polyelectrolytes, whereas fG-RPA is
inadequate for polyelectrolytic polymers.

II. THEORY
We consider an overall neutral solution of np charged polymers,

each consisting of N monomers (residues), and small ions includ-
ing ns salt ions and nc counterions with charge numbers zs and
zc, respectively. The charge pattern of a polymer is given by an N-
dimensional vector ∣σ⟩ = [σ1, σ2, . . . , σN]T, where στ is the charge on
the τth monomer, and qc ≡ (∑τστ)/N is the net charge per monomer.
For simplicity, we consider the case with only one species of positive
and one species of negative ions; their numbers are denoted as n+
and n−, respectively. Moreover, “salt” is identified as the small ions
that carry charges of the same sign as the polymers, whereas “coun-
terions” are the small ions carrying charges opposite to that of the
polymers. Thus, ns = n+ if qc > 0 and ns = n− if qc < 0, and |qc|npN
+ zsns = zcnc for solution neutrality. The densities (ρ) of monomers,
salt ions, and counterions are, respectively, ρm = npN/Ω, ρs = ns/Ω,
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and ρc = nc/Ω, where Ω is the solution volume. Although only a sim-
ple system with at most two species of small ions is analyzed here for
conceptual clarity, our theory can be readily expanded to account for
multiple species of small ions.

Details of our formulation are given in Appendixes A and B.
Here, we provide the key steps in the derivation. Let F be the total
free energy of the system. Then, f ≡ Fl3/(kBTΩ) is free energy in
units of kBT per volume l3, where l is the bare Kuhn length, kB is
the Boltzmann constant, and T is the absolute temperature. In our
theory,

f = −s + fion + fp + f0, (1)

where s is the mixing entropy, f ion and f p are the interactions among
the small ions and involving the polymers, respectively, that arise
from density fluctuations, and f 0 is the mean-field excluded volume
interaction, all expressed in the same unit as f. The mixing entropy,
which accounts for the configurational freedom of the solutes, takes
the Flory-Huggins form, viz.,

− s =
ϕm
N

lnϕm + ϕs lnϕs + ϕc lnϕc + ϕw lnϕw , (2)

where ϕm, ϕs, ϕc, and ϕw = 1 − ϕm − ϕs − ϕc are volume fractions (ϕ
= ρl3), respectively, of polymers, salt ions, counterions, and solvent
(water for IDP systems). Following Muthukumar, the charge of each
small ion is taken to be distributed over a finite volume comparable
to that of a monomer. The corresponding interaction free energy
among the small ions is73

fion = −
1

4π
[ln(1 + κl) − κl +

1
2
(κl)2

], (3)

where 1/κ = 1/
√

4πlB(z2
s ρs + z2

c ρc) is the Debye screening length
and lB is the Bejurrm length. Polymers interact via a κ-dependent
screened Coulomb potential and a uniform excluded-volume repul-
sion with strength v2. The origin of this repulsive term is to be
understood as an effective interaction involving both the polymer
and solvent. By setting v2 repulsive, we imply that the polymer is in
a good solvent. These interactions are contained in the expression

Up[R] =
1
2

np

∑
α,β=1

N

∑
τ,μ=1

⎡
⎢
⎢
⎢
⎣

στσμe−κ∣Rα,τ−Rβ,μ ∣

∣Rα,τ − Rβ,μ∣
+ v2δ3

(Rα,τ − Rβ,μ)
⎤
⎥
⎥
⎥
⎦

, (4)

where Rα ,τ is the position of the τth monomer in the αth poly-
mer. The Up form facilitates the formulation in terms of den-
sity fields below. For this purpose, the divergent self-interaction
terms in Up are either regularized subsequently or inconsequen-
tial because they do not contribute to phase-separation properties.
Chain connectivity of the polymers is enforced by the potential

T [R] =
3

2l2

np

∑
α=1

N−1

∑
τ=1
(Rα,τ+1 − Rα,τ)

2. (5)

Thus, aside from a combinatorial factor that has already been
included in Eq. (2), the partition function involving the polymers
is given by

Zp = ∫

np

∏
α=1

N

∏
τ=1

dRα,τe−T [R]−Up[R]. (6)

Now, by applying the Hubbard-Stratonovich transformation
and converting real-space to k-space variables, we convert the
coordinate-space partition function in Eq. (6) to a k-space partition
function30,31 involving a charge-density field ψ and a matter-density
field w, viz.,

Zp = Z0Z′p, Z′p = ∫ ∏
k≠0

√
νk
v2

dψkdwk

2πΩ
e−H [ψ,w], (7)

where Z0 = exp[−v2(Nnp)2
/2Ω] is the factor for k = 0,

H [ψ,w] =
1

2Ω ∑k≠0
[νkψ−kψk +

w−kwk

v2
] − np lnQp[ψ,w], (8)

with νk ≡ k2
/(4πlB) + (z2

s ρs + z2
c ρc), the scalar k ≡ |k|, Qp[ψ,w]

= ∫ D[R] exp(−Hp[ψ,w]) is the single-polymer partition function
with D[R] ≡ ∏N

τ=1 dRτ (the chain label α in R is dropped since the
integration here is only over one chain), and

Hp[ψ,w] =
3

2l2
N−1

∑
τ=1
(Rτ+1 − Rτ)

2 +
i

Ω ∑k≠0

N

∑
τ=1
(στψk + wk)e

−ik⋅Rτ .

(9)

The total interaction free energy involving the polymers in the unit
of Eq. (1) is −(l3/Ω) lnZp, which we express as the sum of a density-
fluctuation contribution fp = −(l3/Ω) lnZ′p and a mean-field con-
tribution f0 = −(l3/Ω) lnZ0 =

1
2v2ρ2

m. The f 0 term involves nei-
ther small ions nor electrostatic interactions because the excluded
volumes of the small ions are not considered beyond the incom-
pressibility condition in Eq. (2) and the solution system as a whole is
neutral.

We evaluateZ′p in Eq. (7) perturbatively by expanding H [ψ,w]
to the second order in density,

H [ψ,w] ≈
1

2Ω ∑k≠0
⟨ψ−k w−k∣(

νk + ρmξk ρmζk
ρmζk v2

−1 + ρmgk
)∣
ψk
wk
⟩, (10)

where gk, ξk, and ζk are monomer density-monomer density,
charge-charge, and monomer density-charge correlation functions
in k-space, and ⟨⋯| and |⋯⟩ are, respectively, row and column
vectors. Z′p can then be calculated as a Gaussian integral to yield

fp = −
l3 lnZ′p

Ω

=
l3

2 ∫
d3k
(2π)3 ln[1 + ρm(

ξk
νk

+ v2gk) +
v2

νk
ρ2
m(ξkgk − ζ

2
k)]. (11)

Evaluation of gk, ξk, and ζk requires knowledge of the single-polymer
Qp [Eq. (8)], which, in general, depends on the sequence charge pat-
tern. fG-RPA makes the simplifying assumption that Qp is that of
Gaussian chains with a fixed l, i.e., assume that the second term in
Eq. (9) vanishes. As introduced above, here we use a renormalized
Kuhn length l1 = xl to better account for the effects of interactions
on Qp by making the improved approximation
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Qp ≈ ∫ D[R]e−H
0
p ; H0

p =
3

2l2x

N−1

∑
τ=1
(Rτ+1 − Rτ)

2. (12)

Accordingly, the correlation functions in Eq. (11) are computed
using l1 instead of l,

gk → gxk =
1
N ⟨1∣Ĝ

x
k∣1⟩, ξk → ξxk =

1
N ⟨σ∣Ĝ

x
k∣σ⟩,

ζk → ζxk =
1
N ⟨σ∣Ĝ

x
k∣1⟩,

(13)

where Ĝx
k is the N × N correlation matrix of the renormalized Gaus-

sian chain with [Ĝx
k]τμ = exp[−(kl)2x∣τ − μ∣/6] and ⟨1| and |1⟩ are

N-dimensional vectors with all elements equal to 1.
The single x variable here for the end-to-end distance serves

to provide an approximate account of sequence specific effects in
single-chain conformations. A more accurate formalism that may be
pursued in the future is to consider x as a function of specific residue
pairs, i.e., x→ x(τ, μ), so as to provide a structure factor that applies
to all length scales as in the approach of Shen and Wang.71

A variational approach similar to that in the work of Sawle and
Ghosh68 is applied to obtain a sequence-specific x by first express-
ing Hp in Eq. (9) as Hp = H0

p + H1
p, where H0

p is given by Eq. (12)
and H1

p is the discrepancy in using the renormalized H0
p to approx-

imate Hp. In general, a partially optimized solution for x may be
obtained by minimizing the differences in averaged physical quanti-
ties computed using Hp vs those computed using H0

p, i.e., minimiz-
ing contributions from H1

p. As emphasized above, to simplify this
calculation, we use, as in Ref. 68, the polymer squared end-to-end
distance |RN − R1|2 as the physical quantity for the partial opti-
mization of x. The derivation proceeds largely as before,68 except the
monomer-monomer interaction potential in Ref. 68 is now replaced
by the effective field-field correlation functions59

Ueff(k) ≡
N

∑
τ,μ=1
[στσμ⟨ψ−kψk⟩ + ⟨w−kwk⟩ + (στ + σμ)⟨ψ−kwk⟩], (14)

where ⟨⋯⟩ represents averaging over field configurations. This anal-
ysis, the details of which are given in Appendixes A and B, leads to
an equation that allows us to determine x,

1 −
1
x
−

Nl2

18(N − 1) ∫
d3k
(2π)3

k2Ξx
k

detΔx
k
= 0, (15)

where Δx
k is the 2 × 2 matrix in Eq. (10) with gk, ξk, and ζk replaced

by their renormalized gxk , ξxk , and ζxk in Eq. (13). In the numerator of
the integrand in Eq. (15),

Ξx
k =

ξ̄xk
v2

+ νkḡ
x
k + ρm(ξ̄xkg

x
k + ξxk ḡ

x
k − 2ζxk ζ̄

x
k), (16)

where

ξ̄xk =
1
N
⟨σ∣L̂2Ĝx

k∣σ⟩, ḡxk =
1
N
⟨1∣L̂2Ĝx

k∣1⟩, ζ̄xk =
1
N
⟨σ∣L̂2Ĝx

k∣1⟩, (17)

with L̂2 being an N × N matrix with [L̂2]τμ = ∣τ − μ∣2. Now, for any
chosen excluded-volume parameter v2, x can be solved as the only

unknown in Eq. (15). With x determined, f p can be computed via
Eq. (11) and combined with the above expressions for s, f ion, and
f 0 to complete the free energy function in Eq. (1) for our rG-RPA
theory. Here, we use v2 = 4πl3/3, which is about the ∼l3 size of a
monomer, in the applications below.

We note that while v2 > 0 (which disfavors collapsed confor-
mations) is required in the present formulation to solve for an effec-
tive Kuhn length, the general trend predicted by our theory is not
affected by reasonable variation around the v2 = 4πl3/3 value.

III. RESULTS
A. Salt-free rG-RPA unifies established LLPS trends
of both uniformly charged polyelectrolytes
and neutral polyampholytes

We first illustrate the more general applicability of rG-RPA by
comparing rG-RPA and fG-RPA predictions for salt-free solutions
of uniformly charged polyelectrolytes (fully charged homopolymers)
and 4-block overall neutral polyampholytes of several different chain
lengths (Fig. 1). As stated above, fG-RPA corresponds to setting x
= l1/l = 1 and v2 = 0 in rG-RPA. While fG-RPA is not identical
to our earlier RPA55 because fG-RPA subsumes the effects of small
ions in a screening potential for the polymers whereas our earlier
RPA theory treats the small ions and polymers on the same foot-
ing, both theories share the Gaussian-chain approximation and their
predicted trends are very similar, as will be illustrated by examples
below.

The rG-RPA-predicted critical point ((ϕm)cr, 1/(lB)cr) in
Fig. 1(a) for polyelectrolytes is insensitive to chain length [(lB)cr
is the critical Bjerrum length; 1/(lB)cr is proportional to the

FIG. 1. Salt-free LLPS of polyelectrolytes and polyampholytes. rG-RPA [(a) and
(b), top panels] and fG-RPA [(c) and (d), bottom panels] phase diagrams for N =
10, 25, 40, 80, 120, and 240 polyelectrolytes with charge sequences στ = −1 for
τ = 1, 2, . . ., N [(a) and (c), left panels] and N = 40, 80, 120, and 240 4-block
polyampholytes with charge sequences στ = +1 for τ = 1, 2, . . ., N/4 and τ = N/2
+ 1, N/2 + 2, . . ., 3N/4, and στ = −1 for τ = N/4 + 1, N/4 + 2, . . ., N/2 and τ = 3N/4
+ 1, 3N/4 + 2, . . ., N [(b) and (d), right panels]. Gray circles are critical points. For
the coexistence curves in [(a) and (c)], N decreases from top to bottom, with the N
= 80, 120, and 240 curves in (a) being nearly identical.
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critical temperature Tcr]. As N increases, limN→∞ 1/(lB)cr ≈ 0.5
and limN→∞(ϕm)cr ≈ 0.05. These predictions are consistent with
lattice-chain simulations74 and other theories.71,73,75,76 The fG-RPA
predictions are drastically different, viz., limN→∞ 1/(lB)cr → ∞ and
limN→∞(ϕm)cr → 0 [Fig. 1(c)]. Thus, fG-RPA is limited as ear-
lier RPA theories53,54 and its predictions for polyelectrolytes are
inconsistent with the aforementioned established results.71,73–76 This
comparison between rG-RPA and fG-RPA underscores the impor-
tance of appropriately accounting for conformational heterogeneity
in understanding polyelectrolyte LLPS and the effectiveness of using
renormalized Kuhn lengths for the purpose.

Both rG-RPA and fG-RPA predict 1/(lB)cr →∞ and (ϕm)cr →

0 as N → ∞ for the polyampholytes [Figs. 1(b) and 1(d)]. These
results are consistent with simple RPA theory,55,56 a charged hard-
sphere chain model,77 and lattice-chain simulations.78 Not surpris-
ingly, both rG-RPA and fG-RPA posit that Tcr’s of polyelectrolytes
are much lower than those of neutral polyampholytes because
direct electrostatic attractions exist for polyampholytes but effec-
tive attractions among polyelectrolytes can only be mediated by
counterions.

For the polyampholytes, rG-RPA [Fig. 1(b)] predicts lowerTcr’s
than fG-RPA [Fig. 1(d)]. With a more accurate treatment of single-
chain conformational dimensions, rG-RPA should entail more com-
pact isolated single-chain conformations for block polyampholytes,
resulting in less accessibility of the charges for interchain cohesive
interactions and therefore a weaker—but physically more accurate—
LLPS propensity.

Notably, the fG-RPA-predicted phase boundaries of both poly-
electrolytes and polyampholytes exhibit an inverse S-shape phase
boundaries [the condensed-phase part of the coexistence curves con-
cave upward; see Figs. 1(c) and 1(d)]. In contrast, rG-RPA pre-
dicts that only polyampholytes have inverse S-shape phase bound-
aries [Fig. 1(b)], whereas polyelectrolytes phase boundaries convex
upward with a relatively flat ϕm dependence around the critical
points [Fig. 1(a)]. This conspicuous difference between the rG-RPA-
predicted phase boundaries of polyampholytes and polyelectrolytes
is consistent with explicit-chain simulations.28,74

B. Salt-free rG-RPA account of pH-dependent LLPS
To address pH dependence under salt-free conditions, we apply

rG-RPA to an example of a near-neutral polyampholyte under neu-
tral pH, namely, the N-terminal IDR of the DEAD-box helicase
Ddx4 (IDR denoted as Ddx4N1) and its charge-scrambled variant
Ddx4N1CS which has the same amino acid composition as Ddx4N1

by a different sequence charge pattern.4 The sequences are stud-
ied at neutral and acidic pH. We refer to the resulting charge pat-
terns as (in obvious notation) Ddx4N1

pH7, Ddx4N1CSpH7, Ddx4N1
pH1, and

Ddx4N1CSpH1, where pH7 and pH1 are approximate pH values sym-
bolizing neutral and acidic conditions. For the pH7 sequences, each
of the 24 arginines (R) and 8 lysines (K) of Ddx4N1 and Ddx4N1CS
is assigned a +1 charge, each of the 18 aspartic acids (D) and 18 glu-
tamic acids (E) is assigned a −1 charge, and the 2 histidines (H) carry
zero charge. For the pH1 sequences, because the pH is lower than
the pKa of the acidic amino acids (3.71 for D and 4.15 for E), they
are not ionized and thus carry zero charge but each K or R or H
(pKH = 6.04) carries a +1 charge [Fig. 2(a), K, R in blue; H in cyan].

FIG. 2. LLPS at neutral and acidic pH. (a) Charge sequences of Ddx4N1 and
Ddx4N1CS (blue/cyan: +1, red: −1, white: 0) and their (b) rG-RPA and (c) fG-RPA
phase diagrams.

Thus, Ddx4N1
pH7 and Ddx4N1CSpH7 are near-neutral polyampholytes,

whereas Ddx4N1
pH1 and Ddx4N1CSpH1 are polyelectrolytes although

these four sequences—unlike those in Fig. 1—contains also many
uncharged monomers.

Figure 2(b) indicates that the rG-RPA-predicted Tcr is much
lower under acidic than under neutral conditions and that Tcr
of Ddx4N1 is always higher than that of Ddx4N1CS under both
pH conditions, underscoring that sequence-specific effects influ-
ence the LLPS of not only neutral and nearly neutral polyam-
pholytes28,55–57,79 but also polyelectrolytes. Intriguingly, inverse
S-shaped coexistence curves are seen in Fig. 2(b) not only for neutral
pH (blue curves) but also for acidic pH (orange curves). This fea-
ture is characteristic of polyampholytes [Fig. 1(b)] but not uniformly
charged polyelectrolytes [Fig. 1(a)]. This result suggests that inverse
S-shaped phase boundaries can arise, in general, from a heteroge-
neous sequence charge pattern because it leads to the simultane-
ous presence of both attractive and repulsive interchain interactions
(which can be counterion-mediated in the case of polyelectrolytes)
and therefore allows for condensed-phase configurations with lower
densities.28

As a control, fG-RPA results are shown in Fig. 2(c). In contrast
to rG-RPA, fG-RPA predicts that the l/(lB)cr value (proportional to
Tcr) of both Ddx4N1 and Ddx4N1CS at low pH is higher than that of
Ddx4N1CS at neutral pH and that the critical volume fractions at low
pH are significantly lower than those at neutral pH. Although these
differences between fG-RPA and rG-RPA predictions for the Ddx4
IDR remain to be conclusively tested by experiment, the low-pH
fG-RPA phase diagrams here [orange curves in Fig. 2(c)] share sim-
ilar features with the fG-RPA phase diagrams for polyelectrolytes in
Fig. 1(c) which, as discussed above, are at odd with trends observed
in prior theories and experiments. The fG-RPA results and those
obtained using our earlier, simple formulation of RPA55 are very
similar (Fig. 3).
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FIG. 3. Simple RPA55,56 salt-free phase diagrams for the four Ddx4 sequences in Fig. 2(a). (a) Phase diagrams computed using the Coulomb potential in Fourier space, Uk
= 4πlB/k2, are very similar to the fG-RPA phase diagrams in Fig. 2(c). (b) Phase diagrams computed using a Coulomb potential with a short-range cutoff, Uk = 4πlB/[k2(1
+ (kl)2)]; the same potential used in our previous simple-RPA studies.24,55–58 This Coulomb potential with a short-range cutoff predicts that the two pH1 sequences have
critical temperatures even higher than that of wildtype Ddx4 at pH7. This prediction, however, contradicts the physical intuition that polyelectrolytes should have lower phase
separation propensities than neutral or near-neutral polyampholytes of the same chain length.

C. Salt-free rG-RPA rationalizes pH-dependent
LLPS of IP5

We now utilize our theory to rationalize part of the experimen-
tal pH-dependent LLPS trend of the lyophilized 39-residue peptide
IP5,80 the isoelectric point of which is pH = 4.4 [Figs. 4(a) and
4(b)].81 The pH-dependent charge σ of a basic or acidic residue is
computed82 here by

σ = ±
10±(pKa−pH)

1 + 10±(pKa−pH)
, (18)

where the + and − signs in the ± signs above apply to the basic
(R, K, H) and acidic (D, E) residues, respectively. Standard pKa
values,81 viz., R: 12.10, K: 10.67, H: 6.04, D: 3.71, and E: 4.15, are
used in Eq. (18) to construct pH-dependent charge sequences of IP5
[Fig. 4(c)].

The rG-RPA-predicted and fG-RPA-predicted IP5 phase
boundaries for the experimental studied pH values are shown in
Fig. 4(d). Both theories predict a lower l/(lB)cr ≈ 0.2–0.3 than
the experiment l/(lB)cr ≈ 0.5. Physically, this is not surprising, as
has been addressed in previous RPA studies,55 because nonelectro-
static cohesive interactions are neglected here. Nonetheless, consis-
tent with the experiment, both theories posit that LLPS propensity
decreases with increasing pH. Moreover, the rG-RPA-predicted crit-
ical volume fraction (ϕm)cr ≈ 0.020–0.024 is reasonable in view of
the experimental value of ≈0.036 (Ref. 80), indicating once again that
rG-RPA is superior to fG-RPA as the latter predicts much higher
(ϕm)cr’s.

D. Salt-dependent rG-RPA for heteropolymeric
charge sequences

In view of the superiority of rG-RPA over fG-RPA, only rG-
RPA is used below. We consider the four charge sequences in
Fig. 2(a) as examples and restrict attention to monovalent salt and

counterions (zs = zc = 1). In experiments we conducted for this
study using described methods,24 no Ddx4N1 LLPS was observed in
salt-free solution at room temperature; yet Ddx4N1 at room temper-
ature is known4,24 to phase separate with 100 mM NaCl and that
LLPS propensity decreases when [NaCl] is increased to 300 mM.
These findings suggest that, similar to LLPS of uniformly charged
polyelectrolytes,83–85 salt dependence of heteropolymer LLPS is non-
monotonic at temperatures slightly higher than the salt-free Tcr and
therefore such temperatures are of particular interest. For this rea-
son, we apply rG-RPA to compute IDR-salt binary phase diagrams of
Ddx4N1

pH7, Ddx4N1CSpH7, Ddx4N1
pH1, and Ddx4N1CSpH1 (Fig. 5), each

at an l/lB value slightly higher than the sequence’s salt-free l/(lB)cr in
Fig. 2(b).

As expected, all binary phase diagrams in Fig. 5 exhibit non-
monotonic salt dependence. In general, at temperatures above the
salt free critical temperature, i.e., l/lB ≳ salt-free l/(lB)cr, when suf-
ficient salt is added to the salt-free homogeneous solution, LLPS is
triggered at ϕs = (ϕs)L

cr. Adding more salt beyond (ϕs)L
cr enhances

LLPS in that a wider range of overall ϕm falls within the LLPS regime,
until a turning point (ϕs)T is reached. Beyond that, adding more salt
[increasing ϕs above (ϕs)T] reduces LLPS (the phase-separated range
of ϕm narrows). LLPS is impossible for the given temperature when
salt concentration is increased above an upper critical point (ϕs)U

cr.
Despite these qualitative commonalities, there are significant

sequence-dependent differences. Notably, at neutral pH, the range
of salt concentrations that can induce LLPS is much narrower for
Ddx4N1

pH7 [ϕs ≲ 0.000 85, Fig. 5(a)] than for Ddx4N1CSpH7 [ϕs ≲ 0.005,
Fig. 5(b)]. However, the ranges of LLPS-inducing salt concentra-
tions at low pH for Ddx4N1

pH1 and Ddx4N1CSpH1 are similar [ϕs ≲
0.01, Figs. 5(c) and 5(d)], and their (ϕs)L

cr and (ϕs)U
cr are significantly

larger than those at neutral pH.
Next, we explore these trends at temperatures below salt-free

Tcr. Figures 6–9 present salt-polymer phase diagrams for four Ddx4
sequences (both wild type and charge scrambled sequences at neu-
tral and acidic pH) at three different temperatures. Panels (a) and
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FIG. 4. LLPS of IP5. (a) The IP5 sequence, where basic and acidic residues
are in blue and red, respectively; (Aib) is the nonproteinogenic amino acid α-
methylalanine.80 (b) Experimental pH-dependent phase diagrams of IP5 based
on the data in Fig. 4 of Ref. 80; antifreeze was used to obtain some of the low-T
results.80 (c) Net charge per residue, qc , of IP5. (d) Phase diagrams predicted by
rG-RPA (solid curves) and fg-RPA (dashed curves).

(b) in these figures show phase diagrams at temperatures below the
respective salt free Tcr for the given sequence, while panel (c) is at a
temperature above salt free Tcr. The three phase diagrams are com-
pared in panel (d) for a given sequence. These figures reveal that
trends for l/lB ≳ salt-free l/(lB)cr (above the salt free critical temper-
ature) are largely in line with behaviors at temperatures below salt-
free Tcr. The only difference is for l/lB < salt-free l/(lB)cr, (ϕs)L

cr = 0.
For l/lB < salt-free l/(lB)cr, temperatures for different sequences were
chosen such that the maximum ϕm range of LLPS are similar among
the sequences (as in Fig. 5). With this choice of temperature con-
straint, when the IDR-salt phase diagrams for different sequences
(Figs. 6–9) are compared, we note that (ϕs)U

cr and (ϕs)T of Ddx4N1
pH7

are much smaller than those of Ddx4N1CSpH7. Furthermore, (ϕs)U
cr

and (ϕs)T of these two pH7 sequences are much smaller than those
of the two pH1 sequences. Thus, we conclude that Ddx4N1

pH7 is more
sensitive to salt than Ddx4N1CSpH7, and both are more salt-sensitive
than Ddx4N1

pH1 and Ddx4N1CSpH1. Metrics other than (ϕs)T can also
be used to determine salt sensitivity. For example, the low-ϕm turn-
ing point [e.g., at ϕm ≈ 0.006, ϕs ≈ 0.16 in Fig. 5(a), unlabeled] with
a ϕs value similar to that of (ϕs)T may be used to characterize salt

FIG. 5. IDR-salt binary phase diagrams of two Ddx4 variants at low and high pH.
Results are for l/lB ≳ l/(lB)cr, where the salt-free 1/(lB)cr equals 0.455 for
Ddx4N1

pH7 (a), 0.336 for Ddx4N1CSpH7 (b), 0.195 for Ddx4N1
pH1 (c), and 0.188 for

Ddx4N1CSpH1 (d). The ϕs values of the gray circles in (a)–(d) are (ϕs)U
cr, (ϕs)T,

or (ϕs)L
cr, as indicated by U, T, and L in (a).

sensitivity. The resulting trend is similar to the one gleaned from the
turning point (ϕs)T.

The existence of (ϕs)L
cr > 0 in Fig. 5(a) is consistent with our

experimental observation that Ddx4N1 does not phase separate with
[NaCl] < 15–20 mM at pH 6.5, 25 ○C (l/lB = 0.529), and 5 mM Tris.
Other predictions of our theory remain to be tested. Of particular
interest is the slopes of the tie lines in Figs. 5(a) and 5(b) that change
from negative to positive as ϕs increases, indicating that salt ions
and the heteropolymeric IDRs partially exclude each other in low-
salt but partially coalesce in high-salt solutions at neutral pH. This
intriguing feature was not encountered in solutions of either a sin-
gle species of uniformly charged or two species of oppositely charged
homopolymers42–44,48,72,86,87 until very recently [Ref. 46]. In contrast,
the tie-line slopes in Figs. 5(c) and 5(d) are all positive, indicating
that salt ions and the heteropolymeric IDRs always partially coalesce
under acidic conditions.

E. Salt-dependent rG-RPA is consistent
with established trends in LLPS of homopolymeric,
uniformly charged polyelectrolytes

Our model predicts salt and polymers coalesce for Ddx4N1
pH1 and

Ddx4N1CSpH1 [Figs. 5(c) and 5(d)]. These sequences are examples
of nonuniformly charged polyelectrolytes. However, these results
are in contrast to the experiment and theory on uniformly charged
polyelectrolytes that suggest salt ions and polymers tend to exclude
each other, leading to tie lines with negative slopes in the polymer-
salt phase diagrams.72,83,86,87 We test the ability of our model to
reproduce this established trend by computing salt-polymer phase
diagrams for uniformly charged polymers [Fig. 10(a)]. The estab-
lished feature is captured by our new theory as the slopes of all tie
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FIG. 6. Polymer-salt coexistence phase
diagrams of Ddx4N1

pH7 at the l/lB values
indicated. The salt-free critical value of
l/lB is l/(lB)cr = 0.455. Top gray circles
in (a)–(c) provide the upper critical salt
concentrations (ϕs)U

cr, whereas the bot-
tom gray circle in (c) provides the lower
critical concentration (ϕs)L

cr (see discus-
sion in main text). Each dashed line in
(a)–(c) is a tie line connecting a pair
of coexistent phases. The three phase
boundaries in (a)–(c) are compared in
(d).

FIG. 7. Polymer-salt coexistence phase
diagrams of Ddx4N1CSpH7 at the l/lB val-
ues indicated. The salt-free critical value
of l/lB is l/(lB)cr = 0.336. Top gray
circles in (a)–(c) provide the upper criti-
cal salt concentrations (ϕs)U

cr, whereas
the bottom gray circle in (c) provides the
lower critical concentration (ϕs)L

cr. Each
dashed line in (a)–(c) is a tie line con-
necting a pair of coexistent phases. The
three phase boundaries in (a)–(c) are
compared in (d).
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FIG. 8. Polymer-salt coexistence phase
diagrams of Ddx4N1

pH1 at the l/lB values
indicated. The salt-free critical value of
l/lB is l/(lB)cr = 0.195. Top gray cir-
cles in (a)–(c) provide the upper criti-
cal salt concentrations (ϕs)U

cr, whereas
the bottom gray circle in (c) provides the
lower critical concentration (ϕs)L

cr. Each
dashed line in (a)–(c) is a tie line con-
necting a pair of coexistent phases. The
three phase boundaries in (a)–(c) are
compared in (d).

FIG. 9. Polymer-salt coexistence phase
diagrams of Ddx4N1CSpH1 at the l/lB val-
ues indicated. The salt-free critical value
of l/lB is l/(lB)cr = 0.188. Top gray
circles in (a), (b), and (c) provide the
upper critical salt concentrations (ϕs)U

cr,
whereas the bottom gray circle in (c)
provides the lower critical concentration
(ϕs)L

cr. Each dashed line in (a)–(c) is a
tie line connecting a pair of coexistent
phases. The three phase boundaries in
(a)–(c) are compared in (d).
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FIG. 10. Salt-dependent LLPS of polyelectrolytes and polyampholytes. rG-RPA
phase diagrams for (a) an N = 50 homopolymer with monomer charge =−1 and (b)
the N = 40 4-block polyampholyte in Fig. 1. Note that salt-free l/(lB)cr = 0.5 for (a)
and = 3.63 for (b). (ϕs)U

cr is given by the gray circle. An unmarked ϕs = (ϕs)L
cr > 0

exists for (a) but not for (b).

lines are negative in Fig. 10(a). Furthermore, consistent with liter-
ature reports on uniformly charged homopolymers (homopolyelec-
trolytes),83–85 with addition of salt, rG-RPA predicts a one-to-two
phase transition in the low salt regime as well as a two-to-one phase
transition in the high salt regime. For comparison, Fig. 10(b) is the
phase diagram of an overall neutral polyampholytes at a tempera-
ture substantially lower than the salt-free Tcr with all tie lines having
positive slopes. A recent field theory simulation study of an overall
neutral diblock polyampholyte also found tie lines with slightly pos-
itive slopes.32 Since tie lines with exclusively positive slopes are also
seen for the overall negatively charged low-pH Ddx4 IDRs above,
the opposite-signed tie-line slopes in Fig. 10(a) for homopolymeric
and those in Figs. 5(c) and 5(d) for heteropolymeric polyelectrolytes
suggest a role of sequence heterogeneity in determining whether
charged polymers tend to exclude or coalesce with salt ions. How-
ever, the precise origins of variation in tie-line slope remains to be
ascertained. One idea is that the nonzero tie-line slopes arise from
chain connectivity of polymers. If the polymers were not connected
and behave like a collection of monomers, the salt concentrations
in the dilute and condensed phases would simply follow that of the
polymer leading to the positive slope.46 However, chain connectivity
can change the slope from positive to negative.

The nature of tie-line slopes has also received considerable
attention in the salt-polymer phase diagrams observed during com-
plex coacervation of symmetric polyelectrolytes.40,42,44,46–49 Insights
gleaned from these studies can yield clues to tie-line slope differences
observed in our analysis. A recent theory46 based on the concept of
chain connectivity predicts a salt-concentration-dependent change
of sign of the tie-line slope, exhibiting a behavior similar to that in
Figs. 5(a) and 5(b). However, in this case of coacervation, the slope
changes from positive to negative with addition of salt, opposite
to the case of heteropolymers described here. Another idea is that
the tie-line slope is determined by a competition between electro-
static interactions among polymers and configurational entropy of
the salt ions,47 whereby the magnitude of electrostatic interactions
in the condensed phase are enhanced by reduced salt because of less
screening but any difference in concentration in salt ions between
the dilute and condensed phases is entropically unfavorable. It is
intuitive that both of these proposed mechanisms—conjectured in
modeling coacervation—would be affected by the charge pattern

of the polymers, but the manner in which the proposed mech-
anisms are modulated by sequence heterogeneity remains to be
investigated.

F. rG-RPA rationalizes sequence-dependent LLPS
of Ddx4 IDRs

Simple RPA theory and an extended RPA+FH theory with
an augmented Flory-Huggins (FH) mean-field account of nonelec-
trostatic interactions were utilized to rationalize24,55,56 experimen-
tal data on sequence- and salt-dependent LLPS of Ddx4 IDRs.4,24

Because RPA accounts only for electrostatic interactions and a
sequence-specific analytical treatment of other interactions is cur-
rently lacking, FH was used to provide an approximate account
of nonelectrostatic interactions. These interactions can include
hydrophobicity, hydrogen bonding, and especially cation-π and π-
π interactions because π-related interactions play prominent roles
in LLPS of biomolecular condensates.88 To gain further insight
into the semiquantitative picture emerged from these earlier stud-
ies24,55,56 and to assess the generality of our rG-RPA theory, here we
apply an augmented rG-RPA to the LLPS of the same Ddx4N1 and
Ddx4N1CS sequences by adding to the rG-RPA free energy in Eq. (1)
an FH interaction term −χϕ2

m, where χ = ΔH(lB/l) − ΔS contains
both enthalpic and entropic components, and refer to the resulting
formulation as rG-RPA+FH.

To compare with experimental data,24 we use this theory to
compute the phase diagrams of Ddx4N1 and Ddx4N1CS at pH 6.5
with 100 and 300 ml NaCl, which correspond, respectively, to
ϕs = 0.0018 and 0.0054. Naturally, pH-dependent behaviors can also
be obtained by the same FH term together with Eq. (1) and Eq. (18)
for rG-RPA free energy; but here we do not pursue a pH-dependent
rG-RPA+FH analysis of Ddx4N1 and Ddx4N1CS LLPS because
no corresponding experimental data is currently available for
comparison.

Our detailed rG-RPA study of salt-Ddx4N1 and salt-Ddx4N1CS
binary phase diagrams in Figs. 5–9 indicates that the difference
between dilute- and condensed-phase salt concentrations is less than
15% for ϕs < 0.01. Assuming that this trend is not much affected by
nonelectrostatic interactions, here we make the simplifying assump-
tion that salt concentration is constant when determining the rG-
RPA+FH phase diagrams. Figure 11(a) shows that the resulting rG-
RPA+FH theory with χ = 0.5(lB/l) fits reasonably well with all four
available experimental phase diagrams.

As control, phase diagrams are also computed without the aug-
mented FH term (i.e., χ = 0). These phase diagrams are shown as
dashed lines in Fig. 11(b). Without the χ term, the critical temper-
atures of Ddx4N1 and Ddx4N1CS with [NaCl] = 100 mM are both
predicted to be below 0 ○C [Fig. 11(b)]. This theoretical trend is
consistent with the experimental observation that phenylalanine to
alanine (F-to-A) and arginine to lysine (R-to-K) mutants of Ddx4N1

do not undergo LLPS at physiologically relevant temperatures.4,24,88

These mutations (F-to-A and R-to-K) are expected to significantly
reduce π-related interactions88 and therefore correspond to having
a weaker FH term (i.e., a smaller χ).

One aforementioned experimentally observed feature that can-
not be captured by the present rG-RPA+FH theory is that in the
absence of salt, Ddx4N1 at pH 6.5 does not phase separate at room
temperature, but rG-RPA+FH with χ = 0.5(lB/l) predicts phase

J. Chem. Phys. 152, 045102 (2020); doi: 10.1063/1.5139661 152, 045102-10

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 11. Comparing rG-RPA+FH results with experimental data on Ddx4 IDRs. (a) Experimental data of Ddx4N1
pH6.5 (wt) and Ddx4N1CSpH6.5 (cs) (chain length N = 241 for both

sequences) in aqueous solutions with 100 and 300 mM NaCl (from Ref. 24; color symbols) are fitted, respectively, to the rG-RPA+FH theory with ϕs = 0.0018 and 0.0054
(continuous curves with the same color). For simplicity, the salt concentrations in the dilute and condensed Ddx4 phases are taken to be identical in this calculation. This is a
reasonable approximation because the salt-Ddx4N1 binary phase diagrams in Fig. 5 indicate that the difference in salt concentration between the two phases is less than 15%
for ϕs < 0.01. The fits yield an FH interaction parameter χ = 0.5(lB/l) which is equivalent to an enthalpy ΔH = −0.56 kcal/mol favorable to polymer-polymer attraction. Model
temperatures and model polymer volume fractions are converted, respectively, to ○C and mg/ml by a procedure similar to that in Ref. 55 with an appropriately chosen model
Kuhn length l that is quite similar to (though not identical with) the Cα–Cα virtual bond length of polypeptides. (b) Phase diagrams of the two sequences with and without the
augmented FH interaction. Without the FH term (i.e., χ = 0), the critical temperatures of both Ddx4N1

pH6.5 and Ddx4N1CSpH6.5 at 100 mM NaCl are below 0 ○C. The two χ = 0

systems may be interpreted as corresponding to sequences with reduced favorable nonelectrostatic interactions.24,88 See the text for further discussion.

separation under the same conditions. There can be multiple reasons
for this mismatch between the theory and experiment, a likely one
of which is that the mean-field treatment of nonelectrostatic inter-
actions does not take into possible coupling (cooperative effects)
between sequence-specific electrostatic and nonelectrostatic interac-
tions such as π-related interactions and hydrogen bonding that can
be enhanced by proximate electrostatic attraction.

IV. CONCLUSIONS
In summary, we have developed a formalism for salt-, pH-,

and sequence-dependent LLPS by combining RPA and Kuhn-length
renormalization. The trends predicted by the resulting rG-RPA
theory are consistent with established theoretical and experimen-
tal results. Importantly, unlike more limited previous analytical
approaches, rG-RPA is generally applicable to both polyelectrolytes
and neutral/near-neutral polyampholytes. In addition to provid-
ing physical rationalizations for experimental data on the pH-
dependent LLPS of IP5 peptides and sequence and salt dependence
of LLPS of Ddx4 IDRs, our theory offers several intriguing predic-
tions of electrostatics-driven LLPS properties that should inspire
further theoretical studies and experimental evaluations. One such
observation is that in a salt-heteropolymer system, it is possible
for the slope of the tie lines to shift from negative to positive
by increasing salt. Although tie lines with exclusively positive or
exclusively negative slopes were predicted for uniformly charged

polyelectrolytes and diblock polyampholytes,32,42,43,72,86,87 a salt-
dependent change in the sign of the tie-line slope for a single
species of heteropolymer—specifically from negative to positive with
increasing salt—is a notable prediction. In future studies, it would
be interesting to explore how this property might have emerged
from the intuitively higher degree of sequence heterogeneity of the
Ddx4N1 IDR vis-à-vis that of simple diblock or few-block polyam-
pholytes. In general, the interplay between sequence heterogeneity
and a proposed chain connectivity effect46 as well as a proposed
screening-configurational entropy competition effect47 on the salt
partitioning slope between dilute and condensed phases remains
to be elucidated. Another observation of our work is that inverse
S-shape coexistence curves can arise from sequence heterogeneity
not only for polyampholytes55–57 but also for polyelectrolytes. As
emphasized recently,28 an inverse S-shape coexistence curve allows
for a less concentrated condensed phase, which can be of biophys-
ical relevance because it would enable a condensate with higher
permeability.89

Because rG-RPA is an analytical theory, pertinent numer-
ical computations are much more efficient than field-theory or
explicit-chain simulations. Thus, in view of the above advances
and despite its approximate nature, rG-RPA should be useful as
a high-throughput tool for assessing sequence-dependent LLPS
properties in developing basic biophysical understanding and in
practical applications such as design of new heteropolymeric
materials.
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Future development of LLPS theory should address a num-
ber of physical properties not tackled by our current theories.
These include, but are not necessarily limited to, the following: (i)
Sequence-dependent effects of nonelectrostatic interactions, which
is neglected in rG-RPA+FH. (ii) Counterion condensation.72,74,90,91

(iii) Dependence of relative permittivity (dielectric constant) on
polymer density56,58 and salt.92 (iv) A more accurate treatment
of conformational heterogeneity to compute the structure factor.
The present approach accounts approximately for the sequence-
dependent end-to-end distance, but it fails to capture conforma-
tional heterogeneities at smaller length scales.72 A formalism for the
residue-pair-specific renormalized Kuhn length68,93 should afford
improvement in this regard. (v) Higher-order density fluctuations
beyond the quadratic fluctuations59 treated by rG-RPA. The rapidly
expanding repertoire of experimental data on biomolecular con-
densates is providing impetus for theoretical efforts in all these
directions.
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APPENDIX A: DERIVATION OF POLYMER SOLUTION
FREE ENERGY

As described in the main text, we consider a neutral solu-
tion of np charged polymers of N monomers (residues) with charge
sequence ∣σ⟩ = [σ1, σ2, . . . σN]T. Averaged net charge per monomer
is defined as qc = (∑τστ)/N. In addition, there are ns salt ions (coions)
carrying zs charges and nc counterions carrying zc charges. Charge
neutrality |qc|np + zsns = zcnc is always preserved. Monomer and
ion densities are defined as ρm = npN/Ω, ρs = ns/Ω, and ρc = nc/Ω,
respectively, with Ω being the solution volume.

We label the polymers by α = 1, 2, . . ., np and residues in a
polymer by τ = 1, 2, . . ., N and denote the spatial coordinate of the
τth monomer in the αth polymer by Rα ,τ . Similarly, the small ions
are labeled by a = 1, 2, . . ., ns + nc, in which 1 ≤ a ≤ ns are for salt
ions and ns + 1 ≤ a ≤ ns + nc are for counterions, with the coordinate
of the ath small ion denoted by ra. The implicit-solvent partition
function is then expressed as an integral over all solute coordinates
divided by factorials that account for the indistinguishability of the
molecules within each molecular species in the solution, viz.,

Z = 1
np!nc!ns!nw! ∫

np

∏
α=1

N

∏
τ=1

dRα,τ

ns+nc
∏
a=1

drae−T [R]−U[R,r], (A1)

where nw denotes the number of water molecules, T accounts for
chain connectivity of the polymers, and U accounts for interac-
tions among all solute molecules, [R] is shorthand for [{Rα ,τ}], and

[R, r] is shorthand for [{Rα ,τ}, {ra}]. Connectivity is enforced by a
sum of Gaussian potentials sharing the same Kuhn length l, which is
given by

T [R] =
3

2l2

np

∑
α=1

N−1

∑
τ=1
(Rα,τ+1 − Rα,τ)

2. (A2)

For simplicity, we assume that interactions in U are all pairwise, in
which case it takes the form

U[R, r] =
1
2

np

∑
α,β=1

N

∑
τ,μ=1

Uτμpp(Rα,τ − Rβ,μ) +
np

∑
α=1

N

∑
τ=1

ns+nc
∑
a=1

Uτaps (Rα,τ − ra)

+
1
2

ns+nc
∑
a,b=1

Uab
ss (ra − rb), (A3)

where Upp, Ups, and Uss are, respectively, monomer-monomer,
monomer-ion, and ion-ion interaction potentials. It should be noted
that although self-interactions, that is, the (α, τ) = (β, μ) terms for
monomers and the a = b terms for small ions, are included in the
above summation to facilitate subsequent formal development of a
field-theory description, these divergent terms will be regularized in
the final free energy expression and thus have no bearing on the
outcome of our theory. By introducing

ρτk =
np

∑
α=1

eik⋅Rα,τ , (A4a)

csk =
ns
∑
a=1

eik⋅ra , (A4b)

cck =
nc
∑
a=1

eik⋅ra+ns , (A4c)

as the k-space density operators for the monomers and small ions,
we rewrite Eq. (A3) in k-space as

U =
1

2Ω∑k

⎡
⎢
⎢
⎢
⎢
⎣

N

∑
τ,μ=1

ρτkU
τμ
pp(k)ρ

μ
−k + 2

N

∑
τ=1
∑
γ=s,c

ρτkU
τγ
ps(k)c

γ
−k

+ ∑
γ,γ′=s,c

cγkU
γγ′
ss (k)c

γ′

−k

⎤
⎥
⎥
⎥
⎥
⎦

, (A5)

where 1/Ω is the standard normalization factor for the Fourier trans-
formation, and the general form U(k) = ∫ drU(r) exp(−ik ⋅ r)
represents the interaction potentials in k-space. As in Eq. (A3) for
U[R, r], the superscripts of U(k) are labels for monomers and
ions, and the subscripts specify the interaction type. We further
define interaction matrices Û(k)’s by equating the matrix elements
[Û(k)]τμ with Uτμ(k) for Upp, Ups, and Uss. We also define the
density operator vectors |ρk⟩ and |ck⟩ such that (∣ρk⟩)τ = ρτk and
∣ck⟩ = [csk, cck]

T. U can then be expressed in the matrix representa-
tion as

U =
1

2Ω∑k

⎡
⎢
⎢
⎢
⎢
⎣

⟨ρ−k∣Ûpp(k)∣ρk⟩ + 2⟨ρ−k∣Ûps(k)∣ck⟩ + ⟨c−k∣Ûss(k)∣ck⟩
⎤
⎥
⎥
⎥
⎥
⎦

.

(A6)

The present study focuses on solution systems in which Uss
and Ups are purely Coulombic, whereas Upp has both Coulombic
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and pairwise (two-body) excluded-volume repulsion components.
Hence,

Ûss(k) =
4πlB
k2 ∣z⟩⟨z∣, (A7a)

Ûps(k) =
4πlB
k2 ∣σ⟩⟨z∣, (A7b)

Ûpp(k) =
4πlB
k2 ∣σ⟩⟨σ∣ + v2∣1N⟩⟨1N ∣, (A7c)

where k ≡ |k| and lB ≡ e2/(4πϵkBT) is the Bjerrum length (e is the
electronic charge, ϵ is the permittivity, kB is the Boltzmann constant,
T is the absolute temperature). ⟨z| = sign(qc)[zs, −zc] is the vector
representing the charge valences (number of electronic charges per
ion) of salt ions and counterions, respectively, v2 > 0 is the strength
of the two-body excluded volume repulsion between monomers, and
|1N⟩ is an N-dimensional vector in which every component is 1. All
elements in the excluded volume matrix |1N⟩⟨1N | take unity value
because for simplicity all monomers are taken to be of equal size.
Substituting the potentials given by Eq. (A7) into the U function in
Eq. (A6) yields

U =
1

2Ω ∑k≠0
λk∣⟨σ∣ρk⟩ + ⟨z∣ck⟩∣

2 +
1

2Ω∑k
v2∣⟨1N ∣ρk⟩∣2, (A8)

where λk = 4πlB/k2 and |Ak|2
≡ A−kAk for arbitrary k-dependent Ak.

The first summation does not need to include k = 0 because this term
is proportional to the overall net charge of the solution and therefore
must be zero because of overall electric neutrality of the solution.

1. Field theory for polymer solution
The Hubbard-Stratonovich transformation is then applied to

linearize the quadratic form U in Eq. (A8) by introducing conjugate
fields ψk for charge density and wk for mass density. The partition
function Z in Eq. (A1) can then be rewritten in terms of

Z′ = ∫
np

∏
α=1

N

∏
τ=1

dRα,τ

ns+nc
∏
a=1

drae−T [R]−U[R,r]

= exp{−
1

2Ω
v2∣⟨1N ∣ρk=0⟩∣2}∏

k≠0
∫

dψkdwk

2πΩ
√
λkv2

× exp{−
1

2Ω ∑k≠0
[
∣ψk∣

2

λk
+
∣wk∣

2

v2
]}∫

np

∏
α=1

N

∏
τ=1

dRα,τ

ns+nc
∏
a=1

dra

× exp
⎧⎪⎪
⎨
⎪⎪⎩

−
i

Ω ∑k≠0
[(⟨σ∣ρ−k⟩+⟨z∣c−k⟩)ψk+⟨1N ∣ρ−k⟩wk]−T [{Rα,τ}]

⎫⎪⎪
⎬
⎪⎪⎭

,

(A9)

where Z = Z′/(np!nc!ns!nw!). The first term in Z′ is merely the
k = 0 component of U, which by the definition of ρτk is equal to

Z0 ≡ exp{−
1

2Ω
v2∣⟨1N ∣ρk=0⟩∣2} = exp{−

v2(Nnp)2

2Ω
}. (A10)

The remaining terms in Z′ is a field integral of ψ and w. The
first component [the first part of the third line in Eq. (A9)] is an

exponential of the quadratic self-correlations, and the second term
[the fourth line and the latter part of the third line in Eq. (A9)] is
a partition function for the polymers and the small ions under the
influence of ψ and w, which we now symbolize as

Qsol[ψ,w] ≡∫
np

∏
α=1

N

∏
τ=1

dRα,τ

ns+nc
∏
a=1

dra exp{−
i

Ω ∑k≠0
[(⟨σ∣ρ−k⟩+⟨z∣c−k⟩)ψk

+⟨1N ∣ρ−k⟩wk] −T [{Rα,τ}]}. (A11)

By the definitions of ck and ρτk in Eq. (A4), the exponent in the
integrand of Qsol may be expressed as

−
i

Ω ∑k≠0
[(⟨σ∣ρ−k⟩ + ⟨z∣c−k⟩)ψk + ⟨1N ∣ρ−k⟩wk] −T [{Rα,τ}]

= −
i

Ω ∑k≠0
ψk

⎡
⎢
⎢
⎢
⎣
(∣z⟩)s

ns
∑
i=a

e−ik⋅ra + (∣z⟩)c
ns+nc
∑

a=ns+1
e−ik⋅ra

⎤
⎥
⎥
⎥
⎦

−

np

∑
α=1
[

3
2l2

N−1

∑
τ=1
(Rα,τ+1 − Rα,τ)

2

+
i

Ω ∑k≠0

N

∑
τ=1
(στψk + wk)e

−ik⋅Rα,τ], (A12)

where |z⟩s = sign(qc)zs for salt ions and |z⟩c = − sign(qc)zc for coun-
terions as defined above. The coordinates of individual small ions
and polymers are decoupled in this expression. Thus, the coordinate
integrals in Qsol are also decoupled, allowing it to be written as

Qsol[ψ,w] = (Qs[ψ])
ns(Qc[ψ])

nc(Qp[ψ,w])np , (A13)

where the ns, nc, and np superscripts are powers, with Qs and Qc
being the single-molecule partition functions for salt ions and coun-
terions, respectively; [ψ] is shorthand for [{ψk}], and [ψ, w] is short-
hand for [{ψk}, {wk}]. These single-molecule small-ion partition
functions are given by

Qs,c[ψ] = ∫ drs,c exp{−
i(∣z⟩)s,c

Ω ∑
k≠0

ψke
−ik⋅rs,c}, (A14)

where the expression for Qs or Qc corresponds, respectively, to
choosing the subscript “s” or “c” for the “s, c” notation in Eq. (A14).
The single-polymer partition function Qp in Eq. (A13) equals

Qp[ψ,w] = ∫ D[R]e−Hp[R;ψ,w], (A15)

where D[R] ≡∏N
τ=1 dRτ , [R;ψ,w] is shorthand for [{Rτ}, {ψk}, {wk}],

and

Hp[R;ψ,w] =
3

2l2
N−1

∑
τ=1
(Rτ+1 − Rτ)

2 +
i

Ω ∑k≠0

N

∑
τ=1
(στψk + wk)e

−ik⋅Rτ .

(A16)

It should be noted that the small-ion label a and the polymer
label α are not needed in the single-molecule partition functions in

J. Chem. Phys. 152, 045102 (2020); doi: 10.1063/1.5139661 152, 045102-13

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

Eqs. (A14) and (A15). Collecting results from Eqs. (A9), (A10), and
(A13) yield the following formula for Z′:

Z′ = Z0 ∫ ∏
k≠0

dψkdwk

2πΩ
√
λkv2

exp{−
1

2Ω ∑k≠0
[
∣ψk∣

2

λk
+
∣wk∣

2

v2
]

+ns lnQs + nc lnQc + np lnQp}, (A17)

where Z0 is provided by Eq. (A10) and Qs, Qc, and Qp are given by
Eqs. (A14)–(A16).

2. Fluctuation expansion of partition function
To evaluate Eq. (A17) analytically, we first derive a mean-field

solution at (ψ,w) = (ψ,w) in which the mean conjugated fields ψ
and w satisfy the extremum condition (δZ′/δψk) = (δZ′/δwk) = 0,
which leads to the equalities

ψk
Ωλk

=
ns
Qs
(
δQs

δψk
)

(ψ,w)
+

nc
Qc
(
δQc

δψk
)

(ψ,w)
+

np
Qp
(
δQp

δψk
)

(ψ,w)
,

(A18a)

wk

Ωv2
=

np
Qp
(
δQp

δwk
)

(ψ,w)
, (A18b)

where the subscript (ψ,w) indicates that the functional (field)
derivatives are evaluated at the to-be-solved mean conjugated fields.
The ψ and w field are conjugates, respectively, to charge density
and mass density. By using Eqs. (A14)–(A16) and the fact that the
averages ⟨⋯⟩t over the spatial coordinates of the given molecular
species (t = p, s, or c) of k-space density operators in Eq. (A4) are
given by ⟨ρτk⟩p = np⟨e

ik⋅Rτ ⟩p, ⟨csk⟩s = ns⟨e
ik⋅rs⟩s, and ⟨cck⟩c = nc⟨e

ik⋅rc⟩c
because of the decoupling stated above by Eq. (A13), the first-order
derivatives in Eq. (A18) are given by

ns,c
Qs,c

δQs,c

δψk
=−

i(∣z⟩)s,cns,c
Ω

(⟨e−ik⋅rs,c⟩
s,c
)
(ψ,w)
=−

i(∣z⟩)s,c
Ω
(⟨cs,c−k⟩s,c)(ψ,w)

,

(A19a)

np
Qp

δQp

δψk
=−

inp
Ω
⎛

⎝
⟨

N

∑
τ=1

στe−ik⋅Rτ⟩

p

⎞

⎠
(ψ,w)

=−
i

Ω

N

∑
τ=1

στ(⟨ρτ−k⟩p)(ψ,w)
,

(A19b)

np
Qp

δQp

δwk
=−

inp
Ω
⎛

⎝
⟨

N

∑
τ=1

e−ik⋅Rτ⟩

p

⎞

⎠
(ψ,w)

=−
i

Ω

N

∑
τ=1
(⟨ρτ−k⟩p )(ψ,w)

,

(A19c)

where (⟨⋯⟩t)(ψ,w) denotes averaging over the spatial coordinates of
the given molecular species evaluated for any given conjugate field ψ,
w. With Eq. (A19), the relations in Eq. (A18) for the mean conjugate
fields become

ψk = −iλk(⟨[⟨σ∣ρ−k⟩ + ⟨z∣c−k⟩]⟩s,c,p)(ψ,w)
,

wk = −iv2(⟨[⟨1N ∣ρ−k⟩]⟩p)(ψ,w)
,

(A20)

which can now be solved self-consistently to determine ψk and wk.
We proceed to obtain an approximate solution by assuming

that within regions where the system exists as a single phase, the
mass density is rather homogeneous. In that case, the k ≠ 0 com-
ponents of the density operators ρτk, csk, and cck in Eq. (A4) are small
(approximately zero). It then follows from Eq. (A20) that

ψk ≈ wk ≈ 0, ∀k ≠ 0. (A21)

These considerations imply that the following approximate relations
hold for the averaged densities on the right-hand side of Eq. (A19),

⟨cs,c−k⟩≈0
≈ ns,cδk,0,

N

∑
τ=1

στ⟨ρτ−k⟩≈0
≈ qcnpNδk,0,

N

∑
τ=1
⟨ρτ−k⟩≈0

≈ npNδk,0,

(A22)

where the “≈0” subscript in ⟨⋯⟩≈0 signifies that the given average
over the s, c, or p spatial coordinates is evaluated at the conjugate
fields in Eq. (A21) for approximate homogeneous densities. Now,
to arrive at a definite approximate description, we expand the loga-
rithmic small-ion partition functions around ψk≠0 = 0 up to O(δψ2).
Utilizing the expressions for the averaged densities in Eq. (A22) and
replacing the conjugate field ψk≠0 ≈ 0 [Eq. (A21)] at which the
averages are evaluated by ψk≠0 = 0, we obtain

lnQs,c[ψ] ≈ lnQs,c[ψk≠0 = 0] +∑
k≠0
(
δ lnQs,c

δψk
)

0
δψk

+
1
2 ∑k,k′≠0

(
δ2 lnQs,c

δψkδψk′
)

0
δψkδψk′

= ln Ω−
i∣z⟩s,c

Ω ∑
k≠0
⟨e−ik⋅rs,c⟩

0
δψk−

z2
s,c

2Ω2 ∑
k,k′≠0
[⟨e−i(k+k′)⋅rs,c⟩

0

− ⟨e−ik⋅rs,c⟩
0
⟨e−ik

′
⋅rs,c⟩

0
]δψkδψk′

= ln Ω −
z2
s,c

2Ω2 ∑
k≠0
∣ψk∣

2, (A23)

where the “0” subscript in (⋯)0 indicates that the derivatives are
evaluated at ψk≠0 = 0. Similarly, replacing the “≈0” subscripts in
Eq. (A22), here the “0” subscript in ⟨⋯⟩0 indicates that the average
is evaluated at ψk≠0 = 0. In the last line of Eq. (A23), the expansion
variable δψk is written as ψk for every term in the ∑k≠0 summation
because the expansion is around ψk≠0 = 0. Substituting Eq. (A23) for
lnQs and lnQc into Eq. (A17) yields

Z′ ≈ Z0 ∫ ∏
k≠0

dψkdwk

2πΩ
√
λkv2

exp{−
1

2Ω ∑k≠0
[∣ψk∣

2
(

1
λk

+ z2
s ρs + z2

c ρc)

+
∣wk∣

2

v2
] + np lnQp + C}, (A24)

where C = (ns + nc) ln Ω will be dropped in subsequent considera-
tion because it has no effect on the relative free energies of different
configurational states. Let the exponent in Eq. (A24) without C be
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denoted as −H, then H may be seen as a Hamiltonian of a polymer
system,

H [ψ,w] =
1

2Ω ∑k≠0
[νkψ−kψk +

w−kwk

v2
] − np lnQp[ψ,w], (A25)

where

1
νk
=

1
1/λk + z2

s ρs + z2
c ρc
≡

4πlB
k2 + κ2 (A26)

is merely a Fourier-transformed Coulomb potential with screening
length 1/κ = [4πlB(z2

s ρs + z2
c ρc)]−1/2. We may now express Z′ as a

product of three components, viz.,

Z′ = Z0ZionZ′p, (A27)

where Z0 is defined in Eq. (A10),

Zion =∏
k≠0

1
√
νkλk

=∏
k≠0
[1 +

κ2

k2 ]

− 1
2

, (A28)

and

Z′p =∏
k≠0
∫

√
νk
v2

dψkdwk

2πΩ
e−H [ψ,w]. (A29)

Accordingly, the complete partition function Z = Z′/(ns!nc!np!nw!)
provides free energy of the system in units kBT per volume l3,

f = −
l3

Ω
lnZ = −s + fion + fp + f0, (A30)

where

−s =
l3

Ω
ln(ns!nc!np!nw!), (A31)

f0 = −
l3

Ω
lnZ0 =

v2l3(npN)2

2Ω2 =
l3

2
v2ρ2

m, (A32)

fion = −
l3

Ω
lnZion =

l3

2 ∑k≠0
ln[1 +

κ2

k2 ] = −
(κl)3

12π
+ I0, (A33)

fp = −
l3

Ω
lnZ′p. (A34)

3. Small-ion free energy
The first term of f ion in Eq. (A33) is the standard Debye screen-

ing energy. The second term of f ion, I0 = l3κ2kmax, is formally diver-
gent (kmax is the maximum k value of the system, corresponding to
the smallest length scale in coordinate space; I0 →∞ as kmax →∞),
but since it is linearly proportional to ns and nc (through its depen-
dence on κ2; see above), this formally divergent term is irrelevant to
the relative free energies of different configurational states of the sys-
tem.59 As in most analyses, the k-summation is performed here by
replacing it with a continuous integral over k-space,

1
Ω ∑k≠0

→ ∫
d3k
(2π)3 . (A35)

To make our model physically more realistic, however, we follow
Muthukumar73,94 who treated the charge of each small ion as dis-
tributed over a finite volume with a characteristic length scale com-
parable to the bare Kuhn length l of the polymers. In this treatment,
the point-charge expression for f ion in Eq. (A33) is replaced by

fion = −
1

4π
[ln(1 + κl) − κl +

1
2
(κl)2

], (A36)

which reduces to −(κl)3/(12π) in Eq. (A33), as it should, in the limit
of κl → 0. In this regard, Eq. (A36)—which is used for all rG-RPA
and fG-RPA applications in the present work—may be viewed as a
regularized, more physical version of Eq. (A33).

4. Polymer free energy
We now proceed to derive an approximate, tractable analyt-

ical expression for Z′p in Eq. (7) in the main text and Eq. (A29)
by expanding lnQp [defined in Eqs. (A15) and (A16)] around
ψk≠0 = wk≠0 = 0, viz.,

lnQp[ψ,w] = lnQp[ψk≠0 = wk≠0 = 0] +∑
k≠0

N

∑
τ=1
(
δ lnQp

δφτk
)

0
φτk

+
1
2 ∑k,k′≠0

N

∑
τ,μ=1
(
δ2 lnQp

δφτkδφ
μ
k′
)

0

φτkφ
μ
k′ + O(φ3

)

= ln Ω +
3(N − 1)

2
ln(

2πl2

3
) −

1
2Ω2 ∑

k≠0

N

∑
τ,μ=1

× ⟨e−ik⋅(Rτ−Rμ)⟩
0
φτkφ

μ
−k + O(φ3

), (A37)

where φτk = στψk + wk and the second term in the first line van-
ishes because of Eq. (A22). As in Eq. (A23), the first two con-
stant terms in the third line of the above equation have no effect
on the relative energies of different configurations of the system
and therefore will be discarded for our present purpose. The ⟨⋯⟩0
in the last line of Eq. (A37) is the intrachain monomer-monomer
correlation function evaluated at ψk≠0 = wk≠0 = 0. This correla-
tion function is equal to that of a Gaussian chain. However, in
the presence of intrachain and interchain interactions, a Gaussian-
chain description of the polymer chains in our system is unsatis-
factory as has been demonstrated by theoretical and experimental
studies63,95–97 showing that polymers with different net charges and
heteropolymers with different charge sequences—even when they
have the same net charge—can have dramatically different confor-
mational characteristics. Intuitively, this sequence-dependent con-
formational heterogeneity should apply not only to the case when
a polymer chain is isolated but also to situations in which poly-
mer chains are in semidilute solutions. To account for this funda-
mental property in the monomer-monomer correlation function,
we need to include nonzero ψk≠0 and wk≠0 fluctuations that arise
from the higher-order terms in Eq. (A37). Accordingly, based on
a rationale similar to that advanced in Refs. 59, 71, and 72, we
replace the monomer-monomer correlation function in Eq. (A37) by
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a correlation function involving arbitrary fields. This development
leads to

lnQp[ψ,w] ≃ −
N

2Ω2 ∑
k≠0
[ξkψkψ−k + gkwkw−k + 2ζkwkψ−k], (A38)

where ξ, g, and ζ are structure factors of mass and charge densities,

ξk =
1
N

N

∑
τ,μ=1

στσμ(⟨eik⋅(Rτ−Rμ)⟩
p
)
(ψ,w)

, (A39a)

gk =
1
N

N

∑
τ,μ=1
(⟨eik⋅(Rτ−Rμ)⟩

p
)
(ψ,w)

, (A39b)

ζk =
1
N

N

∑
τ,μ=1

στ(⟨eik⋅(Rτ−Rμ)⟩
p
)
(ψ,w)

. (A39c)

Substituting Eq. (A38) for lnQp in Eq. (A25), we obtain

H [ψ,w] =
1

2Ω ∑k≠0
⟨ψ−k w−k∣(

νk + ρmξk ρmζk
ρmζk v−1

2 + ρmgk
)∣
ψk

wk
⟩

=
1

2Ω ∑k≠0
⟨Ψ−k∣Δ̂k∣Ψk⟩, (A40)

where ⟨Ψ−k|≡⟨ψ−k w−k|, ∣Ψk⟩ = (⟨Ψ−k∣)∗T, and Δ̂k is the 2 × 2
matrix in the above equation. Thus, each term in the product given
in Eq. (A29) can now be evaluated as a Gaussian integral to yield

Z′p =∏
k≠0

√
νk

v2 det Δ̂k
. (A41)

Therefore, by Eqs. (A35) and (A41), the unit free energy is now
formally given by

fp = −
l3 lnZ′p

Ω
=
l3

2 ∫
d3k
(2π)3

× ln[1 + ρm(
ξk
νk

+ v2gk) +
v2

νk
ρ2
m(ξkgk − ζ

2
k)]. (A42)

It should be noted, however, that the k ≡ |k| → ∞ behavior of the
integrand in the above Eq. (A42) needs to be regularized. For point
particles, the k → ∞ limit of the pairwise correlation function is a
Kronecker-δ,

lim
k→∞
⟨eik⋅(Rτ−Rμ)⟩

p
= δτμ. (A43)

Thus, by Eq. (A39),

lim
k→∞

ξk =
1
N

N

∑
τ=1

σ2
τ , (A44a)

lim
k→∞

gk = 1, (A44b)

lim
k→∞

ζk = qc. (A44c)

Because limk→∞(1/νk) = limk→∞4πlB/k2 and v2 > 0, Eq. (A44) indi-
cates that the integral in Eq. (A42) has an ultraviolet (large-k) diver-
gence. This divergence is physically irrelevant, however, because the

integral can be readily regularized by subtracting the unphysical
Coulomb self-energy of the charged monomers,

fself =
ρml3

2N ∫
d3k
(2π)3

4πlB
k2

N

∑
τ=1

σ2
τ , (A45)

that was included merely for formulational convenience in the first
place. In the same vein as the charge smearing for the small ions
[Eq. (A36)], we also smear the δ-function excluded volume repulsion
by a Gaussian,98,99 viz.,

v2 → v2(k) = v2e−
1
6 (kl)

2

, (A46)

and use v2(k) in the integral of Eq. (A42) of f p to give a v2-
regularized f p[v2(k)]. The regularized f p resulting from these two
procedures is then given by

fp[v2(k)] − fself → fp, (A47)

where the last arrow signifies that this regularized version of f p is the
one used for our subsequent theoretical development in the present
work.

As discussed above, the present separate treatments for small-
ions [Eq. (A36)] and polymers [Eqs. (A42) and (A47)] are needed
in our formulation—which expresses the total partition function as
a product consisting of separate factors for small ions and poly-
mers [Eq. (A28)]—such that the polymer part of the partition func-
tion can be used to derive an effective Kuhn length. Not surpris-
ingly, in the event that the bare chain length l is used instead of
an effective Kuhn length and that the volume of small ions and
the volume of the monomers of the polymers becomes negligible
(v2 → 0), the free energy expression reduces to that of our sim-
ple RPA theory55,56 as can be readily seen in the following. First,
when the size of the small ions is assumed to be negligible, their free
energy is given by the simple Debye-Hückel expression in Eq. (A33)
instead of the finite-size expression in Eq. (A36). Second, as v2 →

0, all terms involving v2 in Eq. (A42) vanish. Consequently, the
resulting overall electrostatic free energy, denoted here as f el, is
given by

fel = f
[Eq. (A33)]

ion + f [Eq. (A42)]
p (v2 → 0)

=
l3

2 ∫
d3k
(2π)3 {ln[1 +

κ2

k2 ] + ln[1 + ρm
ξk
νk
]}. (A48)

Recalling that κ2
= 4πlB(z2

s ρs + z2
c ρc) and 1/νk = 4πlB/(k2 + κ2)

[Eq. (A26)], this quantity becomes

fel =
l3

2 ∫
d3k
(2π)3 ln[

κ2 + k2

k2 ×
k2 + κ2 + 4πlBρmξk

k2 + κ2 ]

=
l3

2 ∫
d3k
(2π)3 ln[1 +

κ2 + 4πlBρmξk
k2 ]

=
l3

2 ∫
d3k
(2π)3 ln[1 +

4πlB
k2 (z

2
s ρs + z2

c ρ
2
c + ρmξk)], (A49)

which is exactly the same f el expression in our previous simple RPA
theory in a formulation that does not consider an explicit excluded-
volume repulsion term and treats small ions and polymers on the
same footing.55,56
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5. Effective Gaussian-chain model for two-body
correlation function

The (ψ, w)-dependence of the structure factors ξ, g, and ζ in
Eq. (A42) for f p allows for an account of sequence-dependent con-
formational heterogeneity by using a Gaussian chain with a renor-
malized Kuhn length68 l1 = xl (instead of the “bare” Kuhn length
l) to approximate the polymer partition function Qp in Eq. (A15).
Specifically, we make the approximation that

Qp ≈ ∫ D[R]e−H
0
p[R], where H0

p[R] =
3

2l2x

N−1

∑
τ=1
(Rτ+1 − Rτ)

2.

(A50)

The structure factors ξ, g, and ζ in Eq. (A39) can then be read-
ily expressed in terms of the yet-to-be-determined renormalization
parameter x,

ξk → ξxk =
1
N

N

∑
τ,μ=1

στσμe−
1
6 (kl)

2x∣τ−μ∣, (A51a)

gk → gxk =
1
N

N

∑
τ,μ=1

e−
1
6 (kl)

2x∣τ−μ∣, (A51b)

ζk → ζxk =
1
N

N

∑
τ,μ=1

στe−
1
6 (kl)

2x∣τ−μ∣. (A51c)

The renormalization parameter x = l1/l is determined using a
sequence-specific variational approach introduced by Sawle and
Ghosh68,100 as follows. We first express the Hamiltonian Hp[R] in
Eq. (A16) as Hp = H0

p + H1
p, where H0

p [given by Eq. (A50)] is the
principal term and

H1
p[R;ψ,w] =

3
2l2
(1 −

1
x
)
N−1

∑
τ=1
(Rτ+1 − Rτ)

2

+
i

Ω ∑k≠0

N

∑
τ=1
(στψk + wk)e

−ik⋅Rτ (A52)

is the perturbative term. Then, for any given physical quantity A[R],
the perturbation expansion of its thermodynamic average over poly-
mer configurations {Rτ} and field fluctuations Ψ = (ψ, w) is given
by101

⟨A[R]⟩ =
⟨e−H

1
p[R;Ψ]A[R]⟩

0,Ψ

⟨e−H
1
p[R;Ψ]

⟩
0,Ψ

= ⟨A[R]⟩0 +[⟨A[R]⟩0⟨H
1
p[R;Ψ]⟩

0,Ψ − ⟨A[R]H
1
p[R;Ψ]⟩

0,Ψ]

+
1
2
[⟨A[R](H1

p[R;Ψ])
2
⟩

0,Ψ
−⟨A[R]⟩0⟨(H

1
p[R;Ψ])

2
⟩

0,Ψ
]

+ ⟨A[R]⟩0⟨H
1
p[R;Ψ]⟩

2

0,Ψ − ⟨A[R]H
1
p[R;Ψ]⟩

0,Ψ

× ⟨H1
p[R;Ψ]⟩

0,Ψ + O((H1
p)

3
), (A53)

where the subscripts 0, Ψ for ⟨⋯⟩ signify, respectively, that the aver-
age over {Rτ}’s is weighted by the Hamiltonian H0

p[R] in Eq. (A50)

and the average over field configurations is weighted by the Hamil-
tonian H [ψ,w] in Eq. (A25). [Note that the meaning of the “0”
subscript here is different from that for the averages evaluated at
ψk≠0 = wk≠0 = 0 in Eq. (A23)]. An H0

p[R] that provides a good
description of the thermal properties of A may then be obtained by
minimizing ⟨A⟩ − ⟨A⟩0. This is accomplished by a partial optimiza-
tion to seek a value of x = l1/l that would abolish the lowest-order
nontrivial H1

p contributions in Eq. (A53).
To obtain a partially optimized x = l1/l that provides a good

approximation for the monomer-monomer correlation function, A
is chosen to be the squared end-to-end distance of the polymer, i.e.,
A = R2

ee ≡ ∣RN − R1∣
2, because Ree is a simple yet effective mea-

sure of conformational dimensions of polymers.59,68 To facilitate this
calculation, we express H1

p in Eq. (A52) as H1
p = X1 + X2, where

X1[R] =
3

2l2
(1 −

1
x
)
N−1

∑
τ=1
(Rτ+1 − Rτ)

2, (A54a)

X2[R;Ψ] =
i

Ω ∑k≠0

N

∑
τ=1
(στψk + wk)e

−ik⋅Rτ , (A54b)

such that X1[R] is independent of Ψ and all of H1
p’s dependence on

Ψ is contained in X2[R;Ψ]. It follows that the Ψ average is trivial
(i.e., it produces a multiplicative factor of unity and therefore can
be omitted) for any function of X1[R] only. In Eq. (A53), the only
contributions from terms linear in X1[R] come from the second line
on the right-hand side (the first line after the second equality), which
equal

⟨R2
ee⟩0
⟨X1⟩0 − ⟨R

2
eeX1⟩0

= −l2(N − 1)x(x − 1). (A55)

For the X2-containing terms in Eq. (A53), we first consider their Ψ-
averages before applying the ⟨⋯⟩0 averaging. For terms linear in X2,
it is straightforward to see that

⟨X2⟩Ψ =
i

Ω ∑k≠0

N

∑
τ=1
[στ⟨ψk⟩Ψ + ⟨wk⟩Ψ]e

−ik⋅Rτ = 0 (A56)

because ⟨ψk⟩Ψ = ⟨wk⟩Ψ = 0 according to the quadratic-field Hamil-
tonian H [ψ,w] in Eq. (A40). Thus, X2 has zero contribution in the
first and third lines on the right-hand side after the second equality
of Eq. (A53). In contrast, terms quadratic in X2[R] are not identical
zero because

⟨X2
2⟩Ψ = −

1
Ω2 ∑

k≠0

N

∑
τ,μ=1
[στσμ⟨ψ−kψk⟩Ψ + ⟨w−kwk⟩Ψ

+ (στ + σμ)⟨ψ−kwk⟩Ψ]e
−ik⋅(Rτ−Rμ), (A57)

and here ⟨X2
2⟩Ψ is seen as depending on field-field correlation func-

tions ⟨ψψ⟩, ⟨ww⟩, and ⟨ψw⟩ averaged over Ψ. Thus, the X2
2 factors

in the averages in the second line on the right-hand side after the
second equality of Eq. (A53) provide the only nonzero contribution
through second order in H1

p. Following Ref. 59, we only consider
lowest-order nonzero contributions from X1 and from X2, sepa-
rately, i.e., including only terms through O(X1) and O(X2

2) as dis-
cussed above. This approach to the perturbative analysis of Eq. (A53)
may also be rationalized by an alternate analytical formulation put
forth in Refs. 71 and 72.
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As shown in Eq. (A40), the field configuration distribution
may be approximated by a Gaussian distribution embodied by the
quadratic Hamiltonian H [ψ,w]. According to perturbation the-
ory,56,102 the field-field correlation functions in Eq. (A57) can now
be obtained from the matrix Δ̂k in Eq. (A40) via the relationships

⟨ψ−kψk⟩

Ω
= (Δ̂−1

k )11
=
v−1

2 + ρmgk
det Δ̂k

, (A58a)

⟨w−kwk⟩

Ω
= (Δ̂−1

k )22
=
νk + ρmξk

det Δ̂k
, (A58b)

⟨ψ−kwk⟩

Ω
=
⟨ψkw−k⟩

Ω
= (Δ̂−1

k )12
= (Δ̂−1

k )21
=
−ρmζk
det Δ̂k

. (A58c)

Hence, ⟨X2
2⟩ is expressed in terms of Δ̂k as

⟨X2
2⟩ = −

1
Ω ∑k≠0

N

∑
τ,μ=1

⟨στ 1∣(v
−1
2 + ρmgk −ρmζk
−ρmζk νk + ρmξk

)∣
σμ
1 ⟩

det Δ̂k
e−ik⋅(Rτ−Rμ).

(A59)

It should be noted that the excluded volume interaction v2 is not
regularized by Eq. (A46) here because a k-independent v2 is needed
to guarantee a real solution for the renormalization parameter x for
arbitrary charge sequence |σ⟩ (Refs. 68 and 69). Thus, the regularized
form of v2 in Eq. (A46) applies only to the explicit v2 dependence of
f p in Eq. (A42) but not the implicit v2 dependence of x contained
in the renormalized form of the structure factors ξ, g, and ζ. Sub-
stituting the x-dependent correlation functions in Eq. (A51) for the
structure factors in Eq. (A59), we obtain the nonzero contribution
from X2 in the second line of the right-hand side after the second
equality of Eq. (A53) as

1
2
[⟨R2

eeX2
2⟩0 − ⟨R

2
ee⟩0⟨X2

2⟩0] =
Nl4x2

18 ∫
d3k
(2π)3

k2Ξx
k

detΔx
k

, (A60)

where

detΔx
k =

νk
v2

+ ρm(
ξxk
v2

+ νkg
x
k) + ρ2

m[ξ
x
kg

x
k − (ζ

x
k)

2
], (A61)

and

Ξx
k ≡

ξ̄xk
v2

+ νkḡ
x
k + ρm(ξ̄xkg

x
k + ξxk ḡ

x
k − 2ζxk ζ̄

x
k). (A62)

Here, the renormalized ξ̄, ḡ, and ζ̄ are given by

ξ̄xk =
1
N

N

∑
τ,μ=1

στσμ∣τ − μ∣2e−
1
6 (kl)

2x∣τ−μ∣, (A63a)

ḡxk =
1
N

N

∑
τ,μ=1
∣τ − μ∣2e−

1
6 (kl)

2x∣τ−μ∣, (A63b)

ζ̄xk =
1
N

N

∑
τ,μ=1

στ ∣τ − μ∣2e−
1
6 (kl)

2x∣τ−μ∣. (A63c)

Finally, by combining Eqs. (A55) and (A60), we arrive at the varia-
tional equation

1 −
1
x
−

Nl2

18(N − 1) ∫
d3k
(2π)3

k2Ξx
k

detΔx
k
= 0 (A64)

for solving x. In our numerical calculations, we take v2 = 4πl3/3.
Inserting the solution of x into Eq. (A51) provides an improved
accounting of the conformational heterogeneity in the free energy;
and this improvement is central to the present rG-RPA theory.

6. Mixing entropy
The factorials in Eq. (A1) arise from the indistinguishability of

the molecules belonging to the same species. Taking logarithm and
using Stirling’s approximation, one obtains

−
S
kB
= ln(np!ns!nc!nw!)

≃ np lnnp + ns lnns + nc lnnc + nw lnnw − np − nc − ns − nw ,
(A65)

where additive terms of the form [ ln(2πn)]/2 (where n = np, ns, nc, or
nw) are omitted because for large n, their contributions is negligible
in comparison with the terms included in Eq. (A65). As in Ref. 56,
here we assume for simplicity that the size of a monomer, a small ion,
or a water molecule all equals l3. Assuming further, for simplicity,
that the system is incompressible, i.e., the system volume Ω is fully
occupied by polymers, small ions, and water, then

1
Ω
(Nnp + ns + nc + nw) = ρm + ρs + ρc + ρw =

1
l3

. (A66)

Following Flory’s notation, volume fractions of polymers and salt
ion are defined, respectively, as

ϕm = ρml3, ϕs = ρsl3, (A67)

and the volume fraction ϕc of counterions and volume fraction ϕw
of water are given by

zcϕc = qcϕm + zsϕs, ϕw = 1 − ϕm − ϕs − ϕc. (A68)

Because the last four terms in Eq. (A65) are linear in numbers of
molecules, they are irrelevant to phase separation.56 Discarding these
terms results in the mixing entropy

− s ≡ −
Sl3

kBΩ
=
ϕm
N

lnϕm + ϕs lnϕs + ϕc lnϕc + ϕw lnϕw (A69)

given in Eq. (2) of the main text.

APPENDIX B: TEMPERATURE SELECTION
FOR POLYMER-SALT PHASE DIAGRAMS OF Ddx4
VARIANTS

Three temperatures, two below and one slightly above the
respective salt-free critical temperature Tcr ∝ l/(lB)cr of each of the
Ddx4 variants Ddx4N1

pH7, Ddx4N1CSpH7, Ddx4N1
pH1, and Ddx4N1CSpH1

are selected for the phase diagrams in Figs. 6–9. The l/lB values are
selected to compare salt dependence of the sequences under temper-
atures producing similar gaps between the dilute- and condensed-
phase protein densities at or near ϕs = 0 for the different sequences.
Specifically, for the same part of the figures [(a), (b), and (c) sep-
arately], l/(lB)’s are such that dilute-condensed density gaps are
similar across Figs. 6–9.
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