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ABSTRACT
Probability currents are fundamental in characterizing the kinetics of nonequilibrium processes. Notably, the steady-state current Jss for
a source-sink system can provide the exact mean-first-passage time (MFPT) for the transition from the source to sink. Because transient
nonequilibrium behavior is quantified in some modern path sampling approaches, such as the “weighted ensemble” strategy, there is strong
motivation to determine bounds on Jss—and hence on the MFPT—as the system evolves in time. Here, we show that Jss is bounded from
above and below by the maximum and minimum, respectively, of the current as a function of the spatial coordinate at any time t for one-
dimensional systems undergoing overdamped Langevin (i.e., Smoluchowski) dynamics and for higher-dimensional Smoluchowski systems
satisfying certain assumptions when projected onto a single dimension. These bounds become tighter with time, making them of potential
practical utility in a scheme for estimating Jss and the long time scale kinetics of complex systems. Conceptually, the bounds result from the
fact that extrema of the transient currents relax toward the steady-state current.
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INTRODUCTION

Nonequilibrium statistical mechanics is of fundamental impor-
tance in many fields, and particularly in understanding molecu-
lar and cell-scale biology.1–4 Furthermore, fundamental theoretical
ideas from the field (e.g., Refs. 5–7) have often been translated into
very general computational strategies (e.g., Refs. 8–12).

Continuous-time Markov processes occurring in continu-
ous configurational spaces form a central pillar of nonequilib-
rium studies,13,14 including chemical and biological processes.15

The behavior of such systems is described by a Fokker-Planck
equation or, when momentum coordinates are integrated out, by
the Smoluchowski equation.16,17 In the latter case, the probabil-
ity density p(x, t) and the probability current J(x, t) are the key
observables, and their behavior continues to attract theoretical
attention.18–24 Continuous-time Markov processes in discrete
spaces obey a master equation;15 such “Markov state mod-
els” play a prominent role in modern biomolecular computa-
tions25–28 as well as in the interpretation of experimental kinetic
data.4,29
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An application of great importance is the estimation of
the mean first-passage time (MFPT) for transitions between
“macrostates” A and B, two nonoverlapping regions of config-
uration space. The MFPT(A → B) is the average time for tra-
jectories initiated in A according to some specified distribution,
to reach the boundary of B.17 If a large number of systems are
orchestrated so that trajectories reaching B (the absorbing “sink”)
are reinitialized in A (the emitting “source”), this ensemble of
systems will eventually reach a steady state. Such a steady-state
ensemble can be realized via the “weighted ensemble” (WE) path
sampling strategy,8,30–32 for example. In a steady state, the total
probability arriving to state B per unit time (the “flux”—i.e., the
integral of the current J over the boundary of B) will be con-
stant in time. The “Hill relation” then provides an exact rela-
tion between the steady-state flux and the mean first-passage time
(MFPT),2,31,33

1
MFPT(A→ B) = Flux(A→ B ∣ steady state), (1)

where the dependence on the initializing distribution in A is implicit
and does not affect the relation. When macrostates A and B are
kinetically well-separated, the reciprocal of the MFPT is the effec-
tive rate constant for the transition.34 The Hill relation (1) is
very general2,35–38 and is not restricted to one dimensional sys-
tems or to particular distributions of feedback within the source
state A.

In one dimension, the steady flux is equivalent to the steady-
state current Jss, which will be used in much of the exposition
below.

While the relaxation time to converge to the steady-state can
be very short compared to the MFPT, it is unknown a priori
and may be computationally expensive to sample in complex sys-
tems of interest.32 This limitation applies to the weighted ensem-
ble strategy, as traditionally implemented, because WE is unbiased
in recapitulating the time evolution of a system.8 Thus, there is
significant motivation to obtain information regarding the con-
verged steady-state current (which depends on the boundary con-
ditions and not the initial condition) of complex systems, from the
observed transient current (which does depend on the initial con-
dition). Here, we take first steps toward this goal and show that
the maximum (minimum) transient current, regardless of the ini-
tial condition, serves as an upper (lower) bound on the nonequilib-
rium steady-state current, in a class of one-dimensional continuous-
time Markovian stochastic systems, with prescribed boundary
conditions.

In cases of practical interest, the full system is likely to be high-
dimensional, and we do not expect that the local transient currents
at particular configurations will provide a bound on the steady-state
flux. However, one-dimensional (1D) projections of the current,
along a well-chosen collective coordinate of interest, may still exhibit
monotonic decay as discussed below.

The paper is organized as follows. After proving and illustrat-
ing bounds in discrete and continuous 1D systems, we discuss more
complex systems and provide a numerical example of folding of the
NTL9 protein using WE.32 We speculate that effective upper and
lower bounds for the current exist in high-dimensional systems and
hope that the 1D derivations presented here will motivate future
work in this regard.

DISCRETE-STATE FORMULATION:
BOUNDS AND INTUITION

The essence of the physics yielding bounds on the steady cur-
rent can be appreciated from a one dimensional continuous-time
discrete-state Markov process, as shown in Fig. 1. The dynamics will
be governed by the usual master equation

dPi

dt
= −∑

j≠i
Pi kij +∑

j≠i
Pj kji, (2)

where probabilities Pi = Pi(t) vary in time, while rate constants
kij ≡ ki ,j for i → j transitions are time-independent. (We use a sub-
script convention throughout where the forward direction is left-to-
right, and commas are omitted when possible.) We will assume that
only nearest-neighbor transitions are allowed—i.e.,

kij = 0 for ∣ j − i∣ > 1. (3)

Indeed, discrete random walks of this type provide a finite-difference
approximation to diffusion in continuous space.39 The net current in
the positive direction between any neighboring pair of states is given
by the difference in the two directional probability flows,

Ji,i+1 = Pi ki,i+1 − Pi+1 ki+1,i. (4)

Because the probabilities Pi vary in time, so too do the currents:
Ji ,i+1 = Ji ,i+1(t). Using (4), the master equation (2) can be rewritten
as

dPi

dt
= Ji−1,i − Ji,i+1, (5)

which is merely a statement of the familiar continuity relation: the
probability of occupying a state increases by the difference between
the incoming and outgoing currents.

To establish a bound, assume without loss of generality that a
local maximum of the current occurs between states 5 and 6. That is,

J56 > J45 and J56 > J67. (6)

Differentiating J56 with respect to time and employing Eqs. (4) and
(5) yield

dJ56

dt
= k56

dP5

dt
− k65

dP6

dt
= k56(J45 − J56) − k65(J56 − J67) < 0, (7)

where both terms are negative because rate constants are posi-
tive and the signs of the current differences are determined by
assumption (6). The local maximum current must decrease in time.

If instead J exhibited a local minimum at the 5 → 6 transition,
reversing the directions of the inequalities (6), then the correspond-
ing time derivative would be positive, implying that a local minimum
must increase.

FIG. 1. One-dimensional discrete state system. States (black numbers) and
currents (blue) are shown.
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We have therefore shown regardless of boundary conditions
that local maxima must decrease with time and local minima must
increase with time in the discrete-state case with nearest-neighbor
transitions. Under stationary boundary conditions, the current will
decay to its steady state value Jss and thus, the global extrema at any
time are bounds on the steady current. Physically, the changes in
the probability produced by local differences in current—Eq. (5)—
necessarily cause relaxation of the current toward its steady state
value. We note that in a one-dimensional steady state, whether equi-
librium or nonequilibrium, the current Jss is a constant independent
of position.

Boundary behavior in a discrete-state
source-sink system

The preceding conclusions were obtained for local extrema
without any assumptions about boundary conditions. We now want
to examine boundary conditions of particular interest, namely, a
feedback system with one absorbing boundary (“sink”) state and
one emitting boundary (“source”) state, where flux into the sink is
reinitialized. In such a source-sink system, we will see that similar
conclusions are reached regarding the relaxation of current extrema
at the boundaries.

For concreteness, suppose in our linear array (Fig. 1) that state
0 is the source and state 9 is the sink: the probability current into
state 9 is fed back to state 0. The source at state 0 is also presumed to
be the left boundary of the system, which is implicitly reflecting.

Consider first the case where the maximum of the current
occurs at the source at some time t—i.e., J01 is the maximum. To
analyze this case, note that by assumption, the source state 0 in fact
receives probability that arrives to the sink state 9. That is, Eq. (5)
applies in the form

dP0

dt
= J89 − J01. (8)

This, in turn, implies that the analog of Eq. (7) applies directly, and
we deduce that if J01 is the “maximum among J values” then it must
decrease in time.

Because analogous arguments apply to all the other boundary
cases (maximum at sink, minimum at either boundary), we conclude
that any boundary extremum current must decay with time toward
Jss in a source-sink discrete-state system.

For completeness, we note that in principle the feedback of the
flux reaching the sink state could occur at a set of source states, in
contrast to the single source state assumed above. However, because
of the locality property (3) which has been assumed, if we consider
any current maximum not part of the set of source states, the same
arguments will apply.

CURRENT BOUNDS FOR CONTINUOUS SYSTEMS
IN THE SMOLUCHOWSKI FRAMEWORK

Our primary interest is continuous systems, and so we turn
now to a formulation of the problem via the Smoluchowski equa-
tion, which describes overdamped Langevin dynamics.16,17 Concep-
tually, however, it is valuable to note that the preceding discrete-state
derivation of current bounds depended on the locality embodied
in (3) and the Markovianity of dynamics, two properties that are
preserved in the Smoluchowski picture.

Our derivation proceeds in a straightforward way from the one-
dimensional Smoluchowski equation. Defining p(x, t) and J(x, t)
as the probability density and current at time t, we write the Smolu-
chowski equation as the continuity relation,

∂p
∂t
= − ∂J

∂x
, (9)

with current given by

J(x, t) = D(x)
kBT

f (x) p(x, t) −D(x) ∂p
∂x

, (10)

where D > 0 is the (possibly) position-dependent diffusion “con-
stant,” kBT is the thermal energy at absolute temperature T, and
f = −dU/dx is the force resulting from potential energy U(x).

We now differentiate the current with respect to time and
examine its behavior at extrema—local minima or maxima. We find

∂J
∂t
= D(x)

kBT
f(x)∂p

∂t
− ∂

∂t
[D(x) ∂p

∂x
], (11)

= D(x)
kBT

f (x)∂p
∂t
−D(x) ∂

2p
∂x∂t

, (12)

= −D(x)
kBT

f (x) ∂J
∂x

+ D(x) ∂
2J

∂x2 [General], (13)

= D(x) ∂
2J

∂x2 [Extrema only], (14)

where the third line is derived by equating ∂2p/∂t∂x = ∂2p/∂x∂t and
then substituting for ∂p/∂t in all three terms using the continuity
relation (9). The last line is obtained because ∂J/∂x = 0 at a local
extremum (in x).

Equation (14) is the sought-for result: it implies decay with
time of local extrema in the current J. If x is a local maximum,
then ∂2J/∂x2 < 0 and conversely for a minimum; recall that D(x)
is strictly positive. (Strictly speaking, for a local maximum, one has
∂2J/∂x2 ≤ 0 rather than a strict inequality, but the case of vanishing
second derivative is pathological for most physical systems.) With
open boundaries, the global maximum is also a local maximum and
must decrease in time. Likewise, the global minimum must increase.
The global extrema therefore provide upper and lower bounds at any
given t that tighten with time.

See below for discussion of boundaries and source/sink sys-
tems.

It is interesting to note that Eq. (13) resembles a Smoluchowski
equation but for the current J instead of p. Except in the case of sim-
ple diffusion [f (x) = 0 and D(x) = D = const.], this is a “resemblance”
only, in which the right-hand side cannot be written as the diver-
gence of an effective current and hence the integral of the current is
not a conserved quantity. However, the similarity may suggest why
the current has a “self healing” quality like the probability itself—i.e.,
the tendency to relax toward the steady state distribution.

Maximum principle in a spatially bounded region

The preceding results could be obtained with elementary cal-
culus, but characterizing current extrema in systems with more
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challenging boundary behavior requires the use of mathematical
approaches not well known in the field of chemical physics. Math-
ematically, it is known that Eq. (13) is a “uniformly parabolic”
equation—defined below—and therefore obeys a “maximum prin-
ciple” (MP).40 The MP, in turn, implies the monotonic decay
of extrema noted above, away from boundaries. In addition to
vanishing first derivatives at extrema, the MP only requires the
nonstrict inequality ∂2J/∂x2 ≤ 0, or the corresponding inequal-
ity for a minimum. For reference, we note that a uniformly
parabolic partial differential equation for a function u(x, t) takes the
form

∂u
∂t
= a(x, t) ∂

2u
∂x2 + b(x, t) ∂u

∂x
, (15)

where a(x, t) ≥ a0 > 0 for all x and t in the domain of interest, with
a0 being a constant. Note that b(x, t) is not restricted to be positive
or negative.

The maximum principle dictates that if one considers the
space-time plane defined by 0 ≤ x ≤ L and t1 ≤ t ≤ t2, then any local
extremum must occur on the spatial boundaries (x = 0 or x = L) or at
the initial time t1. Most importantly, the extremum cannot occur at
t = tmax away from the boundaries. Because t1 and t2 are arbitrary,
one can inductively consider decreasingly small t1 values arbitrar-
ily close to t2 to infer monotonic decay of extrema which occur
away from the boundaries. We note that nonrectangular space-time
domains are covered by MPs to some extent.40

It is interesting that the Smoluchowski equation itself for p(x, t)
does not generally take the form (15) and hence may not obey a max-
imum principle. The value of the maximum of p could grow over
time. One example is the relaxation of an initially uniform distri-
bution in a harmonic potential, which would develop an increasing
peak at the energy minimum as equilibrium was approached. The
density satisfies a maximum principle in simple (force-free) diffu-
sive behavior40—which does conform to (15)—in which the density
must spread with time. The current, like the density in simple diffu-
sion, tends toward a constant value in the steady state—even when
there is a nonzero force.

Maximum principle for a continuous
source-sink system

The case of primary interest is a source-sink feedback system
because, as noted above, the steady current quantitatively charac-
terizes the system’s kinetics. This 1D current is exactly the inverse
MFPT, from the Hill relation (1). We have not yet explicitly con-
sidered the addition of source and sink terms in the Smoluchowski
equation Eq. (9). With explicit inclusion of source-sink feedback in
one dimension, we find that a paradigmatic system which obeys a
maximum principle over the entire domain (including boundaries)
is a finite interval with one end acting as a perfect sink and the
other end being the source where flux from the sink is reintroduced.
The source boundary is taken to be reflecting, so this is not a fully
periodic system.

When the global maximum or minimum occurs at a bound-
ary of a one-dimensional source-sink system—either at the sink or
the other boundary—additional consideration (beyond what is dis-
cussed above) is necessary because the condition ∂J/∂x = 0 generally
will not hold at the boundaries. However, as motivation, we point

out that the same continuity arguments employed above in the dis-
crete case apply in the continuous case as well, at least for the case
of feedback to a single source state at a boundary. Intuitively, then,
monotonic decay of extrema is again expected.

Mathematically, we start by considering a system bounded by
an interval 0 ≤ x ≤ x1 with sink at x = 0 and source location xsrc
∈ (0, x1). The source is initially located in the interior of the inter-
val for mathematical simplicity but later will be moved (infinitely
close) to the boundary. The probability current reaching the sink is
reinitialized at x = xsrc, while the x1 boundary is reflecting in this
formulation. The governing equation therefore includes a source
term,

∂p(x, t)
∂t

= −∂J(x, t)
∂x

− J(x = 0, t) δ(x − xsrc), (16)

with current given again by (10), with sink boundary condition
p(x = 0, t) = 0, and with reflecting boundary condition J(x = x1, t)
= 0 to a model a finite domain with no probability loss. The nega-
tive sign preceding the source term J(x = 0, t) δ(x − xsrc) is necessary
because the current arriving to the sink (at the left side of the inter-
val) is negative by convention. Note that (16) is a special case where
feedback occurs at a point; more generally, instead of a delta func-
tion, an arbitrary distribution on the domain could be used in the
second term on the right-hand side; see Appendix A.

In Appendix A, we show that (16) obeys a maximum principle
regardless of the location of the source xsrc or the initial condition.
However, on its own, this maximum principle does not establish the
sought-for monotonic decay of extrema because maxima and min-
ima could still occur on the spatial boundaries, or at the source, with
increasing time. Note that the maximum principle applies only to
global extrema inside the domain.

We therefore turn to an alternative formulation that includes
a boundary source implicitly via boundary conditions without the
source term of (16), and a more powerful maximum principle is also
seen to hold. As shown in Appendix B, by taking the limit of xsrc→ x1
(or, equivalently, x1 → xsrc), we obtain the standard Smoluchowski
description of Eqs. (9) and (10) with sink boundary condition
p(x = 0, t) = 0, along with an additional boundary condition—the
“periodicity” of current, namely, J(x = xsrc, t) = J(x = 0, t). The source
term of Eq. (16) is no longer present, but identical behavior for p
and J is obtained, along with a maximum principle, as shown in
Appendix B.

In this special case, when the single source point occurs at
a boundary, the periodicity of the current does not allow a local
extremum on the boundary and leads to a maximum principle (MP)
implying monotonic decay of extrema; see Appendix B. The MP
for a periodic function indicates that the maximum in a space-time
domain between arbitrary t1 < t2 must occur at the earlier time. This
implies, inductively, the monotonic decay of local extrema in J—i.e.,
decrease with t of maxima and increase in minima.

Although monotonic decay of extrema may seem obvious from
the discrete case, the maximum principle for the continuous case
covers instances that may seem surprising. In looking for a coun-
terexample, one could construct a system with a very low diffusion
constant but large and spatially varying forces. For example, one
could initialize a spatially bounded probability distribution on the
side of an inverted parabolic potential: intuitively, one might expect
the maximum current to increase as the probability packet mean
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FIG. 2. Numerical data for simple diffusion in a source-sink system. Left: The system is initialized with all probability at the source x/L = 1, and the current toward the sink is
seen to relax to steady behavior as t becomes a substantial fraction of the first-passage time t̄. Right: The maximum and minimum currents converge monotonically toward
the steady-state value with increasing time.

velocity increases down the steepening potential. However, so long
as the diffusion rate is finite, the spreading of the probability dis-
tribution (lowering the peak density) will counteract the increase in
velocity. A numerical example is shown in Fig. 4.

Numerical evidence: One dimension

We have employed numerical analysis of one-dimensional sys-
tems to illustrate the behavior of the time-evolving current. In
these examples, we define positive current as directed toward the
sink.

We first examined a simple diffusion process with source at
x = 1 and sink boundary condition at x = 0 using units where
the diffusion coefficient is D = 1 and the mean first-passage time

is t̄ = L2/2D, where L = 1 is the domain length. In all examples,
probability is initialized as a delta-function distribution at the source
and propagated via numerical solution of the Smoluchowski equa-
tion using the FiPy package.41 In all examples, we have applied peri-
odic boundary conditions for the current (with a reflecting boundary
at the source), appropriate to describe the evolution of Eq. (16) for
a single-source point at the system boundary (see Appendix B for a
complete discussion of boundary conditions). Figure 2 shows clearly
that the spatial maximum and minimum values bracket the true
steady-state current. In this system, the minimum current value and
the “target” current (at the sink) are identical.

We also examined a numerical system with a potential barrier
separating the source (x = 1.6 nm) and sink (x = 0) states. See Fig. 3.
Parameters for this example were roughly intended to model the

FIG. 3. Numerical data for diffusion over a central barrier in a source-sink system. Left: The system is initialized with all probability at the source, x/L = 1, and the current
toward the sink at x = 0 is seen to relax to steady behavior at a fraction of the MFPT. Right: The currents at the maximum and sink (identical to the minimum in this system)
converge monotonically toward the steady-state value with increasing time. Inset: potential energy in the domain.
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FIG. 4. Numerical data for diffusion down an inverted parabola potential in a source-sink system (MFPT = t = 6.2 ns). Left: The system is initialized with a delta-distribution
at the source, and the current toward the target is plotted from the source at x = 12.0 nm to the sink (target) at x = 0 and is seen to relax monotonically to the steady-state.
Right: The maximum (solid black) and minimum (dashed black) currents converge monotonically toward the steady-state value with increasing time, while the current at the
sink (red) relaxes nonmonotonically. Inset: potential energy in the domain.

diffusion of a 1 nm sphere in water at 298 K: D = 2.6 × 10−10 m2/s,
and a Gaussian barrier of height 10 kBT and width of 2 nm. Proba-
bility was again initialized at the source. Qualitatively the results are
similar to the simple diffusion case, with the spatial maximum and
minimum current bracketing the true steady-state current. In this
system, the minimum current value and the current at the sink are
identical. Here, the relaxation time to the steady state is roughly four
orders of magnitude faster than the MFPT of ∼0.5 ms, as shown in
Fig. 3.

Finally, we examined a one-dimensional system described
in the last paragraph of “Maximum principle for a continuous
source-sink system” in which the monotonic decay of the current
may not be intuitive. We initialize a delta-function distribution at
the top of an inverted parabolic potential U(x) = − 1

2 k(x − x0)2 and
force constant k = 5kBT

(3nm)2 , with the source at the peak (x0 = 12.0 nm)
and the sink at x = 0. Dynamics parameters for this example are iden-
tical to the previous case, T = 298 K and D = 2.6 × 10−10 m2/s. Even
though the mean velocity of the “particle” initialized at the top of
the inverted parabola increases rapidly, this acceleration is counter-
acted by the spreading of the initial distribution. In accordance with
the maximum principle, Fig. 4 shows that the current maximum
(minimum) monotonically decreases (increases) until a steady-state
is reached (MFPT = 6.2 ns). Interestingly, in this system, the mini-
mum current value and the current at the sink differ. Although the
maximum principle implies that the minimum current will increase
monotonically over time, the MP does not intrinsically characterize
the target current (at the sink), which may not be a minimum.

DISCUSSION OF MORE COMPLEX SYSTEMS

Should we expect that analogous bounds exist in cases of prac-
tical interest, when the current from a high-dimensional system
is integrated over isosurfaces of a one-dimensional coordinate q?
This is a situation often encountered in molecular simulation, where
conformational transitions of interest require correlated motion

between many hundreds or thousands of atoms and are observed
along a handful of collective coordinates. In fact, there is no maxi-
mum principle for the locally defined current magnitude in higher
dimensional spaces, but even when the local high-dimensional cur-
rent magnitude does not monotonically decay, the flux over iso-
surfaces of a reaction coordinate may exhibit monotonic decay; see
below and Appendix C. We have not derived general results for this
case, but there are interesting hints in the literature that a more
general formulation may be possible.

Most notably, Berezhkovskii and Szabo showed that the proba-
bility density p(ϕ, t) of the “committor” coordinate ϕ evolves accord-
ing to a standard Smoluchowski equation under the assumption
that “orthogonal coordinates” (along each isocommittor surface) are
equilibrium-distributed according to a Boltzmann factor;42 see also
Ref. 43. Note that the committor 0 ≤ ϕ ≤ 1 is defined in the full
domain to be the probability of starting at each point and reaching a
chosen target state before visiting the given initial state. Because our
preceding derivation of current bounds for one-dimensional sys-
tems relied entirely on the Smoluchowski equation, it follows that
the current projected onto the committor, J(ϕ), would be subject
to the same bounds—so long as the additional assumption about
equilibrated orthogonal coordinates holds.44–46

It is intriguing to note that the orthogonal equilibration
assumption is true in one type of A → B steady state. Consider a
steady state constructed using “EqSurf” feedback,47 in which prob-
ability arriving to the target state B is fed back to the surface of
initial state A according to the distribution which would enter A
(from B) in equilibrium; this procedure preserves the equilibrium
distribution within A.47 For any steady state, the current is a vec-
tor field characterized by flow lines, each of which is always tan-
gent to the current. Then, the probability density on any surface
orthogonal to the flow lines must be in equilibrium: if this were
not the case, a lack of detailed balance would lead to net flow of
probability, violating the assumption of orthogonality to the cur-
rent lines. A visual schematic of such a steady-state is shown in
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FIG. 5. Schematic of flows and isocommittor surfaces. Steady-state current flow
lines (solid lines with arrows) and committor isosurfaces (dashed lines) are shown
in a bounded domain with source (A) and sink (B) states. As discussed in the
text, no component of the steady-state current can flow along isocommittor sur-
faces, which also must exhibit the equilibrium distribution, when suitable boundary
conditions are enforced.

Fig. 5. The same orthogonal surfaces must also be isocommittor
surfaces in the EqSurf case, which can be shown by direct cal-
culation. Using the known relationship between the steady cur-
rent, committor, and potential energy for the EqSurf steady state,42

one finds that the current is indeed parallel to the gradient of the
committor,

J⃗ss = (1/Z) e−βU(x⃗)∇ϕ(x⃗), (17)

where x⃗ is the full set of configurational coordinates, ϕ is the com-
mittor, and Z is the system partition function. This special case
of “orthogonal equilibration” is quite interesting, but we remind

readers that the transient (pre-steady-state) behavior orthogonal to
current lines has not been characterized here.

We also provide numerical evidence for nearly monotonic
relaxation behavior of the current in a highly complex system, an
atomistic model of the protein NTL9 undergoing folding. Figure 6
shows the flux (total probability per second) crossing isosurfaces of
a collective variable, the RMSD, which here is the minimum root
mean-squared deviation of atom pair distances between a given con-
figuration and a fixed reference folded configuration—minimized
over all translations and rotations of the two configurations. Since
the collective variable isosurfaces separate the folded and unfolded
states, at a steady state, the flux will become constant across isosur-
faces of the collective variable. Data were harvested from a prior
study using the weighted ensemble (WE) approach, which was
implemented with a source at one unfolded configuration and a sink
at the folded state, defined as RMSD ≤1 Å.32 Although the RMSD
is a distance measure from an arbitrary configuration to the folded
state, it is not claimed to be a proxy for the committor coordinate
described above. Note that the WE method runs a set of unbiased
trajectories and performs occasional unbiased resampling in path
space;8 thus, WE provides the correct time-evolution of currents and
probability distributions, which are derived directly from the path
ensemble.

Although the RMSD coordinate used in the NTL9 simulations
is not likely to be an ideal reaction coordinate, we still observe mono-
tonic relaxation of the flux profile. For this set of 30 weighted ensem-
ble simulations of NTL9 protein folding, during the observed tran-
sient regime (where all trajectories were initialized in the unfolded
state), the steady state is monotonically approached out to 45 ns
molecular time (reflecting 225 μs of aggregate simulation). Further-
more, although the current profile was still evolving in the NTL9
simulations and not fully steady, using the Hill relation (1) for the
MFPT from the flux into the folded state yielded a folding time of
0.2–2.0 ms, consistent with the experimental value.32

FIG. 6. Numerical data for a com-
plex system—atomistic protein folding.
The data show protein folding flux for
atomistic, implicitly solvated NTL932 as
a function of a projected coordinate
(RMSD) averaged over several time
intervals during a simulation. The flux
is the total probability crossing the
indicated RMSD isosurface per sec-
ond. Data were obtained from weighted
ensemble simulation, which orchestrates
multiple trajectories to obtain unbiased
information in the full space of coor-
dinates over time—i.e., Fokker-Planck-
equation behavior is recapitulated.8 Only
positive (folding direction) current is
shown although some RMSD increments
exhibit negative flux in some time inter-
vals due to incomplete sampling/noise.
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Identifying good reaction coordinates to describe long time
scale conformational transitions remains a challenging prob-
lem in complex systems48–50 and is beyond the scope of the
present study. For a perfect collective variable which captures
the “slow” coordinates such that orthogonal degrees of freedom
are equilibrated, the system can be effectively described by a
1D Smoluchowski equation, and thus, the global flux extrema
will relax monotonically. Our hope is that this work, prov-
ing monotonic decay for the current in simple 1D systems,
will inspire work to show how the projected current on imper-
fect reaction coordinates can provide bounds for the steady-state
current.

In the realm of speculation, motivated in part by our numer-
ical data, one can ask whether a variational principle should hold.
That is, if there are projected coordinates with higher and lower cur-
rent maxima, is the lower maximum always a valid bound? This is a
question for future investigation.

IMPLICATIONS FOR NUMERICAL COMPUTATIONS

There is significant motivation for pursuing steady-state behav-
ior: in the nonequilibrium source-sink feedback systems studied
here, the steady-state flux yields the mean first-passage time (MFPT)
for transitions between two macrostates of interest via the Hill
relation Eq. (1). The relaxation time to the steady state can be
many orders of magnitude faster than the MFPT in kinetically
well-separated systems without significant intermediate metastable
states: see Fig. 3. Hence, large gains in estimating the MFPT
could be obtained by sampling from the short-time nonequilib-
rium trajectory ensemble if the flux can be tightly bounded from
above and below. Such transient information has been leveraged
in Markov state modeling approaches,25,26,28 but a lack of sepa-
ration of time scales between individual states can bias kinetic
predictions.51 When sampling from the nonequilibrium trajectory
ensemble, the concerns are different. We propose that the observed
transient flux can bound the steady-state flux along suitable reaction
coordinates42 with clear separation of time scales between “slow”
reaction progress and orthogonal degrees of freedom—that is, in
systems where transitions which are effectively one-dimensional.
These bounds will become tighter as sampling time increases; the
MFPT is estimated exactly via (1) when the sampling converges to a
steady state.

In terms of practical estimators, having upper and lower
bounds based on the “spatial” variation of the flux would imply that
any spatial average of the flux is a valid estimator for the steady
flux that must converge to the true value at large t. For a high-
dimensional system, the “spatial” average would correspond to an
average along the collective coordinate exhibiting the bounds. Such
an average could be linear or nonlinear.

The potential value of such average-based estimators can be
seen from the spatial current (flux) profiles plotted in Figs. 2–6,
where the MFPT is estimated based on the flux into the
sink and is essentially the minimum flux during the transient
period prior to the steady state. It seems clear that averag-
ing among values between the minimum and maximum would
yield, at moderate t, values much closer to the steady flux
reached after long times. Such estimators will be explored in the
future.
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APPENDIX A: MAXIMUM PRINCIPLE
FOR A SOURCE-SINK SYSTEM WITH GENERAL
SOURCE TERM

In this appendix, we derive a nonstandard maximum principle
for a general source-sink system. Recall that we consider a system on
the spatial interval 0 ≤ x ≤ x1 with a sink at x = 0. We introduce a
source γ = γ(x) corresponding to a probability density function with
derivative γ′. We suppose that γ is defined on an interval away from
the source and sink; thus, γ(x) = 0 for x < a or x > b and a, b satisfy
0 < a < b < x1. It is not essential that there be a boundary at x1; indeed,
the arguments below apply just as well on 0 ≤ x <∞. We retain the
notation from the previous sections for consistency. Let p = p(x, t)
be the probability solving

∂p
∂t
= − ∂J

∂x
− γ(x) ⋅ J(x = 0), p(x = 0) = 0, J(x = x1) = 0.

(A1)

J is the current defined in (10), and the overall negative sign of the
source term is simply due to the overall negative direction of the
current given the sink at x = 0.

To obtain the maximum principle for the current, we first
differentiate (10) with respect to time t and use (A1) to obtain

∂J
∂t
= −D(x)

kBT
f (x) ∂J

∂x
+ D(x) ∂

2J
∂x2

+(−D(x)
kBT

f (x)γ(x) + γ′(x)D(x))J(x = 0), (A2)

which differs from (13) due to the source terms. Let ΩT be the set
in the space-time domain corresponding to (x, t) with 0 < t ≤ T and
either 0 < x < a or b < x < x1. We claim that a (weak) maximum
principle holds for J in ΩT .

Let Ω̄T consist of (x, t) with 0 ≤ t ≤ T and either 0 ≤ x ≤ a or
b ≤ x ≤ x1. A maximum principle will imply that the maximum of J
over Ω̄T must be attained outside of ΩT . This means that the max-
imum of J over 0 ≤ t ≤ T and 0 ≤ x ≤ x1 must be attained either at
t = 0, or at t > 0 with x = 0, x = x1, or a ≤ x ≤ b. In other words,
the maximum current occurs either at time zero, or on the spatial
boundary, or in the source states. We prove this by showing that a
contradiction is reached otherwise, as follows:

● Let (x0, t0) be a point where J achieves its maximum in Ω̄T .
● Suppose, for a moment, the maximum is nondegenerate,

0 < t0 < T, and 0 < x0 < a or b < x0 < x1. By nondegener-
ate, we mean that ∂2J

∂x2 (x0, t0) < 0. Since it is a maximum,
∂J
∂x (x0, t0) = 0. Moreover, γ(x0) = γ′(x0) = 0 as γ(x) = 0 for
x < a or x > b, but this contradicts (A2) since we are left with
0 = ∂J

∂t (x0, t0) = D(x0) ∂
2J

∂x2 (x0, t0) < 0.
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● Now suppose the maximum is nondegenerate with t0

= T, and 0 < x0 < a or b < x0 < x1. Then, ∂J
∂t (x0, T) ≥ 0,

∂J
∂x (x0, T) = γ(x0) = γ′(x0) = 0, and ∂2J

∂x2 (x0, T) < 0.
Again, we have a contradiction since 0 ≤ ∂J

∂t (x0, T)
= D(x0) ∂

2J
∂x2 (x0, T) < 0.

● In general, the maximum may be degenerate, and we make
the following perturbative argument. Let ε > 0 and define

Jε(x, t) = J(x, t) − εt.

Then,

∂Jε

∂t
= −ε − D(x)

kBT
f (x)∂Jε

∂x
+ D(x)∂

2Jε

∂x2

+(−D(x)
kBT

f (x)γ(x) + γ′(x)D(x))(Jε(x = 0) + εt).

(A3)

Consider Ω̄T/ΩT , defined as all space-time points in Ω̄T that
are not in ΩT . Let M = maxΩ̄T/ΩT

J be the maximum of J
over Ω̄T/ΩT . We claim that the maximum of J over Ω̄T is
less than M, that is, maxΩ̄T

J ≤ M. To prove this, we will
show instead that the max of Jε over Ω̄T is less than M,
that is, maxΩ̄T

Jε ≤ M. Once the latter is established, we
have maxΩ̄T

J ≤ M + εT and the result follows by letting
ε→ 0.

First, notice that maxΩ̄T/ΩT
Jε ≤ M since by the defini-

tion of M, we have Jε(x, t) = J(x, t) − εt ≤M − εt ≤M for any
(x, t) in Ω̄T/ΩT . If Jε(x, t) has a maximum at (x0, t0) in ΩT ,
then ∂Jε

∂t (x0, t0) ≥ 0, while ∂Jε
∂x (x0, t0) = 0, ∂2Jε

∂x2 (x0, t0) ≤ 0,
and γ(x0) = γ′(x0) = 0, but this contradicts (A3) since

0 ≤ ∂Jε

∂t
(x0, t0) = −ε + D(x0)

∂2Jε

∂x2 (x0, t0) < 0.

Therefore, the maximum of Jε over Ω̄T must occur on
Ω̄T/ΩT and maxΩ̄T

Jε = maxΩ̄T/ΩT
Jε ≤M, as desired.

● The exact same arguments can be applied using “minimum”
in place of “maximum,” where in the last step above, ε would
be replaced with −ε.

In Appendix B, due to the periodic boundary condition and the
source being at the boundary, we conclude that the maximum of J
is attained at the initial time. This leads to the result cited in the
main text above that the time dependent current gives bounds for
the steady state current Jss. Note that this is not true in the setting
of this appendix since for a general source γ, the maximum may be
attained after the initial time in either the source states or on the
spatial boundary.

APPENDIX B: MAXIMUM PRINCIPLE
FOR A SOURCE-SINK SYSTEM WITH POINT
SOURCE AT THE BOUNDARY

Here, we show that a source-sink system with a point source
at the boundary x1 and a sink at 0 satisfies a maximum principle
and that the extrema of the time dependent current give bounds for
the steady state current Jss. We begin with a special case of (A1) that

corresponds to a source-sink system on 0 ≤ x ≤ x1 with a point source
at xsrc, sink at 0, and reflecting boundary at x = x1,

∂p
∂t
= − ∂J

∂x
− δ(x − xsrc)J(x = 0), p(x = 0) = 0, J(x = x1) = 0,

(B1)
where we assume 0 < xsrc < x1.

We first show that when x1→ xsrc, the PDE in (B1) is, in a sense,
equivalent to the ordinary continuity relation (no source term) but
different boundary conditions, namely,

∂p̃
∂t
= − ∂ J̃

∂x
, p̃(x = 0) = 0, J̃(x = 0) = J̃(x = xsrc) . (B2)

Above, J is given by (10), and J̃ is analogously defined, with p̃ taking
the place of p. Equation (B1) is posed on 0 ≤ x ≤ x1, while (B2) is
posed on 0 ≤ x ≤ xsrc. Equation (B2) thus corresponds to a source-
sink system with sink at 0 and reflecting boundary and point source
at x1. Since (B2) is identical to (13) but with periodic boundary con-
dition on the current, we obtain a maximum principle for J as well as
monotonic convergence of the extrema of the time dependent cur-
rent toward its steady state value Jss, as discussed below. An intuitive
argument supporting current periodicity is given at the end of this
appendix.

To address the limit x1 → xsrc, we consider the “weak solutions”
associated with (B1) and (B2); weak solutions are a common frame-
work for studying partial differential equations.52 The weak solu-
tions are obtained by multiplying by a smooth test function and then
integrating by parts. For (B1), if ϕ = ϕ(x) is a smooth function on
0 ≤ x ≤ x1 vanishing at x = 0 with derivative ϕ′,

∫
x1

0

∂p
∂t

ϕdx = −∫
x1

0

∂J
∂x

ϕdx − ∫
x1

0
δ(x − xsrc)J(x = 0)ϕdx

= −∫
x1

0

∂J
∂x

ϕdx − J(x = 0)ϕ(xsrc)

= J(x = 0)ϕ(0) − J(x = x1)ϕ(x1) − J(x = 0)ϕ(xsrc)

+ ∫
x1

0
ϕ′J dx

= −J(x = 0)ϕ(xsrc) + ∫
x1

0
ϕ′J dx. (B3)

In parallel, for (B2), we multiply by ϕ̃, a smooth function on
0 ≤ x ≤ xsrc vanishing at x = 0 with derivative ϕ̃′,

∫
xsrc

0

∂p̃
∂t

ϕ̃dx = −∫
xsrc

0

∂ J̃
∂x

ϕ̃dx

= J̃(x = 0)ϕ̃(0) − J̃(x = xsrc)ϕ̃(xsrc) + ∫
xsrc

0
ϕ̃′ J̃ dx

= −J̃(x = 0)ϕ̃(xsrc) + ∫
xsrc

0
ϕ̃′ J̃ dx. (B4)

Thus, the PDEs (B1) and (B2) have the same weak solutions when
x1 → xsrc.

We can now obtain a maximum principle on the current. Drop-
ping the ∼’s and differentiating (B2) yield (13) together with the
boundary conditions

J(x = 0) = J(x = xsrc),
∂J
∂x
(x = 0) = 0. (B5)

The last boundary condition comes from p(x = 0) = 0. Indeed,
p(x = 0) = 0 implies ∂J

∂x (x = 0) = −∂p
∂t (x = 0) = 0.
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With the periodic boundary condition on the current, a version
of the maximum principle applies and shows that the max of J over
the time-space domain occurs at the initial time,

max
t0≤t≤T,0≤x≤xsrc

J(x, t) = max
0≤x≤xsrc

J(x, t0).

This leads to the monotonic convergence discussed above, as fol-
lows. Suppose 0 ≤ t1 ≤ t2 ≤ T. Then, the max of J at time t1 is greater
than or equal to the max of J at time t2,

max
0≤x≤xsrc

J(x, t1) = max
t1≤s≤T,0≤x≤xsrc

J(x, s) ≥ max
t2≤s≤T,0≤x≤xsrc

J(x, s) = max
0≤x≤xsrc

J(x, t2).

Of course, an analogous statement holds for the min,
min0≤x≤xsrc J(x, t1) ≤ min0≤x≤xsrc J(x, t2).

Intuition for the periodicity of the current can be understood
based on a “particle” or trajectory picture of the feedback process,
where the current is defined as the net number of trajectories pass-
ing an x value per second. Note first that if there were no feedback
to the boundary at xsrc, then the net current there would vanish for
any t > 0 because of reflection: every trajectory reaching the bound-
ary from x < xsrc would be reversed by construction yielding zero net
flow at the boundary. With feedback, every trajectory reaching the
sink x = 0 is placed immediately at x = xsrc, the source bound-
ary. At that boundary, the current from nonfeedback trajectories is
zero because of the reflectivity argument, and the injected number
of trajectories will exactly match the number at the sink, implying
J(x = xsrc, t) = J(x = 0, t).

APPENDIX C: ANALYSIS OF A TWO-DIMENSIONAL
EXAMPLE

It is instructive to study a simple two-dimensional example in
detail. Two important features emerge: (i) there is no maximum
principle because the locally defined current magnitude can increase
over time away from a boundary and (ii) for the example below,
there is, nevertheless, a one-dimensional projection of the current
which does exhibit monotonic decay.

We consider the evolution of a probability distribution p(x⃗, t)
in a two-dimensional vector space x⃗ = (x, y) with 0 ≤ x ≤ L and
−∞ ≤ y ≤ ∞, defining an infinite rectangular strip. We take the
boundaries at x = 0, L to be periodic, meaning

p(x = 0, t) = p(x = L, t),∂p(x=0,t)
∂x = ∂p(x=L,t)

∂x . (C1)

Note that this periodicity assumption is not a source-sink condi-
tion. The probability distribution p(x, t) evolves according to the
continuity equation,

∂p(x⃗, t)
∂t

= −∇⃗ ⋅ J⃗(x⃗, t), (C2)

where the Smoluchowski current J⃗(x⃗, t) has the usual drift and
diffusion terms,

J⃗(x⃗, t) = βDf⃗ (x⃗)p(x⃗, t) −D∇⃗p(x⃗, t). (C3)

We consider a potential U(x⃗) = 1
2 ky2 −bx so that the force vec-

tor is f⃗ (x⃗) = (−b,−ky). The constant force in x is qualitatively sim-
ilar to a source-sink setup, but probability can cross the boundary

in both directions here. In the y direction, there is simple harmonic
behavior. The steady-state solution p∞ is uniform in x and varies
only in y,

p∞(x⃗) = 1
L

√
βk
2π

exp
−βky2

2
. (C4)

At a steady state, there is a persistent current in x due to periodicity
but no current in the y direction,

J∞x = −βDbp∞, J∞y = 0. (C5)

Our interest is focused on the current extrema and particu-
larly the maximum in this case. The maximum steady-state current
magnitude, at y = 0, is found from (C3) and (C4) to be

∣⃗J∞∣2max =
β3D2b2k

2πL2 . (C6)

To test for monotonic behavior, we employ the current magnitude
resulting from an arbitrary initial condition p0(x⃗, t = 0), which is
given by

∣⃗J0∣2 = D2(∂p0

∂y
)

2

+ (Dβkyp0)2 + 2βD2kyp0 ∂p0

∂y

+ 2βD2bp0 ∂p0

∂x
+ (βDbp0)2 + D2(∂p0

∂x
)

2

. (C7)

Because the diffusion coefficient scales linearly with temperature,
D ∝ β−1, the terms here scale as β−2, β−1, and β0. From (C6),
however, the steady-state flux magnitude scales as ∣⃗J∞∣2max ∝ β, so
generically, given any initial condition, the final steady-state current
can be made larger than the initial current by reducing the tempera-
ture. This two-dimensional behavior is distinctly different from that
found above in the one-dimensional case, where the current obeys
a maximum principle and thus the maximum must be at the initial
condition, or on the system boundary.

As a specific example, consider the initial condition of a dis-
tribution uniform in x and Gaussian in y, p0(x⃗) = 1

L

√
C
2π exp −Cy2

2 ,
which differs from the steady distribution when C ≠ βk. The initial
current magnitude is then

∣⃗J0∣2 = ∣⃗J∞∣2max
C
βk
[1 +

y2(βk − C)2

(βb)2 ] exp [−Cy2]. (C8)

Note that the symmetric current maxima are shifted away from
y = 0. Setting the derivative of (C8) equal to zero, the maxima are

located at ymax = ±
√
(βk−C)2−C(βb)2

C(βk−C)2 . Inserting ymax into (C8) yields

∣⃗J0∣2max = ∣⃗J∞∣2max(
(βk − C)2

βk(βb)2e
) exp [ C(βb)2

(βk − C)2 ] (C9)

for the maximum current magnitude.
Monotonic decay of the maximum is not always observed for

this system. Over much of parameter space, ∣⃗J0∣2max > ∣⃗J∞∣2max, but not
when (βb)2 > βk ≫ C. Defining the equilibrium root mean-square
fluctuation lengths σx = (βb)−1 and σy = (βk)−1/2, when the width of
the initial distribution is very large compared to the thermal fluctua-
tion lengths, the ratio of the initial to steady-state maximum current
is ∣⃗J0 ∣max

∣⃗J∞ ∣max
∝ σx

σy
= (β−1/2)

√
k

b . The initial current can be tuned to be
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less than the steady-state current by lowering the temperature, or by
reducing the ratio of longitudinal (x) to transverse (y) fluctuations.
This is a simple example which demonstrates that there is no max-
imum principle for the magnitude of the current in dimensionality
exceeding one.

Note that in this example, the projected dynamics onto either
the x or y dimension are independent because neither the potential
nor the thermal noise couple x and y. In this case, Eq. (C2) is fully
separable with the projected currents in x and y each satisfying a
maximum principle individually.
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