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ABSTRACT:
Use of the auditory brainstem response (ABR) in research has increased in the search for physiological correlates

of noise-induced damage to the cochlea. The extraction of data from the ABR has traditionally relied on visual

determination of peaks and troughs to calculate metrics such as wave amplitude. Visual determination can be reliable

when evaluated by trained, experienced personnel, but noisy waveforms and overlapping waves produce uncertain

data. The present study proposes and validates a method of fitting summed Gaussian functions to the summating

potential and wave I of the ABR. This method could be useful to the research community studying these potentials

by providing more accurate measures of wave amplitude than by visual determination.
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I. INTRODUCTION

The auditory brainstem response (ABR) represents

electrical activity generated by the peripheral auditory nerve

and auditory brainstem. The ABR can be recorded reliably

from far field electrodes on the face and scalp, making it a

useful tool for both clinical and research purposes. The

ABR consists of a series of waves within 10 ms following

an acoustic stimulus, the most prominent of which in

humans are waves I, III, and V (Boston and Møller, 1985).

Latencies and amplitudes of these waves have been corre-

lated with several pathologies such as decreased auditory

sensitivity and tumors on the auditory nerve and brainstem.

Wave I is of particular interest, as it represents the periph-

eral auditory nerve (Britt and Rossi, 1980). Interest in wave

I has surged recently as a measure of synaptopathy, the

decoupling of the auditory nerve from the sensory hair cells.

Incidentally, hair cell electrical activity can also be recorded

proximal to wave I latencies, typically used in the diagnosis

of auditory neuropathy (Stuermer et al., 2015) and

Meniere’s disease (Ferraro, 2010). Both alternating current

(AC) and direct current (DC) components of hair cell

membrane potentials coincide with wave I, which may be

relevant in the diagnosis of synaptopathy. For example, the

reflection of current flow through hair cells, called the

cochlear microphonic (CM), is an AC response that follows

the stimulus frequency and duration. A summed DC compo-

nent, known as the summating potential (SP), also manifests

in ABR recordings. Liberman et al. (2016) observed

changes in the relationship between the SP and wave I in

young adults with a history of noise exposure.

Extraction of data from auditory evoked potentials such

as the ABR has typically relied on visual determination of

peaks and troughs in the waveform. This allows for the

calculation of wave amplitude and peak latencies but inher-

ently injects human error into ABR evaluations. To mitigate

this error, most studies employ multiple experts to identify

wave features. However, disagreements between experts are

common, leading to uncertainty in the data (Arnold, 1985).

A number of methods have been proposed to automate

this process. The majority of these applications focus on

detecting a response (e.g., Bogaerts et al., 2009; Bradley and

Wilson, 2004; Cabana-P�erez et al., 2017; Kostorz et al.,
2013; Pratt et al., 1989; Rushaidin et al., 2009; Rushaidin

et al., 2012). While response detection is useful for measuring

hearing sensitivity, most of these methods do not estimate

wave amplitude. Some algorithms have been developed to

find local maxima within predetermined latency constraints

for peaks and either minima in the waveforms or time deriva-

tives of the waveforms for troughs. Such algorithms can

calculate amplitude but can be less reliable than visual deter-

mination in noisy waveforms (Arnold, 1985) or when evoked

potentials overlap in time, such as the SP and wave I, or

waves V and VI of the ABR. Modeling waveform morphol-

ogy is a lesser-used approach (Elberling, 1979) but one that

could provide more information than algorithms that mimic

the visual-determination process or that merely detect the

presence of a response. Chertoff (2004) developed an equa-

tion modeling the morphology of the compound action poten-

tial (also wave I of the ABR) by summing the post-stimulus

time histograms of single auditory nerve fibers. Temporary

hearing loss in humans could be modeled by altering compo-

nents of the equation, providing insight into the pathophysiol-

ogy underlying temporary noise-induced hearing loss

(Lichtenhan and Chertoff, 2008).

Two Gaussian-like models have been proposed to fit

peaks of the ABR. Valderrama et al. (2014) used a Mexican

hat wavelet, the second derivative of the Gaussian function,a)Electronic mail: aryn.kamerer@boystown.org, ORCID: 0000-0001-6230-4032.
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to fit waves III and V of the ABR in eight normal hearing

subjects. Latencies and amplitudes estimated by the

model were comparable to metrics estimated by visual-

determination, suggesting the usefulness of a Gaussian-like

model in the extraction of ABR data. Similarly, Morawski

et al. (2019) proposed summing two Gaussian functions to

estimate metrics of the SP and action potential (analogous

to wave I) of the electrocochleogram (ECochG) in order to

calculate the amplitude and area ratios for the diagnosis of

Meniere’s disease.

In this study, we assess the use of a summed-Gaussian

model for estimating the morphology and parameters of the

SP and wave I of the ABR. The first experiment focuses on

the feasibility of the model by testing it on ABR data

recorded from adult humans. Metrics of latency and ampli-

tude of the SP and wave I estimated by the model were

compared to metrics determined visually by two experi-

enced audiologists. The second experiment focuses on the

validity of the model using a parameter-recovery experi-

ment on simulated ABR data.

II. MODEL

The ABR waveform amplitude as a function of time

was modeled by summing two Gaussian functions

ABR tð Þ ¼ A1e� ðt�L1Þ2=2W1
2½ � þ A2e� ðt�L2Þ2=2W2

2½ �;
where the first function models the SP and the second models

wave I. t is post-stimulus time (ms), A is the peak-to-peak

amplitude of the SP (subscript 1) and wave I (subscript 2), L
is peak latency (ms), and W is the width (ms). A nonlinear

regression analysis estimated six parameters. Initial values

and boundary conditions (Table I) were set for the parameters

to speed estimation and convergence of the algorithm and

ensure accurate wave identification. Boundary conditions

for latency (L) were chosen based on the latency ranges

found in the literature and instructions given to human

observers in typical clinical paradigms for choosing

response peaks (Ferraro and Durrant, 1994).

III. EXPERIMENT 1: PROOF OF CONCEPT

A. Methods

The model was tested on ABR data from 32 adults,

previously published by Ridley et al. (2018). Twelve partic-

ipants [6 female; mean age¼ 31, standard deviation

(SD)¼ 8.5, range¼ 23–48 years] had normal hearing.

Twenty participants (10 female; mean age¼ 49, SD¼ 7,

range¼ 35–64 years) had sensorineural hearing loss. All

participants were assessed using standard audiometric pro-

cedures and tympanometry, as described in Ridley et al.
(2018). All procedures were approved by the Institutional

Review Board of the Boys Town National Research Hospital.

All participants provided informed consent. Participants were

paid for their participation.

ABR was recorded using custom-designed software

[Cochlear Response (CResp) version 1.0; Boys Town

National Research Hospital, Omaha, NE] on a computer

equipped with a 24-bit soundcard (Babyface; RME,

Germany). Electroencephalographic (EEG) responses were

acquired using surface electrodes placed at the forehead

(Fpz, ground), vertex (Cz, noninverting active), and an

inverting reference electrode placed in the ear canal

(ER3–26A gold foil tiptrodes). The stimulus was a 1-ms,

Blackman-gated pure-tone at 4 kHz presented in alternating

polarity monaurally at a rate of 27/s to an ER-3A insert ear-

phone (Etymotic Research, Elk Grove, IL) connected to the

soundcard. The stimulus level was 100 dB peak-equivalent

sound pressure level (peSPL). Calibration of the stimulus

levels was done using a sound level meter (System 824 and

SoundTrack LxT1; Larson Davis, Provo, UT) with the ER-

3A connected to the sound level meter via a 2 cc coupler

(G.R.A.S. 60 126, Denmark). Electrode impedances were

�5 kX in all cases. The EEG signal was amplified (gain-

¼ 100 000), filtered (from 0.1 to 1.5 kHz; Opti-Amp 8001;

Intelligent Hearing Systems, Miami, FL), filtered for line

interference using a 60 Hz notch filter and directed to the

computer via the soundcard for averaging. Responses

were separated by even and odd recordings and stored in

two buffers, which were averaged for the final waveform

(total averages¼ 8000 artifact-free responses). Two exam-

iners independently identified peaks and troughs of the SP

and wave I of the response. The software allowed for a reso-

lution of 0.02 lV for amplitude and 0.02 ms for latency.

Wave I amplitude was calculated as the difference between

the positive peak and the following trough. The amplitude of

the SP was calculated from the baseline—or midpoint of the

alternating current signal resulting from stimulus artifact or

cochlear microphonic (Chertoff et al., 2012)—to the peak or

shoulder preceding wave I. Latencies were used to clarify

disagreements between examiners. The processing delay of

the soundcard was taken into account when analyzing the

data for latency. Disagreements >0.02 ms were resolved by

a third expert examiner. Figure 1 presents example ABR

waveforms from one participant with normal hearing [Fig.

1(a)] and two participants with hearing loss [Figs. 1(c)

and 1(d)].

B. Statistical analyses

We took two approaches to assess the performance of

the model. The first was to measure the model fit to the data

in the time-domain. The ABR was windowed from 1 to

TABLE I. Bound constraints. A: estimates peak-to-trough or peak-to-base-

line amplitude; L: estimates peak latency; W: estimates peak width.

Initial Lower Upper

Value Bound Bound

A1 (lV) 0.75 0 1
L1 (ms) 1.5 0 2

W1 (ms) 0.3 0 0.7

A2 (lV) 1 0 1
L2 (ms) 2.75 2 3.5

W2 (ms) 0.2 0 0.7
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3.5 ms post-stimulus time (PST) to exclude the stimulus

artifact (Fig. 1, gray) and later-latency waves. The data

were then centered around the amplitude of the wave I

trough (Fig. 1, dotted line). This resulted in a waveform

with a positive average amplitude and reduced the need to

include a constant variable in the model. Absolute agree-

ment between the estimated Gaussian model and data for

each participant are reported as intraclass correlation coeffi-

cients (ICC). The strength of the agreement of each measure

was categorized such that ICC values 0.9� ICC< 1.0 were

considered in excellent agreement; 0.75� ICC< 0.9 were

considered good; 0.5� ICC< 0.75 were considered moder-

ate; and 0� ICC< 0.5 were considered in poor agreement

(Koo and Li, 2016). An additional measure of model fit in

the time-domain is the root-mean-square error of the resid-

uals normalized to the maximum amplitude of the wave-

form (nRMSE).

The second approach to assess model performance com-

pared the model-estimated metrics with metrics visually-

determined by expert audiologists and reported in Ridley

et al. (2018). ICC was used again as a measure of criterion-

referenced reliability between the model-estimation and

visual-estimation. Small between-subject variance can cause

ICC to take on a negative value, even if there is small

within-subject variance. Negative ICC values are

theoretically impossible (Giraudeau, 1996), thus negative

values were changed to zero and the only interpretation was

that the two methods of estimation were not in agreement.

C. Results

Figure 2 plots the ABR wave I of six of the 32 partici-

pants (black) and the estimated Gaussian model (red). The

range of intraclass correlations between the modeled wave-

form and participant data was ICC¼ 0.88 [Fig. 2(d)] to

ICC¼ 0.99 [Figs. 2(a) and 2(f)], with a mean of ICC¼ 0.97

(n¼ 32) and SD of 0.03. The range of nRMSE was

0.012–0.112 lV with a mean nRMSE¼ 0.055 lV and SD of

0.025 lV.

Agreement between the model and visual-determination

was different for estimated SP and wave I metrics (Table II).

The agreement was excellent for wave I latency (ICC¼ 0.97,

p< 0.001), suggesting that the experts and model chose the

same peak. Consequently, wave I amplitude was also in good

agreement (ICC¼ 0.88, p< 0.001). SP latency data from the

Ridley et al. (2018) study was not available but modeled and

visually-determined SP amplitudes were in poor agreement

(ICC¼ 0.24, p¼ 0.104). Amplitudes determined visually and

by the model for each participant’s data are plotted in Fig. 3.

There were ten (of 32) ABR waveforms for which the experts

FIG. 1. ABR waveforms of three participants. Stimulus artifact (grey) is

present in the waveform until approximately1 ms post-stimulus time. To

model wave I of the ABR, amplitudes were centered around the wave I

trough (red dotted line), then the resulting waveform was time-windowed

from 1 to 3.5 ms.

FIG. 2. ABR waveforms of six participants (black) with normal audiomet-

ric thresholds (a)–(c) and hearing loss (d)–(f). The Gaussian model (red) is

comprised of an SP (green) and wave I (blue).
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did not visually identify an SP, plotted as 0 lV on the x-axis.

Conversely, the Gaussian model assumes an SP exists and

will fit a function to the waveform. Therefore, the Gaussian

model estimated positive SP amplitude values in all 32 partic-

ipants, though two SP values were 0.01 [Fig. 2(f)] and 0.06 lV.

Interestingly, if these ten data points are removed, the ICC only

increases to 0.30 (p¼ 0.093), which is still considered in poor

agreement. The slopes of the correlations between the model

and visually-determined amplitudes (Fig. 3, solid lines) indi-

cate that the model consistently estimated larger SP amplitudes

and smaller wave I amplitudes than the experts.

IV. EXPERIMENT 2: VALIDITY

The results of Experiment 1 indicated agreement

between the model and visual-determination was excellent

for wave I amplitudes, but poor for SP amplitudes.

Disagreement typically occurred on waveforms that were

noisy or otherwise difficult to visually determine peaks.

Since the actual values of SP amplitude are unknown in

these waveforms, it is impossible to determine whether the

model or expert is truly correct. Therefore, we assessed the

validity of the model and experts using a parameter-

recovery experiment in which ABR wave I data were

simulated and presented to the model and expert for deter-

mination of metrics.

A. Methods

Thirty-two ABR waveforms were simulated using a

summed-Gaussian model and inputting pseudorandom

values for each parameter. Parameter values were deter-

mined, independently, by randomly sampling from the dis-

tribution of values estimated by the model in Experiment 1.

To mimic residual traces of cochlear microphonic or stimu-

lus artifact typically found in real data, a sinusoid at the

frequency of the stimulus (4 kHz) was added to the SP and

wave I components. The amount of 4 kHz noise was deter-

mined at random but not to exceed 0.05 lV. Figure 4

presents several examples of simulated ABR wave I data.

These waveforms were provided to the model and to two

experts who independently identified troughs and peaks in

the same manner as the real ABR waveform data described

above. SP amplitude was calculated as the difference in

amplitude between the baseline (time¼ 1 ms) to the SP

peak. Wave I amplitude was calculated as the difference

between the identified wave I peak and the following

trough. The two experts were given the latency boundaries

used for the simulated data as guidelines to identify SP and

wave I peaks. For ease of visual-determination, each figure

with a waveform was scalable to the experts’ preferences,

as was the case for Experiment 1.

ICC was used again as a measure of agreement between

the true parameters, i.e., those supplied to the simulation,

TABLE II. Absolute agreement between model and expert determination.

95% CI F Test

ICC Lower Upper Value df1 df2 p

SP Amplitude 0.24 0 0.56 2.64 31 6.40 0.104

Amp. if > 0 0.30 0 0.64 3.01 21 5.76 0.093

wave I Amplitude 0.88 0.70 0.94 19.14 31 14.11 <0.001

Latency 0.97 0.93 0.98 58.58 31 31.89 <0.001

FIG. 3. Amplitudes determined by visual estimation of peaks and troughs

compared to amplitudes determined by nonlinear estimation of Gaussian

functions for SP (green triangles) and wave I (blue squares). The dashed

line indicates a unit slope. FIG. 4. Examples of six simulated ABR waveforms.
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and the metrics estimated by the model and visual

determination.

B. Results

The model recovered the wave I metrics of amplitude,

latency, and width near-perfectly [ICC¼ 0.99, p< 0.001;

Fig. 5(a); Table III]. SP amplitude was also recovered

[ICC¼ 0.99, p< 0.001; Fig. 5(a); Table III]. Estimated SP

width was in good agreement with the simulated peak width

(ICC¼ 0.83, p< 0.001) and SP latency was in moderate

agreement (ICC¼ 0.58, p< 0.001).

Metrics were also calculated from the visual-

determination of peaks and troughs. Two experienced research

audiologists performed similarly on latency and amplitude

metrics for both the SP and wave I (Table III). Overall, the

model performed better than visual-determination at recover-

ing parameters of the simulated data; however, visual determi-

nation also performed highly [Fig. 5(b)].

V. DISCUSSION

The purpose of the study was to assess the use of a

Gaussian model of wave I to extract metrics of latency and

amplitude of the SP and wave I from the ABR waveform,

which is typically done by visual determination of peaks

and troughs and subject to error. The results of Experiment

1 indicate good agreement between the model and visual-

determination of wave I metrics, though the model esti-

mated smaller wave I amplitudes on average, compared to

the traditional method of visual-determination. There was

poor agreement between methods for SP amplitude, with

the model estimating larger SP amplitudes than visual deter-

mination. Additionally, the model estimated SP amplitudes

in all 32 waveforms while the experts could only determine

SP amplitudes for 22 of 32 waveforms. For example, in

three participants with hearing loss in Figs. 2(d), 2(e), and

2(f), experts failed to identify an SP. For Figs. 2(d) and 2(f),

the experts noted that although an SP might be present, it

could not be distinguished with confidence from the sur-

rounding noise and was therefore not identified. For the

participant in Fig. 2(e), the large peak preceding wave I was

not identified as the SP again because of the low-frequency

noise present in the ABR waveform. This is exemplified by

Fig. 1(c), which shows the full ABR waveform of the par-

ticipant in Fig. 2(e). Conversely, the model identified an SP

in all waveforms. In Experiment 2, early ABR waves were

simulated and the model and experts were given the same

instructions, in terms of latency bounds, and tasked

with recovering the amplitude and latency parameters that

generated each waveform. Both the model and visual-

determination performed well in recovering both SP and

wave I metrics, with the model performing slightly better

than visual-determination.

The results of Experiment 1 mirror that of the results

found by the use of a Mexican hat wavelet (Valderrama

et al., 2014) in that wave I latencies and amplitudes

estimated by the model and visual determination were

highly correlated but not entirely in absolute agreement.

Interestingly, both the Mexican hat wavelet and Gaussian

model estimated smaller wave amplitudes than visual deter-

mination. Valderrama et al. (2014) attributed this difference

to the overestimation of amplitudes by visual determination

as a consequence of local noise surrounding peaks and

troughs. This likely accounts for a portion of the differences

seen in the present data, but we also argue that in the case

of wave I, overestimation of wave I amplitude is due to the

FIG. 5. (a) Simulated amplitudes compared to amplitudes determined by

visual estimation of peaks and troughs for SP (green triangles) and wave I

(blue squares). (b) Simulated amplitudes compared to amplitudes deter-

mined by nonlinear estimation of Gaussian functions. (c) Visual estimation

compared to model estimation. The dashed line indicates a unit slope.

TABLE III. Absolute agreement between simulated metrics, model, and

expert determination.

95% CI F Test

ICC Lower Upper Value df1 df2 p

SP Amplitude Model 0.99 0.99 0.99 14,808 31 31.14 <0.001

Expert 1 0.99 0.97 0.99 186 31 25.55 <0.001

Expert 2 0.98 0.94 0.99 150 31 9.76 <0.001

Latency Model 0.58 0.27 0.77 4.26 31 22.22 <0.001

Expert 1 0.21 0 0.50 1.96 31 13.97 0.091

Expert 2 0.26 0 0.54 1.77 31 31.55 0.057

Width Model 0.83 0.64 0.92 12.82 31 17.81 <0.001

Experts - - - - - - -

wave I Amplitude Model 0.99 0.99 0.99 1,556 31 17.37 <0.001

Expert 1 0.94 0.60 0.98 66.11 31 3.73 <0.001

Expert 2 0.95 0.88 0.98 53.96 31 13.99 <0.001

Latency Model 0.99 0.97 0.99 150 31 30.71 <0.001

Expert 1 0.86 0.72 0.93 14.15 31 27.02 <0.001

Expert 2 0.75 0.51 0.88 8.12 31 20.65 <0.001

Width Model 0.99 0.98 0.99 200 31 29.28 <0.001

Experts - - - - - - -
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overlapping nature of the SP and wave I. For example, in

Fig. 2(e) a large SP could cause the adjacent wave I to

appear larger in the waveform (black) than the uncoupled

action potential (dark blue). The Gaussian model examined

in this study and Mexican hat wavelet proposed by

Valderrama et al. are comparable in fitting a single wave.

The advantage of the Gaussian function is its simplicity,

especially when fitting in series to several waves of the

ABR.

Noise in the data played a significant role in the perfor-

mance of visual-determination, but not the model. Noise

due to electromagnetic artifact or muscle movement can be

controlled by physically removing sources of noise, artifact

rejection, and averaging over repeated responses (Don and

Elberling, 1994). Even with such measures, there is often

noise early in the ABR due to stimulus artifact and cochlear

microphonic. These sources of noise are most often con-

trolled by alternating the polarity of the stimulus; however,

small amounts of cochlear microphonic may remain super-

imposed on the SP making a visual determination of an SP

peak difficult. In Experiment 1, the visual determination of

the SP was difficult in the presence of noise, hence the

undetermined SP amplitudes in 10 of the 32 waveforms.

The Gaussian model, on the other hand, estimated SP ampli-

tudes in eight of these ten visually-undetermined amplitudes.

Of course, it is impossible to definitively conclude the pres-

ence of SP in these waveforms, but we observe in this sample

that the visually-indeterminate SPs occurred in particularly

noisy waveforms. This is reiterated in Experiment 2, where

noise was purposefully added to waveforms to increase

the difficulty of visual-determination. Indeed, visual-

determination performed best for waveforms with little to

no noise added [Figs. 4(a) and 4(c)], but performed poorly

in noisy waveforms [Figs. 4(d) and 4(e)]. Overlap in the

SP-wave I waves also affected performance. Visual-

determination performed highly when SP and wave I were

clearly distinct [Figs. 4(a) and 4(c)], but performed poorly

in waveforms in which SP and wave I overlap [Figs. 4(b)

and 4(e)]. On the contrary, the Gaussian model performed

consistently on both noisy and clean waveforms.

Though noisy waveforms resulted in erroneous visual-

determination of peaks and troughs, visual-determination

more closely approximated model estimation of simulated

data from Experiment 2 [Fig. 5(c)] than the real data pre-

sented in Experiment 1 (Fig. 3). Simulated SP waves were

easier to identify and measure than the real SP waves. Since

ABR waves in Experiment 2 were simulated pseudo-

randomly, some uncommon SP-wave I combinations were

presented, such as Fig. 4(a). Another difference in

Experiment 2 was that experts were instructed to always

find an SP peak regardless of their confidence that one was

present. This is different than the instructions given to the

experts in Experiment 1, who only chose an SP peak if they

were confident one was present.

Another potential advantage of a model over visual-

determination is the estimation of metrics difficult to deter-

mine with the naked eye, especially when peaks overlap in

time. One such metric is wave width. In Experiment 2, the

Gaussian model recovered wave I width with an absolute

agreement of 0.99. Evidence from computational modeling

and empirical studies suggest wave width could be useful in

characterizing synaptopathy and other auditory nerve disor-

ders. For example, loss of auditory nerve fibers due to noise

exposure may narrow wave I (Harris et al., 2018;

Lichtenhan and Chertoff, 2008).

Finally, a more obvious advantage of a model approach

over visual-determination is task time. The manual labeling

of ABR waveforms is a tedious, time-consuming task that

requires training and experience. For clinicians, an auto-

mated approach would reduce task time and aid in decision

making for diagnoses. For researchers, this would reduce

training and expertise requirements and improve the reli-

ability of the data.

A. Limitations and future directions

A summed-Gaussian model of ABR morphology is a

promising method of extracting data from the ABR and other

auditory evoked potentials. Further development and applica-

tions of the model will be pursued in future studies. Some

conceivable issues in the model application need to be

addressed. First, a Gaussian function fit the SP well in this

particular dataset. These ABR data were recorded to a short-

duration (1 ms) tone-burst and high-pass filtered at 100 Hz.

The SP is a DC response but when elicited by a transient

sound and high-pass filtered, it looks like a wave (Durrant

and Ferraro, 1991). SP morphology is highly dependent on

stimulus and recording parameters and will differ vastly

across datasets. The use of a Gaussian model should be re-

examined with ABR data collected with lower filter cutoff

frequencies and with a longer stimulus duration. A second

limitation of the present study is the simulation of the data

used to validate the Gaussian model in Experiment 2. The

data were generated using a Gaussian model, therefore, a

good model fit was expected. The fact that visual determina-

tion was also accurate in Experiment 2 supports the fitting

validation by suggesting that the simulation had ecological

validity. The addition of noise to the simulations increased

the complexity of the parameter recovery for the model.

However, the difference in correlation between the model

and visual-determination in Experiments 1 and 2 [Fig. 3

compared to Fig. 5(c)] was possibly due to an inability of the

Gaussian model to accurately simulate realistic ABR

waveforms.

Additional studies include the optimization of the

model for use on other ABR waves. The advantage of a

summed Gaussian model over fitting individual functions is

the ability to account for overlapping waves. A summed-

Gaussian function could easily be expanded to include

later-latency waves such as waves IV, V, and VI which tend

to overlap in time and are difficult to visually estimate true

amplitudes. Further studies on physiological correlates of

wave width and latency are also of interest for the applica-

tion of this model.
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VI. CONCLUSIONS

(1) A summed-Gaussian model successfully fit the SP and

wave I of the ABR recorded in adults with a range of

auditory thresholds.

(2) A summed-Gaussian model out-performed visual-deter-

mination in estimating amplitude and latency in noisy,

simulated waveforms and when the SP and wave I over-

lapped in time.

(3) Accurate recovery of SP and wave I metrics from simu-

lated waveforms supports the use of the summed-

Gaussian model for fitting ABR waveforms.
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