Iranian Journal of Basic Medical Sciences

IJ MS

ijbms.mums.ac.ir

Correlation of quinolone-resistance, *qnr* genes and integron carriage in multidrug-resistant community isolates of *Klebsiella* spp.

Mohammad Reza Malek Jamshidi 1, Hengameh Zandi 2, Fereshteh Eftekhar 1*

- ¹Department of Microbiology, Faculty of Life Sciences and Technology, Shahid Beheshti University, Tehran, Iran
- ² Department of Microbiology, Research Center for Food Hygiene and Safety, Shahid Sadoughi University of Medical Sciences, Yazd, Iran

ARTICLE INFO

Article type: Original article

Article history:

Received: May 28, 2018 Accepted: Jul 3, 2019

Keywords:

Community isolates Integron Klebsiella spp. MDR Plasmid-mediated quinoloneresistance PMQR

ABSTRACT

Objective(s): Plasmid-mediated quinolone resistance (PMQR) determinants and integrons have a considerable contribution to bacterial drug resistance in Gram-negative pathogens. We studied the prevalence of PMQR genes and integron carriage in multidrug-resistant community isolates of *Klebsiella* spp.

Materials and Methods: Two hundred and fifty *Klebsiella* spp. isolates were collected from outpatient specimens between August 2015 and October 2017 in Yazd central Laboratory, Iran. Antibiotic susceptibility was determined against 17 antibiotics and minimum inhibitory concentration (MIC) of ciprofloxacin was measured by E-test. Polymerase chain reaction (PCR) was employed for detection of *qnrA*, *qnrB*, *qnrS*, *aac*(6')-*Ib-cr*, *oqxAB* and *qepA* genes.

Results: Disc diffusion results showed that 17 isolates (6.8%) were multidrug resistant (MDR), two of which were *Klebsiella oxytoca* and 15 were *Klebsiella pneumoniae*. MIC measurements revealed 11 ciprofloxacin-resistant isolates (including the two *K. oxytoca*), three intermediately-resistant and three ciprofloxacin-susceptible isolates. All ciprofloxacin-resistant and intermediately-resistant isolates carried at least one and up to four PMQR genes. The most prevalent PMQR gene was oqxAB (93.75%) followed by aac(6')-ib-cr (50.0%), *qnrB* (25.0%) and *qnrS* (18.75%) but *qnrA* and *qepA* were not detected. Class 1 integron was observed in 14 (82.3%) isolates including nine ciprofloxacin-resistant, two intermediately-resistant, and three susceptible isolates. Class 2 and 3 integrons were not observed.

Conclusion: Presence of MDR, multiple PMQR determinants as well as class 1 integron in community isolates of *Klebsiella* spp. can be an important source of transmission of these opportunistic pathogens.

► Please cite this article as:

Malek Jamshidi MR, Zandi H, Eftekhar F. Correlation of quinolone-resistance, qnr genes and integron carriage in multidrug-resistant community isolates of Klebsiella spp. Iran J Basic Med Sci 2019; 22:1387-1391. doi: 10.22038/IJBMS.2019.13985

Introduction

Klebsiella pneumoniae is an opportunistic pathogen and the cause of a significant number of nosocomial infections including pneumonia, wound, blood, intraabdominal and urinary tract infections (1). Over the past few years, the most common treatment for these infections has been the use of extendedspectrum β-lactam antibiotics and fluoroquinolones (2). However, multidrug resistant (MDR) isolates are rapidly spreading not only in nosocomial infections but also more recently in the community isolates (2, 3). Previously, fluoroquinolone resistance was thought to be solely due to the mutations occurring within its DNA gyrase target gene (4). However, the discovery of plasmid-mediated quinolone resistance (PMQR) in clinical isolates of Enterobacteriaceae has shown to play an important role in quinolone resistance (5). PMQR genes, frequently found in clinical isolates of Enterobacteriaceae, include: qnrA, qnrB, qnrS, qnrC and qnrD which their pentapeptide protein products protect quinolones from inhibition by DNA gyrase and topoisomerase IV, as well as the aminoglycoside acetyltransferase (Aac(6')-Ib-cr) which is responsible for enzymatic modification of fluoroquinolones (5).

Furthermore, fluoroquinolone-resistance is often observed in extended spectrum β-lactamase (ESBL) producing K. pneumoniae (6, 7). Over-expression of efflux pumps such as QepA, AcrAB and OqxAB also contribute to auinolone and fluoroguinolone resistance (8-10). Among the efflux pumps discovered in Gramnegative bacteria, the ogxAB was initially detected on a conjugative plasmid in Escherichia coli isolated from swine manure (11). Dissemination of ogxAB, a PMQR determinant, was later shown in clinical isolates of K. pneumoniae from Spain, South Korea and China (10, 12, 13). Furthermore, presence of PMQR genes on mobile genetic elements such as antibiotic resistant integrons, often carried by conjugative plasmids, has been shown to contribute to the dissemination of multidrug resistance in pathogens as well as environmental bacteria (14, 15). Among these mobile genetic elements, class 1 integron is the most commonly detected among Gram-negative MDR clinical isolates followed by class 2 integron (16, 17). However, there are few studies on integron carriage by community acquired isolates of *Klebsiella* spp. The aim of this study was to investigate the presence of multiple antibiotic resistance determinants in *Klebsiella* spp. isolates from outpatient specimens and the possible

correlation between quinolone-resistance, PMQR and integron carriage in these organisms.

Materials and Methods

Bacterial isolates and identification

Two hundred and fifty non-duplicate community acquired *Klebsiella* isolates were collected from outpatient specimens in Yazd Central Laboratory between August 2015 and October 2017 (mean age between 35 and 81 years old). Conventional biochemical tests were used for identification of the isolates which were then maintained in Tryptic Soy Broth (TSB; Merck, Germany) containing 4% glycerol at -70 °C.

Antimicrobial susceptibility testing

Susceptibility testing against various antibiotics was performed by disc diffusion according to the CLSI guidelines (2017) using commercially available discs (Mast, UK) including: amoxicillin (AMX, 10 µg), cefalotin (CF, 30 µg), ceftazidime (CAZ, 30 µg), cefotaxime (CTX, 30 μg), gentamicin (GM, 10 μg), nalidixic acid (NA, 30 μg), kanamycin (KM, 30 μg), amikacin (AN, 30 μg), 23.75/1.25 trimethoprim/sulfamethoxazole (SXT, μg), ciprofloxacin (CIP, 30 μg), ofloxacin (OFX, 5 μg), norfloxacin (NOR, 10 μg), nitrofurantoin (NF, 300 μg), meropenem (MEM, 10 μg), ertapenem (ETP, 10 μg), tetracycline (TE, 30 μg) chloramphenicol (CM, 30 ug) (18). K. pneumoniae ATCC 10031 was used as the susceptible control.

Determination of minimum inhibitory concentrations

Minimum inhibitory concentrations (MICs) were measured for ciprofloxacin-resistant and intermediately-resistant isolates by E-test (Liofilchem, Italy) according to the CLSI 2017 guidelines (18).

DNA Extraction and PCR amplification

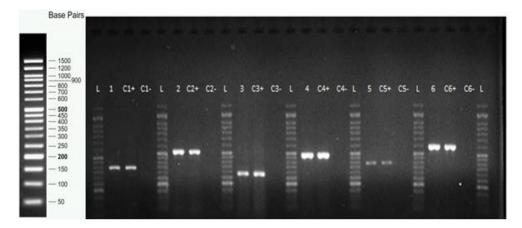
DNA extraction was carried out by boiling. Briefly, a loopful of bacteria grown overnight on MacConkey agar (Merck, Germany) were resuspended in 500 ml sterile double distilled water, boiled at 100 °C for 10 min, and were centrifuged at 10,000 g for 10 min. The supernatant used as DNA template for detection of qnr genes (qnrA, qnrB and qnrS) as well as the presence of integrase genes (Int1, Int2 and Int3) by PCR using specific protocols and primers shown in Table 1 (3, 10, 19, 20). Each PCR reaction mixture (25 µl) contained 1.5 µl DNA template, 1.5 mM MgCl₂, 0.25 mM of dNTP mix (Cinnagen, Iran), 1 unit of DFS-Tag DNA polymerase (Bioron, Germany), and 20 pmol of each primer (Faza Biothec, Iran). PCR amplifications were carried out in a thermo cycler (Applied Biosystems, USA). PCR products were separated on 1.5% agarose gels and visualized using gel a documentation system (ATP, Iran). PCR products were sequenced (Pishgam company, Tehran, Iran) to determine the subclasses of *qnr* genes as well as confirmation of integrase amplification products.

Results

Of the 250 *Klebsiella* outpatient isolates, nine were *K. oxytoca* (3.6%) and the rest were *K. pneumoniae*. The majority of the isolates were urinary (98%) including all *K. oxytoca* and 96.4% of *K. pneumoniae* isolates. Three isolates (1.2%) were from wounds and two (0.8%) were from sputum specimens. Disc diffusion results showed that 17 isolates (6.8%) were resistant to at least three antibiotic classes and were considered multidrug resistant (MDR) (Table 2). Fifteen MDR isolates were obtained from urine of female subjects over 60 years of age. One isolate was recovered from the sputum of a

Table 1. Primers and thermocycler conditions used for amplification of plasmid-mediated quinolone resistance (PMQR) and integron genes in ciprofloxacin-resistant community isolates of *Klebsiella* spp.

Gene		PCR Product Size (bp)	Thermocycler conditions				
	Primer Sequence		Denaturation (°C)	Annealing (°C)	Extension (°C)	Number of cycles	Ref
qnrA-F qnrA-R	5'-TTCTCACGCCAGGATTTGAG-3' 3'-TGCCAGGCACAGATCTTGAC-5'	571	94 1 min	57 1 min	72 1 min	30	3
qnrB-F qnrB-R	5'-TGGCGAAAAAATTGAACAGAA-3' 3'-GAGCAACGATCGCCTGGTAG-5'	594	94 1 min	57 1 min	72 1 min	30	3
qnrS-F qnrS-R	5'-GACGTGCTAACTTGCGTGAT-3' 3'-AACACCTCGACTTAAGTCTGA-5'	388	94 1 min	57 1 min	72 1 min	30	3
aac(6')-lb-cr-F aac(6')-lb-cr-R	5'-TTGCGATGCTCTATGAGTGGCTA-3' 3'-CTCGAATGCCTGGCGTGTTT-5'	482	94 1 min	54 1 min	72 1 min	30	3
oqxA-F oqxA-R	5'-CTCGGCGCGCGATGATGCT-3' 3'-CCACTCTTCACGGGAGACGA-5'	392	94 45 sec	57 45 sec	68 1 min	34	10
oqxB-F oqxB-R	5'-TTCTCCCCCGGCGGGAAGTAC-3' 3'-CTCGGCCATT'ITGGCGCGTA-3'	512	94 45 sec	64 45 sec	72 1 min	32	10
qepA-F qepA-R	5'-CTGCAGGTACTGCGTCATG-3' 3'-CGTGTTGCTGGAGTTCTTC-5'	709	94 45 sec	56 45 sec	72 45 sec	30	19
Int1-F Int1-R	5'-CCTCCCGCACGATGATC-3' 3'-TCCACGCATCGTCAGGC-5'	280	94 1 min	60 1 min	72 1 min	35	20
Int2-F Int2-R	5'-TTATTGCTGGGATTAGGC-3' 3'-ACGGCTACCCTCTGTTATC-5'	233	94 1 min	60 1 min	72 1 min	35	20
Int3-F Int3-R	5'-AGTGGGTGGCGAATGAGTG-3' 3'-TGTTCTTGTATCGGCAGGTG-5'	600	94 1 min	60 1 min	72 1 min	35	20


Table 2. Antibiotic resistance profiles, plasmid-mediated quinolone resistance (PMQR) and class 1 integron carriage in 17 community *Klebsiella* isolates

Isolate No	CIP MIC (µg/ml)	PMQR genes	Class 1 Integron	Antibiotic resistance profile (disc diffusion)
Kp 31	0.25	qnrB, oqxAB	+	AMX, CF, TE, CAZ, SXT, CIP ¹
Kp 143	1.0	oqxAB	+	AMX, NA, TE, SXT, CIP ¹
Kp 172	1.0	qnrS, oqxB	+	AMX, CF, CIP, OFL, NA, TE, SXT
Kp 11	1.5	qnrB, aac(6')-ib-cr	+	AMX, CF, CTX, CAZ, MEP, GM, AK, NA, TE, SXT, CIP ¹ , OFL ¹
Кр 9	3.0	oqxAB, aac(6')-ib-cr	-	AMX, CF, CTX, CM, NA, TE, SXT CIP ¹ , OFL ¹
Kp 63	3.0	qnrB, qnrS , aac(6')-ib-cr, oqxA	+	AMX, CF, NF, TE, SXT, CIP ¹ , OFL ¹
Kp 102	6.0	oqxAB	+	AMX, CF, NF, TE, SXT, CIP ¹ , OFL ¹
Ko 141	12	oqxAB	+	AMX, CF, NA, CIP, OFL, NF, TE
Kp 182	12	-	-	AMX, CIP, OFL, NOR, NA, NF, GM, SXT
Kp 42	>32	qnrB, oqxAB, aac(6')-ib-cr	+	AMX, CF, CAZ, CTX, CIP, OFL, NA, GM, AK, KM, NF, TE, SXT
Ko 55	>32	oqxAB, aac(6')-ib-cr	+	AMX, CF, CAZ, CTX, CIP, OFL, NA, KM, NF, TE, SXT
Kp 142	>32	qnrS , aac(6')-ib-cr, oqxA	+	AMX, CF, CAZ, CIP, OFL, NA, KM, NF, CM, TE, SXT
Kp 192	>32	oqxA	+	AMX, CF, CTX, CIP, OFL, NA, NF, SXT
Kp 229	>32	aac(6')-ib-cr	+	AMX, CF, CIP, OFL, NA, GM, NF, SXT
Kp 231	>32	oqxAB	-	AMX, CIP, OFL, NA, NF, TE, SXT
Kp 234	>32	oqxAB, aac(6')-ib-cr	+	AMX, CF, CAZ, CTX, CIP, OFL, NA, GM, KM, NF, TE, SXT
Kp 236	>32	oqxAB	+	AMX, CIP, OFL, NOR, NA, GM, NF, TE, SXT

AMX: Amoxicillin; CF: Cefalotin; CAZ: Ceftazidime; CTX: Cefotaxon; GM: Gentamicin; AN: Amikacin; KM: Kanamycin; NA: Nalidixic acid; CP: Ciprofloxacin; OFX: Ofloxacin; NOR: Norfloxacin; NF: Nitrofurantoin; MEM: Meropenem; CM: Chloramphenicol; Te: Tetracycline; SXT: Trimethoprim-Sulfamethaxazole; Ko: *Klebsiella oxytoca*; Kp: *Klebsiella pneumoniae*. All isolates were obtained from urine specimens of female subjects except for Kp 9 (sputum of a female subject and Kp 172 (urine of a male subject)

female subject and one from the urine of a male subject, both also over 60 years old. Among the MDR isolates, two were identified as $K.\ oxytoca$ and 15 were $K.\ pneumoniae$. MIC measurements revealed 11 ciprofloxacin-resistant (including the two $K.\ oxytoca$ isolates), with MICs, 6 to >32 µg/ml, three intermediately-resistant (MIC, 1.5 to 3.0 µg/ml) and three ciprofloxacin-susceptible (MIC, 0.25 to 1.0 µg/ml) isolates.

Figure 1 shows representatives of the PMQR and *int1* gene amplification products. Of the 11 ciprofloxacinresistant isolates, four carried the *oqxAB* genes and one had *oqxA* alone, two had *oqxAB/aac(6')-ib-cr* genes, one carried *aac(6')-ib-cr*, one had *qnrB/oqxAB/aac(6')-ib-cr*, one harbored *qnrS/oqxA/aac(6')-ib-cr* and finally one did not carry any of the tested genes (Table 2). Among the three intermediately ciprofloxacin-resistant isolates,

Figure 1. Representatives of polymerase chain reaction (PCR) amplification products of plasmid-mediated quinolone resistance (PMQR) and *int1* genes in outpatient isolates of *Klebsiella* spp. Lane 1, *oqxA* (392 bp); lane 2, *oqxB* (512 bp); lane 3, *int1* (280 bp); lane 4, *aac(6')-lb-cr* (482 bp); lane 5, *qnrS* (388 bp); lane 6, *qnrB* (594 bp). L; 50 bp DNA ladder; C-, negative control; C+, positive control

Table 3. Identification of qnr genes detected in outpatents isolates of *Klebsiella* spp

Isolate No	Qnr gene type	GenBank No	GenBank accession number
Kp 63	qnrS1	Y63S	MH369800
Kp 118*	qnrS1	Y118S	MH369801
Kp 142	qnrS1	Y142S	MH369802
Kp 172	qnrS1	Y172S	MH369803
Kp 230*	qnrS1	Y230S	MH369804
Kp 11	qnrB1	Y11B	MH333285
Kp 31	qnrB4	Y31B	MH369805
Kp 42	qnrB1	Y42B	MH369806
Kp 63	qnrB1	Y63B	MH369807

^{*} Ciprofloxacin susceptible isolates. The nucleotide sequences of qnrB and qnrS genes were analyzed by Chromas Pro version 1.7.5 Technelysium Kp: Klebsiella pneumoniae

one carried *qnrB/aac(6')-ib-cr*, one had *oqxAB/aac(6')*ib-cr and one carried qnrB/qnrS/oqxA/aac(6')-ib-cr genes. Of the three ciprofloxacin-susceptible isolates which were resistant to β -lactam antibiotics, one carried the oqxAB, and two harbored qnr genes (qnrS/ oqxB and qnrB/oqxAB). Interestingly, the aac(6')-ib-cr gene was not observed in the ciprofloxacin-susceptible isolates. None of the isolates carried qnrA or qepA. Class 1 integron was present in nine of the 11 ciprofloxacinresistant isolates, one did not have any of the PMQR genes and one carried only the oqxAB gene complex (Table 2). Finally, the three ciprofloxacin-susceptible and two of the intermediately-resistant isolates also carried class 1 integron (Table 2). Class 2 and 3 integrons were not observed. Sequencing results showed that among the four gnrB positive isolates, three were gnrB1 and one was qnrB4. The five qnrS positive strains all were identified as qnrS1 (Table 3).

Discussion

In this study, 17/250 (6.8%) of the outpatient's isolates were not only resistant to ciprofloxacin but were also MDR. The most prevalent PMQR gene among these isolates was oqxAB (93.75%) followed by aac(6')-ib-cr (50.0%), qnrB (25.0%) and qnrS (18.75%). None of the isolates carried qnrA or qepA. We also found that 82.3% of the ciprofloxacin-resistant isolates harbored class 1 integron but class 2 and 3 integrons were not observed. Among the few Iranian studies, Hashemi et al. reported that 4.1% of community isolates of Enterobacteriaceae in Hamadan, Iran, were resistant to ciprofloxacin (21). Seyedpour et al. reported that 13.5% of the community isolates collected from outpatients, harbored PMQR genes among which, aac(6')-lb-cr, qnrB and qnrS were predominant, respectively (3).

There are a limited number of studies on community isolates of *K. pneumoniae* worldwide. In a study performed in 2011 in Morocco, 2/36 (5.6%) of ESBL producing *K. pneumoniae* isolates from outpatients carried the *aac* (6')-*Ib-cr* gene and *qnrS1* (22). In a larger scale study two years later, the same group showed that among 34 ESBL producing *K. pneumoniae* community isolates, *aac* (6')-*Ib-cr*, was the most prevalent PMQR gene followed by *qnrB1*, *qnrS1*, *qnrB2* and *qnrA6* (23). Except for *oqxAB* and *qnrA*, our results were similar to the latter report. A study from Vietnam, showed that

among 45 K. pneumoniae community isolates from healthy individuals, the prevalence of qnrS was 33.3% followed by aac (6')-Ib-cr (2.2%) (24). In the present study, the majority of the quinolone resistant outpatient isolates carried an *oqxAB* gene. Rodriguez-Martinez *et al*. showed that a high level expression of this efflux pump decreased quinolone susceptibility in ESBL producing *K. pneumoniae* (10). The majority of studies report the presence of oqxA in clinical isolates of K. pneumoniae. However, human and veterinary strains can easily spread in communities. Hence, as a PMQR determinant, oqxA can have a major contribution in dissemination of fluoroquinolone resistance along with other antibioticresistance genes among the community isolates especially if they are located on integron/plasmid. In fact, Dakic et al. showed that 17.8% of communityacquired urinary tract isolates of *Enterobacteriaceae* in Greece carried integrons (mostly class 1) and observed a significant association between integron carriage and reduced susceptibility to a range of antibiotics including fluoroquinolones (25). In a recent study from Brazil, PMQR genes (55.5%) as well as frequent presence of the class 1 integron were detected in the community isolates of K. pneumoniae and E. coli (26). Despite the belief that integron harboring MDR clinical isolates are the source of community acquired infections, Leversteinvan Hall et al. showed the spread of antibiotic resistance genes from integron positive community strains of Enterobacteriaceae into the hospital strains (27). Interestingly, Kaplan et al. showed high percentages of ciprofloxacin-resistant Enterobacteriaceae in raw sewage and activated sludge from a waste water plant, the majority of which harbored at least one PMQR determinant (59.6% and 75%, respectively). They also found that PMQR gene presence did not correlate with class 1 integron carriage (28). In this research, class 1 integron was observed in the majority of the MDR isolates regardless of ciprofloxacin susceptibility or PMQR gene carriage. The predominance of class 1 integron has been shown in Gram-positive and Gramnegative clinical isolates as well as a number of different environmental bacteria (15).

Conclusion

Presence of multidrug resistance, multiple PMQR determinants as well as class 1 integron in community

isolates of *Klebsiella* spp. is alarming and presents an important source for cross transmission of these opportunistic pathogens among community members and hospitalized patients.

Acknowledgment

The authors are grateful to Shahid Beheshti University in Tehran and Shahid Sadoughi University of Medical Sciences in Yazd, Iran, for the financial support of this study. The results described in this paper were part of a PhD thesis of MR Malek Jamshidi.

Conflicts of Interest

All contributing authors declare no conflicts of interest.

References

- 1. Paczosa MK, Mecsasb J. *Klebsiella pneumoniae*: Going on the offense with a strong defense. Microbiol Mol Biol Rev 2016; 80:629-661.
- 2. Jadhav S, Misra R, Gandham N, Ujagare M, a Ghosh P, Angadiand K, *et al.* Increasing incidence of multidrug resistant *Klebsiella pneumoniae* infections in hospital and community settings. Inter J Microbiol Res 2012; 4:253-257.
- 3. Seyedpour SM, Eftekhar F. Quinolone susceptibility and detection of *qnr* and *aac(6')-lb-cr* genes in community isolates of *Klebsiella pneumoniae*. Jundishapur J Microbiol 2014; 7:1-4.
- 4. Hooper DC. Mechanisms of quinolone resistance. Drug Resist updates 2003; 2:38-55.
- 5. Jacoby GA, Strahilevitz J, Hooper DC. Plasmid-mediated quinolone resistance. Microbiol Spectrum 2014; 2:1-24.
- 6. Raei F, Eftekhar F, Feizabadi MM. Prevalence of quinolone resistance among extended-spectrum β -lactamase producing uropathogenic *Klebsiella pneumoniae*. Jundishapur J Microbiol 2014; 7:e10887.
- 7. Briales A, Rodríguez-Martínez JM, Velasco C, de Alba PD, Rodríguez-Baño J, Martínez-Martínez L, *et al.* Prevalence of plasmid-mediated quinolone resistance determinants *qnr* and *aac(6')-lb-cr* in *Escherichia coli* and *Klebsiella pneumoniae* producing extended-spectrum. Int J Antimicrob Agents 2012; 39:431-434.
- 8. Rahman Z, Islam A, Rashid MU, Johura FT, Monira S, Watanabe H, *et al.* Existence of a novel *qepA* variant in quinolone resistant *Escherichia coli* from aquatic habitats of Bangladesh. Gut Pathol 2017; 9:58-61.
- 9. Pakzad I, Karin MZ, Taherikalani M, Boustanshenas M, Lari AR. Contribution of AcrAB efflux pump to ciprofloxacin resistance in *Klebsiella pneumoniae* isolated from burn patients. GMS Hyg Infec Cont 2013; 8:1-6.
- 10. Rodríguez-Martínez JM, Díaz de Alba P, Briales A, Machuca J, Lossa M, Fernández-Cuenca F, et al. Contribution of OqxAB efflux pumps to quinolone resistance in extended-spectrum- β -lactamase-producing Klebsiella pneumoniae. J Antimicrob Chemother 2013; 68:68-73.
- 11. Sorensen AH, Hansen LH, Johannesen E, Sorensen SJ. Conjugative plasmid conferring resistance to olaquindox. Antimicrob Agents Chemother 2003; 47:798-799.
- 12. Park KS, Kim MH, Park TS, Nam YS, Lee HJ, Suh JT. Prevalence of the plasmid-mediated quinolone resistance genes, aac(6')-lb-cr, qepA, and oqxAB in clinical isolates of extended-spectrum beta-lactamase (ESBL)-producing *Escherichia coli* and *Klebsiella pneumoniae* in Korea. Ann Clin Lab Sci 2012; 42:191-197.
- 13. Yuan J, Xu X, Guo Q, Zhao X, Ye X, Guo Y, et al. Prevalence of the oqxAB gene complex in Klebsiella pneumoniae and Escherichia coli clinical isolates. J Antimicrob Chemother

2012; 67:1655-1659.

- 14. Navon-Venezia S, Kondratyeva K, Carattoli A. *Klebsiella pneumoniae*: a major worldwide source and shuttle for antibiotic resistance. FEMS Microbiol Rev 2017; 41:252-275.
- 15. Wen Y, Pu X, Zheng W, Hu G. High prevalence of plasmid-mediated quinolone resistance and IncQ plasmids carrying *qnrS2* gene in bacteria from rivers near hospitals and aquaculture in China. PLoS ONE 2016; 11:e0159418.
- 16. Akya A, Elahi A, Chegenelorestani R, Rezaee M. Dissemination of multidrug-resistant, class I and II integrons and molecular typing of CTX-M-producing *Klebsiella pneumoniae*. Int'l J Appl Basic Med Res 2018; 8:100-105.
- 17. Deng Y, Bao X, Ji L, Chen L, Liu J, Miao J, *et al.* Resistance integrons: class 1, 2 and 3 integrons. Ann Clin Microbiol Antimicrob 2015; 14:45-55.
- 18. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing. 27th Informational Supplement. M100-S17, Clinical and Laboratory Standards Institute, Wayne, PA: 2017.
- 19. Chen X, Zhang W, Pan W, Yin J, Pan Z, Gao S, *et al*. Prevalence of *qnr*, *aac*(*6'*)-*lb-cr*, *qepA*, and *oqxAB* in *Escherichia coli* isolates from humans, animals, and the environment. Antimicrob Agents Chemother 2012; 56:3423-3427.
- 20. Khoramrooz SS, Sharifi A, Yazdanpanah M, Malek Hosseini SA, Emaneini M, Gharibpour F, *et al.* High frequency of class 1 integrons in *Escherichia coli* isolated from patients with urinary tract infections in Yasuj, Iran. Iran Red Crescent Med J 2016; 18:e26399.
- 21. Hashemi SH, Esna-Ashari F, Tavakoli S, Mamani M. The prevalence of antibiotic resistance of *Enterobacteriaceae* strains isolated in community and hospital-acquired infections in teaching hospitals of Hamadan, West of Iran, J Res Health Sci 2013; 13:75-80.
- 22. Barguigua A, El Otmani F, Talmi M, Bourjilat F, Haouzane F, Zerouali K, *et al.* Characterization of extended-spectrum β-lactamase-producing *Escherichia coli* and *Klebsiella pneumoniae* isolates from the community in Morocco. J Med Microbiol 2011; 60:1344-1352.
- 23. Barguigua A, El Otmani F, Talmi M, Reguig A, Jamali L, Zerouali K, *et al.* Prevalence and genotypic analysis of plasmid-mediated beta-lactamases among urinary *Klebsiella pneumoniae* isolates in Moroccan community. J Antibiotics 2013; 66:11-16.
- 24. Le TM, Baker S, Le TP, Le TP, Cao TT, Tran TT, *et al.* High prevalence of plasmid-mediated quinolone resistance determinants in commensal members of the *Enterobacteriaceae* in Ho Chi Minh City, Vietnam. J Med Microbiol 2009; 58:1585-1592.
- 25. Dakic I, Lilakos D, Svabic-Vlahovic M, Christofilopoulou S, Poggas N, Charvalos E. Integron-associated antimicrobial resistance in isolates of members of *Enterobacteriaceae* causing community-acquired urinary infections. Microb Ecol Health Dis 2007; 19:201-206.
- 26. Araújo BF, de Campos PA, Royer S, Ferreira ML, Gonçalves IR, da Fonseca Batistão DW. High frequency of the combined presence of QRDR mutations and PMQR determinants in multidrug-resistant *Klebsiella pneumoniae* and *Escherichia coli* isolates from nosocomial and community-acquired infections. J Med Microbiol 2017; 66:1144-1150.
- 27. Leverstein-van Hall MA, Paauw A, Box AT, Blok HE, Verhoef J Fluit AC. Presence of integron associated resistance in the community is widespread and contributes to multidrug resistance in the hospital. J Clin Microbiol 2002; 40:3038-3040. 28. Kaplan E, Ofek M, Jurkevitch E, Cytryn E. Characterization of fluoroquinolone resistance and *qnr* diversity in *Enterobacteriaceae* from municipal biosolids. Front Microbiol 2013; 4:144-150.