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Multi-omics characterization of molecular features 
of gastric cancer correlated with response 
to neoadjuvant chemotherapy
Ziyu Li1*, Xiangyu Gao1*, Xinxin Peng2*, Mei-Ju May Chen3*, Zhe Li2*, Bin Wei2, Xianzi Wen4, 
Baoye Wei2, Yu Dong2, Zhaode Bu1, Aiwen Wu1, Qi Wu5, Lei Tang6, Zhongwu Li7, Yiqiang Liu7, 
Li Zhang7, Shuqin Jia8, Lianhai Zhang1, Fei Shan1, Ji Zhang1, Xiaojiang Wu1, Xin Ji1, Ke Ji1, 
Xiaolong Wu1, Jinyao Shi4, Xiaofang Xing8, Jianmin Wu9, Guoqing Lv10, Lin Shen11, Xuwo Ji2, 
Han Liang3,12†, Jiafu Ji1†

Neoadjuvant chemotherapy is a common treatment for patients with gastric cancer. Although its benefits have 
been demonstrated, neoadjuvant chemotherapy is underutilized in gastric cancer management, because of the 
lack of biomarkers for patient selection and a limited understanding of resistance mechanisms. Here, we 
performed whole-genome, whole-exome, and RNA sequencing on 84 clinical samples (including matched 
pre- and posttreatment tumors) from 35 patients whose responses to neoadjuvant chemotherapy were rigorously 
defined. We observed increased microsatellite instability and mutation burden in nonresponse tumors. Through 
comparisons of response versus nonresponse tumors and pre- versus posttreatment samples, we found 
that C10orf71 mutations were associated with treatment resistance, which was supported by drug response data 
and potentially through inhibition of cell cycle, and that MYC amplification correlated with treatment sensi-
tivity, whereas MDM2 amplification showed the opposite pattern. Neoadjuvant chemotherapy also reshapes 
tumor- immune signaling and microenvironment. Our study provides a critical basis for developing precision 
neoadjuvant regimens.

INTRODUCTION
Gastric cancer (GC) is one of the most frequent cancer types and 
the second common cause of cancer-related deaths (8.2%) in the world 
(1). China has the largest number of patients with GC, and according to 
the National Central Cancer Registry of China, >679,000 new GC cases 
are diagnosed, and about 498,000 GC-related deaths occur per year 
(2, 3). Most of these patients are at advanced stages with a 5-year 
survival rate of <30% (4). Although surgical therapy is the primary 

treatment for GC, multimodality strategies are being used to improve 
patient survival. Neoadjuvant (or perioperative) chemotherapy is admin-
istered as an approach of “downstaging and downsizing” a locally ad-
vanced tumor before attempting a curative resection. Furthermore, 
for patients with GC at a high risk of developing distant metastases, 
neoadjuvant chemotherapy helps reduce the risk by eliminating po-
tential cancer cells and informing sensitive therapeutic regimens for 
postoperative adjuvant chemotherapy (5). Compared to surgery alone, 
the benefits of this approach have been demonstrated by multiple clin-
ical trials (6–8). Currently, neoadjuvant chemotherapy is routinely used 
for the management of patients with resectable advanced-stage GC.

However, a considerable proportion of patients with GC do not 
respond well to neoadjuvant chemotherapy. So far, only some clin-
ical features such as age and preoperative weight loss can be used for 
patient selection, but with very limited power. Moreover, it remains 
unclear how neoadjuvant chemotherapy rewires cancer signaling 
and affects the tumor microenvironment. A thorough understanding 
of these questions is crucial in developing an optimized multimo-
dality treatment plan. Therefore, there is an urgent need to charac-
terize molecular markers that predict treatment response and decipher 
how GC evolves under the pressure of neoadjuvant chemotherapy. 
Focusing on a cohort of patients with GC whose responses to neo-
adjuvant chemotherapy were rigorously defined, we used a multi- 
omics, multiple-sampling strategy to address these questions in a 
systematic way.

RESULTS
Overall study design
The study comprised two major aims. The first aim was to identify 
the key molecular features associated with response to neoadjuvant 
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chemotherapy. For this purpose, we performed the multi-omics se-
quencing of biopsy tumor samples from 35 patients with GC before 
neoadjuvant chemotherapy (table S1 shows detailed patient and 
sample information; Fig. 1A). For these cases, we performed whole- 
exome sequencing (WES) of the tumor samples, together with 
matched germline DNA samples, which was mainly used to identify 
somatic base substitutions and small indels. For 32 of the 35 cases 
(3 cases were excluded because of insufficient DNA amount), we 
also performed whole-genome sequencing, together with matched 
germline samples, which were used to identify somatic copy num-
ber alterations (SCNAs). In addition, we performed RNA sequenc-
ing (RNA-seq) for all tumor samples to characterize the mRNA 

expression profiles of protein-coding genes. After the biopsy, the 
patients received 5-fluorouracil + oxaliplatin–based neoadjuvant 
chemotherapy for 2 to 4 cycles. Then, on the basis of a rigorous 
evaluation of radiological and pathological evidence by one radiol-
ogist and three independent pathologists, the cases were classified 
into two groups: response (n = 17) and nonresponse (n = 18). Figure 1B 
shows representative radiological and pathological images. In the re-
sponse group, the necrosis rates for all the cases were higher than 
65%, whereas in the nonresponse group, the rates were all lower than 
15% (Fig. 1C). The Mandard tumor regression grade (9) for cases in 
the response group was less than or equal to two, whereas it was 
four or five for cases in the nonresponse group (Fig. 1D). In general, 
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Fig. 1. Study overview. (A) Sample collection and multiomics data generation. Our study included 35 patients with GC who received neoadjuvant chemotherapy before 
surgery. We collected pretreatment biopsy samples and posttreatment surgically resected tumor samples. On the basis of rigorously evaluated radiological and patho
logical evidence, patients were classified into a response group (n = 17) and a nonresponse group (n = 18). We obtained multiomics data on the pretreatment samples 
and the nonresponse, posttreatment samples through wholeexome sequencing (WES), wholegenome sequencing (WGS), and RNA sequencing (RNAseq). (B) The rep
resentative radiological and pathological images from responsive and nonresponsive patients. The yellow arrows indicate the lesion sites. (C) The necrosis rate distribu
tion in the response and nonresponse groups. (D) Mandard tumor regression grading scores of the response and nonresponse groups.
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patients in the response group were younger than those in the non-
response group (Wilcoxon rank sum test, nresponse versus nnonresponse = 
17:18, P = 0.047; fig. S1A), and the patients in the nonresponse 
group tended to have advanced stages (Wilcoxon rank sum test, 
nresponse versus nnonresponse = 17:18, P = 0.023; fig. S1B).

The second aim was to study the genomic evolution of gastric 
tumors under neoadjuvant chemotherapy. To achieve this, we ob-
tained fresh tumor samples from 14 of the 18 patients in the non-
response group through surgery after they received neoadjuvant 
chemotherapy, and we performed WES on these posttreatment sam-
ples (table S1 and Fig. 1A). For these cases, we also performed whole- 
genome sequencing (for 13 cases) and RNA-seq, respectively. In contrast, 
for the patients in the response group, since a good response to neo-
adjuvant chemotherapy resulted in lesions with low tumor cell content, 
no tumor tissues could be obtained. Together, this experimental de-
sign allowed us to identify multiple types of molecular aberrations 
(somatic base substitutions, SCNAs, and gene expression) involved 
in the tumor response to neoadjuvant chemotherapy from different 
perspectives (response versus nonresponse, pretreatment versus 
posttreatment).

Key mutational features associated with response 
to neoadjuvant chemotherapy
Using WES data (tumor: range, 165 to 285× and median, 210×; nor-
mal: range, 88 to 143× and median, 114×), we first investigated the 
mutational patterns of pretreatment samples in the two patient 
groups. We used a multiple caller–based MC3 approach to call sub-
stitutions and small indels, which has shown better performance 
than a single caller (10). For the 35 pretreatment tumor samples, we 
identified an average of 550 substitutions (range, 3 to 3444) and 121 
small indels (range, 1 to 1236). These numbers are comparable to 
those observed in the GC samples in The Cancer Genome Atlas us-
ing the same mutation calling approach (fig. S2A and table S2) (10). 
We further validated the somatic base substitutions using RNA-seq 
data from the same samples, and for those substitution positions with 
sufficient RNA-seq coverage, >81% of them were validated, suggest-
ing a high accuracy of our mutation calling.

We examined the composition of six possible base-pair substitu-
tions and found that T > G substitutions exhibited the most distinct 
pattern between the response and nonresponse groups, especially 
when the substitution site was flanked by C and T (Fig. 2A and fig. 
S2B). Consistently, on decomposing the mutational spectrum into 
different mutational signatures, the Catalogue of Somatic Mutations 
in Cancer (COSMIC) signature 17 (T > G) (11), a signature previously 
observed in esophageal and stomach cancers and linked to a by-product 
of oxidative damage (12), showed a much higher contribution in 
the response group than that in the nonresponse group (Wilcoxon 
rank sum test, P = 0.049, nresponse versus nnonresponse = 17:18; Fig. 2B). 
We next examined the distributions of microsatellite instability 
(MSI) scores calculated by Microsatellite Analysis for Normal 
Tumor InStability (MANTIS) (13) in these tumors. We found 
that MSI score was significantly higher in the nonresponse group 
than that in the response group (Wilcoxon rank sum test, P = 0.022, 
nresponse versus nnonresponse = 17:18; Fig. 2C). Accordingly, we tested 
whether there was a higher mutation burden in the nonresponse 
group and confirmed this pattern (Student’s t test, nresponse versus 
nnonresponse = 17:18, P = 0.04; Figs. 2D and 3A). Preclinical data have 
shown that colorectal tumors with MSI-H status are resistant to 
5-fluorouracil–based chemotherapy (14, 15). Clinically, only patients 

with MSI-negative colorectal cancer, and not those with MSI-H, 
benefit from adjuvant chemotherapy (16), rendering the MSI-H sta-
tus a strong predictive factor for nonresponse to 5-fluorouracil–
based chemo therapy (17). Our results provide the first evidence that 
MSI-H status can also serve as a predictive marker for nonresponse to 
neoadjuvant chemotherapy for patients with GC.To identify indi-
vidual mutated genes that potentially play a role in affecting the 
treatment response, we next identified significantly mutated genes 
(SMGs) using MuSiC2 (18) [P = 2.9 × 10−4, false discovery rate 
(FDR) = 0.05, table S3]. The top mutated genes included TP53, 
PI3KCA, RNF43, ARIDA1, and KRAS, as previously reported in 
other GC cohorts (Fig. 3A) (19). Among the SMGs identified in this 
and previous studies (19), C10orf71 was the only gene showing a dis-
tinct pattern between the response and nonresponse groups: It was 
mutated in five nonresponse samples but in none of the response 
samples (Fisher’s exact test, P = 0.04, FDR < 0.25), and no recurrent 
mutations were detected (Fig. 3B). To validate this observation, 
based on drug response data using a panel of 21 GC cells (20), we 
indeed observed that the cell lines harboring C10orf71 mutations 
were more resistant to cisplatin (the equivalent platinum drug in-
cluded in the neoadjuvant chemo therapy regimen) than those wild- 
type cell lines (Student’s t test, nmut versus nWT = 3:18, P = 1.1 × 10−4; 
Fig. 3C and table S4). To gain more mechanistic insights, we ana-
lyzed functional proteomic data of gastric cell lines using reverse- 
phase protein arrays (RPPAs). We found that the cell lines with C10orf71 
mutations showed a significantly lower cell cycle score (based on 
eight protein markers) than those wild- type cell lines (Student’s t test, 
nmut versus nWT = 3:18, P = 0.015; Fig. 3, D and E, and table S4). 
Since cell cycle arrest is one major action mechanism for platinum- 
based drugs (21), we proposed a model in which C10orf71 mutations 
confer resistance to neoadjuvant chemotherapy through causing a 
less active cell cycle state (Fig. 3F). Although further experiments 
are required to validate the proposed model, these results suggest 
that mutations in this gene are potential biomarkers for the resist-
ance to neoadjuvant chemotherapy.

Key SCNAs associated with response to  
neoadjuvant chemotherapy
Using low-pass whole-genome sequencing data (tumor: range, 5 to 
9× and median, 7×; normal: range, 5 to 9× and median, 7×), we next 
investigated the SCNAs that could distinguish the response group 
from the nonresponse group. We identified significantly amplified 
or deleted peaks for these two groups using GISTIC2.0 (FDR = 0.1) 
(22). While the deletion peak profiles of the response and non-
response tumors were similar (fig. S3A), the response group con-
tained two unique amplification peaks: one at 8q24.21, which contains 
a major driver gene, MYC, and another at 19q12, which harbors a 
cancer gene, CCNE1. Meanwhile, the nonresponse group contained 
one unique amplification peak at 12q15, which contains MDM2, a 
negative regulator of TP53 (Fig. 4A) (23). We observed similar peaks 
using parallel WES data (fig. S3B). This analysis suggests initial 
SCNA candidates for further analyses.

We reasoned that if these amplification peaks played a role in af-
fecting the response to neoadjuvant chemotherapy, then we would 
observe corresponding signals in their related downstream pathways. 
Therefore, using RNA-seq data, we next examined the mRNA ex-
pression profiles of these pretreatment samples. Although we did 
not observe a significantly differential expression of MYC between 
the two groups (Fig. 4B; t test, P = 0.6), the MYC target genes showed 
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a significant enrichment of up-regulated genes in the response group 
relative to the nonresponse group (Fig. 4C; gene set enrichment 
analysis, nominal P = 0.0, FDR < 10−3), suggesting that MYC signal-
ing was indeed activated in the response group. The association of 
MYC amplification with better response to similar chemotherapies 
has been reported in multiple diseases including breast cancer (24), 
small cell lung cancer (25), and colorectal cancer (26). Consistent 
with its amplification peak in the nonresponse group, MDM2 showed 
a significantly higher mRNA expression level in the group (Fig. 4D; 
Student’s t test, nresponse versus nnonresponse = 17:18, P = 0.033). More-
over, the DNA repair pathway showed a corresponding up-regulation 
in the response group relative to nonresponse, supporting a nega-
tive regulatory effect of MDM2 on DNA repair (Fig. 4E; gene set 
enrichment analysis, nominal P = 0.0, FDR < 10−3). The association 
of MDM2 amplification with worse clinical outcome to chemotherapy 
has been reported in breast cancer (27) and pancreatic cancer (28). 
We did not observe significant changes for CCNE1 gene itself or its 
related pathway. Collectively, these results suggest that some key SCNAs 

may contribute to the sensitivity (e.g., MYC amplification) or resist-
ance (e.g., MDM2 amplification) to GC neoadjuvant chemotherapy.

Key somatic base substitution changes following 
neoadjuvant chemotherapy
Using the parallel WES data of 14 matched pre- and posttreatment 
sample pairs (average coverage, >200×), we examined the genomic 
evolution of GC under neoadjuvant chemotherapy. Overall, we did 
not detect significant changes in mutation burden or mutational sig-
natures. For known cancer drivers, some tumors showed key muta-
tional changes (mutation loss or gain), while others showed the same 
mutational profile before and after the treatment (Fig. 5A). To system-
atically identify the genes or pathways showing the most recurrent 
mutational changes, we used HotNet2 (29) to search for the protein 
interaction networks enriched for such signals. One top subnet-
work identified consisted of IRS1, IRS2, PIK3CA, JAK1, and IL6ST 
(Fig. 5B). In particular, IRS1, which plays a key role in transmitting 
signals from the insulin and insulin-like growth factor-1 receptors 
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to phosphatidylinositol 3-kinase/AKT pathway (30), consistently 
acquired new mutations in five posttreatment samples (Fisher’s ex-
act test, P = 0.041), suggesting a recurrent resistance mechanism. 
Our analysis of response versus nonresponse pretreatment samples 
suggested that mutations in C10orf71 contribute to treatment resist-
ance. If so, then we would expect increased allele mutation frequency 
or gain of new mutations in posttreatment samples, since tumor cells 
sensitive to the chemotherapy (i.e., those without such mutations) 
would likely be removed by selection during the treatment. Among 
the 14 sample pairs surveyed, four cases showed C10orf71 muta-
tions in the pre- or posttreatment samples, two of which acquired 
new mutations following neoadjuvant chemotherapy. Across the 
eight mutation sites detected, we observed a significant increase in 
mutation allele frequency compared to the pretreatment samples 
(Fig. 5C; Student’s paired t test, n = 8 pairs, P < 0.05; even after ad-
justing for tumor purity, the same pattern still held true). Figure 5 
(D and E) shows the schematic representation of the putative evo-
lution of the two cases in which the acquired C10orf71 mutation 
increased its allele frequency gradually. Although the true evolu-
tionary trajectory is hard to validate, this result suggests the critical 
role of C10orf71 mutations in affecting the tumor response.

Using exome-wide somatic base substitution data, we next tenta-
tively inferred the evolution of the 14 GC cases using sciClone (31) and 
found a variety of clonal behaviors. Some cases showed limited changes 
in the major clonal composition, whereas the others showed a number 
of subclone loss and gain including driver mutations (fig. S4). Overall, 
we did not detect a significant difference in clone numbers (pretreat-
ment, 3.7 versus posttreatment, 3.3., P = 0.43). Using whole-genome 
sequencing data of 13 matched pairs, we found very similar SCNA 
profiles between pretreatment and posttreatment samples (fig. S5).

Key gene expression and cell composition changes 
following neoadjuvant chemotherapy
Last, using parallel RNA-seq data of 14 pre- and posttreatment sample 
pairs (33 million reads per sample), we investigated the perturbed 
gene expression profiles following neoadjuvant therapy. We identi-
fied 869 differentially expressed genes (DESEQ2, n = 14 pairs, fold 
change, >2, P < 5 × 10−3, FDR < 0.05; Fig. 6A). These genes were 
significantly enriched in several down-regulated pathways, includ-
ing inflammatory response, allograft rejection, KRAS signaling, and 
interleukin-6 (IL-6)/Janus kinase/signal transducer and activator of 
transcription 3 signaling (Fig. 6B). Our analysis of response versus 
nonresponse pretreatment samples suggested that MYC ampli-
fication and subsequent MYC signaling activation make tumor 
cells sensitive to the treatment. If so, then we would expect that in 
tumor samples with MYC amplification, the MYC signaling would 
be “deactivated” by purifying selection during evolution. We found 
that for seven MYC-amplified tumors, nearly half of their MYC tar-
get genes (47.2%, 93 of 197) were significantly down-regulated in 
nonresponse posttreatment tumors (Student’s paired t test, n = 7 pairs, 
P < 0.05), and compared to other genes, this proportion was much 
higher (Fisher’s exact test, P < 10−3). In contrast, only 3% of the 
MYC target genes were significantly up-regulated in these samples 
(Fig. 6C). These results further support a link between MYC ampli-
fication and sensitivity to neoadjuvant chemotherapy. We also ex-
amined the expression of several therapeutic targets currently being 
used in GC treatment and found that HER2, VEGFR1, and VEGFR2 
were significantly down-regulated (paired Wilcoxon rank sum test, 
n = 14 pairs, P < 0.05, FDR < 0.1; Fig. 6D and fig. S6A).

To study the impact of neoadjuvant chemotherapy on the tumor 
microenvironment, we inferred the tumor-infiltrating immune cell 
abundance (including B cells, CD8 T cells, CD4 T cells, neutrophils, 
macrophages, and dendritic cells) from mRNA expression data using 
Tumor IMmune Estimation Resource (TIMER) (32). We found sig-
nificantly decreased cell compositions for neutrophils and dendritic 
cells (Fig. 6E; Student’s paired t test, n = 14 pairs, P < 0.05, FDR < 
0.12) and a marginal decrease for CD8 T cells (fig. S6B; Student’s 
paired t test, n = 14 pairs, P < 0.1, FDR < 0.2) posttreatment. Together, 
our RNA-seq analyses suggest that neoadjuvant chemotherapy can 
not only reshape immune signaling in the GC cells but can also 
modify their immune microenvironment.

DISCUSSION
Neoadjuvant chemotherapy is a widely applied treatment option for 
patients with GC, and several large clinical trials have demonstrated 
its benefits in improving prognosis and identifying responsive pa-
tients before therapy initiation, thus allowing better treatment plan-
ning. Here, we conducted a well-designed study with the aims of (i) 
identifying potential biomarkers that can select patients who would 
benefit from this treatment and (ii) elucidating the related resist-
ance mechanisms. Our study has several key features. First, the 
clinical response to GC neoadjuvant chemotherapy was rigorously 
defined by three independent pathologists; only those samples with 
a consensus assessment were included, thereby reducing the effects 
of phenotypic noise on data mining. Second, we used a multi-omics 
characterization strategy by combining whole-exome, whole-genome, 
and RNA-seq, enabling us to detect different types of molecular ab-
errations. Furthermore, integrated analyses across different datasets 
helped us identify high-confidence signals. Third, for nonresponse 
tumors, we sequenced matched pre- and posttreatment samples, 
and their comparison is orthogonal to the comparison of response 
versus nonresponse tumors, further validating the patterns of interest. 
This integrated design and the multilayer analytic strategy greatly 
helped us overcome the potential limitation of sample size, com-
monly observed in similar studies.

Our study identified several molecular features associated with 
the tumor response to neoadjuvant chemotherapy, including C10orf71 
and IRS1 mutations, and MYC and MDM2 amplifications. In par-
ticular, MSI status is currently being used to predict therapy response 
in colorectal cancer, and we observed a similar pattern, strongly 
supporting the potential of this feature as a clinical marker to manage 
therapy in patients with GC. Further efforts are warranted to validate 
the power of these potential marker candidates and build robust multi-
feature predictive models using independent GC patient cohorts. Our 
analysis also reveals the effects of neoadjuvant chemotherapy on tu-
mor immune signaling and tumor immune microenvironment, 
which may have significant clinical implications in the use of immuno-
therapy. Together, our study represents a significant step toward 
optimized treatment strategies for individual patients with GC.

MATERIALS AND METHODS
Patient recruitment and sample cohort
Patients with GC (>T2N+M0, Union for International Cancer Control- 
American Joint Committee on Cancer, eighth edition) in this study 
were recruited at Peking University Cancer Hospital (Beijing, China). 
The study was conducted in accordance with the Declaration of 
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Helsinki and approved by the Peking University Cancer Hospital 
Ethics Committee (Institutional Review Board approval number, 
2019KT05). All patients provided written informed consent before 
treatment, sample collection, and analysis. We collected tumor 
and matched adjacent nontumor tissues through biopsy before 
the neoadjuvant treatment. For patients without available adjacent 
nontumor tissues, we collected blood samples instead. All patients 
then received the fluorouracil-based treatment regimen of capecitabine/ 
S-1 + oxaliplatin {XELOX (Oxaliplatin+Capecitabine) (oxaliplatin, 
130 mg/m2, intravenously, day 1; and capecitabine, 1000 mg/m2, 
orally, days 1 to 14) or SOX [Oxaliplatin+S-1(Tegafur/gimeracil/
oteracil)] (oxaliplatin 130 mg/m2, intravenously, day 1; and S-1, 
40–60 mg, twice a day, orally, days 1 to 14)} for 2 to 4 cycles and 
were evaluated for response to treatment before surgery. The 
pathological features were evaluated according to Mandard tumor 
regression grading (TRG) score, which was performed on all the 
patients on the basis of the standard criteria by three independent, 
blinded pathologists (Zhongwu Li, Yiqiang Liu, and Zhang Li). A 
response was identified if there was no evidence that tumors had 
upstaged and had a Mandard TRG score of 1 or 2; nonresponse was 
classified as tumors that were upstaged and had a Mandard TRG 
score of 4 or 5; and tumors with a Mandard TRG score of 3 were 
excluded (9). To reduce the classification noise, we only focused on 
patients with consensus assessments from the three pathologists 
and lastly included 35 patients (17 response versus 18 nonresponse) as 
the study cohort. We further collected tumor samples after surgery. 
For the patients with a response, no posttreatment tumor samples 
were collected.

Multi-omics data generation
For the 35 patients with GC, genomic DNA from tissue (or blood) 
samples was extracted using the AllPrep DNA Mini Kit (QIAGEN) 
and the QIAamp DNA blood mini kit (QIAGEN), respectively. For 
WES, 1 g of DNA was sheared to short fragments [150 to 250 base 
pairs (bp)] using Bioruptor (Diagenode). The resulting DNA frag-
ments were repaired. Adaptors were then ligated to both ends of the 
fragments. DNA fragments of the targeted size were selected. After-
ward, polymerase chain reaction (PCR) was performed, and the re-
sulting mixture was purified. Exome capture was performed using 
SureSelect Human All Exon V6 (Agilent) according to the manufac-
turer’s protocol. The hybridized mixtures were then amplified with 
PCR. Validated DNA libraries were then sequenced on Illumina 
NovaSeq 6000. For whole-genome sequencing, 1 g of genomic DNA 
was sheared to 150 to 250 bp using Bioruptor (Diagenode). Then, 
DNA libraries were generated using the standard protocols of the 
TruSeq nano DNA kit (Illumina). The libraries were sequenced with 
paired-end runs using Illumina NovaSeq 6000 to a minimal depth 
of 6× base coverage. For RNA-seq, we extracted total RNA from 
fresh tissue using the AllPrep RNA mini kit (QIAGEN). For each 
sample, 3 g of total RNA was used to generate the libraries through 
the TruSeq RNA v2 kit (Illumina). The libraries were sequenced on 
Illumina NovaSeq 6000 and 33 million 2 × 150–bp paired ends per 
sample on average.

Mutational data analysis
WES read pairs were trimmed and only read pairs with <3% N bases 
and >50% high-quality bases were kept. The resulting high-quality 
reads were aligned to the human reference genome (Homo_sapiens_ 
assembly19) using Burrows-Wheeler Aligner 0.7.17 (33). To improve 

the alignment accuracy, we used the Genome Analysis Toolkit (version 
3.8.1) (34) to process Binary Alignment Map (BAM) files through 
the steps including marking duplicates, local realignment around 
high-confidence insertion and deletions, and base quality recali-
bration. On the basis of ~7000 high-frequency single-nucleotide 
polymorphism sites, we confirmed matched pre-, posttreatment, 
and normal samples from the same patients. We used the variant 
calling pipeline developed by The Cancer Genome Atlas MC3 project 
to identify high-confidence somatic base substitutions and indels 
(10). Briefly, this pipeline uses six callers to call substitution muta-
tions and three callers to identify indels with detailed annotation 
information. We only kept substitution mutations and indels sup-
ported by at least two callers for further analyses. We further vali-
dated WES somatic base substitutions based on RNA-seq data from 
the same samples. TopHat2 was used to generate the alignment (35). 
For each substitution position, we counted the coverage and the 
numbers of mutated reads based on RNA-seq BAM files from the 
same sample. For the positions with sufficient RNA-seq coverage 
(≥10×), we considered those with at least two reads supporting 
the base substitutions of interest validated. Mutational signatures 
in pretreatment samples were determined using the R package 
deconstructSigs v1.8.0 based on COSMIC signatures as mutation 
signature matrix (36). The MSI status for each tumor was evaluated 
using MANTIS (13), and 2539 loci obtained from the mSINGS 
package (37) were used for this analysis. We used MuSiC2 (18) to 
identify SMGs (FDR < 0.05) in all pretreatment samples. Maftools 
(38) was used to explore the SMGs that showed a significant muta-
tional bias between nonresponse and response samples based on 
Fisher’s exact test. To detect the gene group enriched with base sub-
stitution changes following the treatment, we used HotNet2 (29) 
to identify significantly mutated subnetworks based on heat scores 
of each protein. We only kept genes with altered events; an altered 
event was defined as different nonsilent variants of the same patient 
before and after treatment. Heat scores were limited to major drivers 
or genes with at least two altered events. HINT + HI2012, MultiNet, 
and iRefIndex interaction network were used, and consensus sub-
networks were visualized. Fisher’s exact test was used to determine 
the statistical significance.

Drug response assays and analysis
The cisplatin response data (area under the dose response curve) of 
the 21 GC cell lines with Cancer Cell Line Encyclopedia (CCLE) 
mutational profiling data were obtained from Genomics of Drug 
Sensitivity in Cancer (20). Among the cell lines, 3 contained non-
silent single-nucleotide variations in C10orf71 and 18 were wild type. 
Student t test was used to assess the difference between the cell 
lines with C10orf71 mutation and those with the wild type.

Reverse-phase protein array profiling data analysis
RPPA data were generated by the RPPA core facility at MD Anderson 
Cancer Center as previously described (39). RPPA slides were first 
quantified using ArrayPro (Meda Cybernetics) to generate signal 
intensities, then processed by SuperCurve to estimate the relative 
protein expression level, and were normalized by median polish. 
Protein markers were classified into 11 signaling pathways, and the 
pathway scores were calculated with the direction of protein mem-
bers considered (40). Student t test was used to assess the difference 
between the cell lines with C10orf71 mutation and those with the 
wild type, and FDR was used for multiple testing correction.
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Analysis of SCNAs
We used whole-genome sequencing data to infer copy number values 
in pre- and posttreatment samples. WES read pairs were trimmed 
following the criterion used for WES data. BWA 0.7.17 was used to 
align reads to the human reference genome (Homo_sapiens_
assambly19). SCNAs were then estimated on the basis of matched 
normal-tumor pairs through Control-FREEC (version 11.5), with a 
window size of 5 kb (41). On the basis of the corresponding seg-
mentation values, we used GISTIC2.0 (22) to identify regions with 
a statistically significant frequency of copy number alterations; the 
amplification and deletion thresholds were set to 0.1. Using the 
same tools, we performed a parallel analysis on the WES data as an 
independent dataset to validate the SCNA peaks identified through 
whole-genome sequencing.

Clonal structure analysis of pretreatment and  
posttreatment samples
To explore the clonal evolution driven by neoadjuvant chemotherapy, 
we inferred the dynamic changes of clonal structures using sciClone 
(31). The copy number values based on WES data inferred through 
Control-FREEC were used to exclude SNVs from copy-number al-
teration regions for the clonal analysis. We further validated the 
inferred subclonal evolution using another tool, PyClone (42).

Gene-expression analysis
We used an alignment-free tool, Kallisto (43), to quantify the gene 
expression based on RNA-seq data. We converted the output of 
Kallisto to gene-level counts and Transcripts Per Million (TPMs) 
using tximport (44). To identify differentially expressed genes be-
tween the response and nonresponse groups, we performed a t test 
for each gene and ranked them on the basis of the t statistic. We 
used gene set enrichment analysis based on the prerank to identify 
enriched hallmark pathways (45). To identify genes differentially 
expressed between the tumor samples of different treatment stages 
of nonresponders, we fitted a multifactor model with patient ID as 
the blocking factor and then conducted Wald test for the treatment 
stage effect using DESeq2 (46). Genes with FDR < 0.05 and fold 
change >2.0 or < 0.5 were selected as differentially expressed genes. 
We performed overrepresentation analysis (47) of MSigDB hall-
mark gene sets implemented by clusterProfiler (48) for up-regulated 
and down-regulated genes in the posttreatment samples separately. 
We further used Student’s t tests to compare the differential gene 
expression of MYC target genes before and after the treatment in 
MYC-amplified nonresponders. We inferred tumor-infiltrating im-
mune cell abundance from mRNA expression data using TIMER 
(32). We performed paired Student’s t tests to identify differences 
in cell composition between the matched pre- and posttreatment 
samples.
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