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Abstract

Chronic inflammation associated with monocyte activation has been linked to HIV-related 

cognitive outcomes in resource-rich settings. Few studies have investigated this relationship in the 

African context where endemic non-HIV infections may modulate effects. We characterized 

immune activation biomarkers in Kenyan and Ugandan participants in relation to 

neuropsychological testing performance (NTP) from the African Cohort Study (AFRICOS). We 

focused on activation markers associated with monocytes (sCD14, sCD163, neopterin), T-cells 

(HLA-DR+CD38+ on CD4+ and CD8+ T lymphocytes), and microbial translocation (intestinal 

fatty acid-binding protein, I-FABP). The HIV-infected (n=290) vs. HIV-uninfected (n=104) groups 

were similar in age with mean (SD) of 41 (9.5) vs. 39 (9.9) years, respectively (p=0.072). Among 

HIV-infected participants, the mean (SD) current CD4+ count was 402 (232); 217 (75%) were on 
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combination antiretroviral therapy (cART) and 199 (69%) had suppressed plasma HIV RNA. 

sCD14 was inversely correlated to NTP (r=−0.14, p=0.037) in models that included both HIV-

infected and uninfected individuals, adjusted for HIV status and research site, whereas sCD163 

was not (r=0.041, p= 0.938). Neither of the T-cell activation markers correlated with NTP. In the 

HIV-infected group, I-FABP was inversely associated with NTP (r=−0.147, p=0.049), even among 

those with suppressed plasma virus (r=−0.0004, p=0.025). Among the full group, HIV status did 

not appear to modulate the effects observed. In this cohort from East Africa, sCD14, but not 

sCD163, is associated with cognitive performance regardless of HIV status. Findings among both 

HIV-infected and HIV-uninfected groups is supportive that HIV and non-HIV-related 

inflammatory sources contribute to cognitive performance in this setting.
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INTRODUCTION

Cognitive impairment impacts up to 50% of people living with HIV (PLWH) in resource-

rich settings (Heaton et al, 2011). The estimated prevalence may be lower in Africa as 

reported in Zambia (33%) (Robertson et al, 2010), Uganda (31%) (Wong et al, 2007), and 

Botswana (37%) (Lawler et al, 2011), although methodological challenges make it difficult 

to provide firm estimates. Nevertheless, these studies confirm the presence of HIV-

associated cognitive impairment in Africa, a low-resource setting, where little is known 

about potential determinants of neuropathogenesis.

Non-HIV sources of inflammation are of interest because population-based reports link 

geographical burden of infectious disease to intelligence quotient (IQ), a measure of 

cognitive capacity (Eppig et al, 2010; Nakku et al, 2013). This raises the possibility that, in a 

setting such as the African continent, both HIV and non-HIV-associated immune activation 

pathways contribute to cognitive impairment in PLWH. Published reports focused on HIV-

specific pathways describe links to the virus itself and viral particles as well as chronic 

immune activation playing active and overlapping roles (Rao et al, 2014).

Two potential immune activation pathways among PLWH include tissue and intra-cellular 

levels of HIV DNA (e.g. monocytes, lymph nodes, the brain) and gut microbial translocation 

(Jiang et al, 2009; Brenchley et al, 2006). It is theorized that HIV-activated monocytes cross 

the blood brain barrier (BBB) and release cytokines and chemokines in the brain 

parenchyma, which may be directly or indirectly neurotoxic (Persidsky et al, 1999). Viral 

proteins gp120, Tat, Vpr, and Nef have also been demonstrated in vitro to directly damage 

neurons (Vesce et al, 1997; Pu et al, 2003; van Marle et al, 2009). Additionally, infected 

astrocytes can damage the BBB, allowing more pro- inflammatory cells and molecules into 

the brain (Eugenin et al, 2011). Chronic immune activation from gut microbial translocation 

may further perpetuate systemic and neuroinflammation, affecting cognitive reserve and 

contributing to cognitive dysfunction (Anuta et al, 2008).
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Two monocyte activation markers associated with cognitive impairment in PLWH in 

resource-rich settings are soluble CD163 (sCD163) and soluble CD14 (sCD14) (Imp et al, 

2017). sCD163 is a monocyte-associated hemoglobin-haptoglobin complex scavenger 

receptor cleaved from activated monocytes (Moller, 2012). In resource-rich settings, plasma 

sCD163 is higher in PLWH compared to HIV-uninfected people, even with effective cART, 

and levels are inversely linked to cognitive performance (Burdo et al, 2011; Alcaide et al, 

2013; Burdo et al, 2013). In Africa, plasma sCD163 is a risk factor for poor outcomes in 

HIV-infected individuals starting cART (Scriven et al, 2015; Bestawros et al, 2015) and is 

inversely linked to cognitive performance (Lyons et al, 2011). sCD14 is a marker of 

monocyte activation linked to gut microbial translocation as it is derived from a monocyte 

lipopolysaccharide receptor that is cleaved and released as sCD14. (Triantafilou and 

Triantafilou, 2002) Higher levels of plasma sCD14 have been associated with cognitive 

impairment in PLWH (Anuta et al, 2008). The relationship of sCD14 and cognition studied 

in the African context is limited, but one study of HIV-infected Nigerian women found 

correlation between higher sCD14 levels and cognitive impairment (Royal et al, 2016). 

Neopterin is a third marker of monocyte activation; it is a biochemical product of the 

guanosine triphosphate pathway (Fuchs et al, 1988). Studies have demonstrated a higher 

expression in HIV-infected compared to HIV-uninfected individuals, also linked to cognitive 

dysfunction (Fuchs et al, 1989; Griffin et al, 1991). Finally, intestinal fatty acid-binding 

protein (I-FABP) is expressed in the epithelial cells of the mucosal layer of intestinal tissue. 

I-FABP is released into the circulation following intestinal mucosal injury, therefore, its 

plasma concentration has been associated with enterocyte damage and gut microbial 

translocation. (Lau E et al, 2016).

In this study, we investigated the association of cognitive performance and immune 

activation in HIV-infected and HIV-uninfected adults in a setting expected to have added 

endemic infectious vulnerabilities compared to resource-rich areas. We hypothesized that 

monocyte-associated inflammatory markers would be associated with worse cognitive 

performance.

MATERIALS AND METHODS

Study design

AFRICOS is a prospective cohort study enrolling HIV-infected (n=3000) and HIV-

uninfected (n=600) adults at US Military HIV Research Program (MHRP) President’s 

Emergency Plan for AIDS Relief (PEPFAR)-associated clinical sites in rural Kenya, 

Tanzania, Uganda, and Nigeria. Inclusion criteria among PLWH were known HIV infection, 

age 18 years or older, signed informed consent, intent of long-term residency in the area, 

HIV care recipient, and ability to provide contact information. Exclusion criteria included 

any significant condition that, in the opinion of the investigators, would interfere with study 

conduct. The same inclusion and exclusion criteria were applied to HIV-uninfected 

participants but were required to consent to HIV testing and pre- and post-test counseling. 

Participants undergo neuropsychological testing at enrollment and every twelve months 

thereafter. For this analysis, we evaluated the first enrolled participants from the Kenya 

South Rift Valley (n=304) and Uganda (n=100) sites, chosen considering their geographical 
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proximity. All participants from these sites who completed neuropsychological testing at 

baseline and had concurrent inflammatory markers measured were analyzed. All participants 

consented by institutional review boards approved consent forms.

Clinical Characterization

AFRICOS visits involve comprehensive medical and socio-demographic evaluations with 

self-reported level of education. The neuropsychological testing battery includes the WHO 

Auditory Learning Visual Test (WHO AVLT) to test attention (AVLT trial 1), learning 

efficiency (AVLT sum of trials 1–5), and memory (AVLT recall), Trail Making Test Part A 

(psychomotor speed), Action Fluency (fluency), and the Grooved Pegboard (manual 

dexterity) (Maj et al, 1991; Reitan and Wolfson, 1985; Matthews and Klove, 1964). Testers 

were trained on all neuropsychological tests, certified, and re-certified every 6 months to 

assure consistent testing across all sites. Individual z-scores were calculated based on 

normative data collected at the same sites (Milanini et al, 2018). A composite global score 

was then derived by averaging the individual z-scores (NPZ-6). Assessments of CD4+ T-

lymphocyte count and plasma HIV RNA were performed either at CAP-certified MHRP 

research laboratories or at PEPFAR site clinic labs. Co-infections were defined by 

concurrent laboratory measures, including a positive hepatitis B surface antigen ELISA, 

hepatitis C antibody, positive malaria smear, sputum Xpert MTB/RIF, QuantiFERON 

interferon gamma release essay (performed if ART-naïve), serum cryptococcus antigen 

positivity (performed if CD4+ count <200 cells/mm3), and elevated titer for serum Rapid 

Plasma Reagin (RPR) or Venereal Disease Research Laboratory (VDRL) for syphilis.

Quantification of Immune Activation

Peripheral blood from participants was processed and reserved for plasma, serum, and 

peripheral blood mononuclear cells analysis. Soluble factors were measured independently 

at each site using commercial enzyme-linked immunosorbent assay (EIA) kits or 

multiplexed assays as per manufacturer’s instructions. Levels of sCD14 and sCD163 were 

measured by Quantikine ELISA (R&D Systems, Minneapolis, MN) and the R&D systems 

human I-FABP Duo Set EIA kit was used to measure levels of I-FABP. T-cell activation 

(percentage of CD4 or CD8 T-cells co-expressing HLA-DR and CD38) was determined 

using a whole blood lyse no-wash flow cytometry procedure as previously described. 

Commercial antibodies included CD3 PerCP (SK7), CD4 FITC (SK3), CD8 FITC (SK1), 

CD38 PE (HB7), and HLA-DR APC (L243) (BD Biosciences, San Jose, CA). Samples were 

examined on a BD FACSCalibur or FACS Canto II and data analyzed using FlowJo version 

9.8 (Treestar, Ashland, OR). Cut offs for CD38 and HLA-DR co-expression were set based 

on CD Chex Normal control gates. For Ugandan samples, EIAs were used to additionally 

quantify serum neopterin (Immuno-Biological Laboratories America, Minneapolis, MN).

Statistical Analysis

Initially, variables were summarized overall, by country, and by HIV status. Continuous 

variables were summarized using means and standard deviations, and categorical variables 

were summarized by counts and percentages. Comparisons between groups were completed 

by Student’s t-test and chi-squared tests. Multivariable linear regressions in the overall 

sample were used to examine the relationship between the inflammatory markers of interest 
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and cognitive performance. Adjusted models controlled for site (Uganda vs. Kenya) and 

HIV status. Follow-up analyses investigated the association between inflammatory markers 

and cognitive performance among HIV-infected participants, HIV-infected participants 

without co-infections (of tuberculosis, hepatitis B, hepatitis C, syphilis, and cryptococcosis), 

and HIV-infected participants who were virally suppressed (RNA <500 copies/mL). 

Covariates for all three models included CD4+ T-lymphocyte count and plasma HIV RNA. 

Analyses were performed on Stata (version 15.1, StataCorp, College Station, TX).

RESULTS

Demographic and Clinical Characteristics

Among 394 participants included, 290 (74%) were HIV-infected (Tables 1 and 2) with site 

distribution of 72 from Uganda and 218 from Kenya. As a group, the HIV-infected 

participants averaged 41 years of age (range 19–68), 58% were female, and 91% were 

literate. They self-reported educational attainment to be low, with 40% having some primary 

school or less and 34% completing primary school and some with secondary school but not 

having completed that level. The mean (SD) proximal and nadir CD4+ T-lymphocyte count 

was 402 (232) and 247 (258) cells/mm3, respectively. Among HIV-infected, 75% were on 

cART and 32% were treatment naïve. Differences in sCD14 and I-FABP were noted 

between the HIV-infected and uninfected groups (Table 3).

The HIV-uninfected participants did not differ in age from the HIV-infected group, at 39 

years of age (range 19–69, p=0.072). Sex and education did not differ from the HIV-infected 

group, with 50% female and 90% literate (p=0.162 and 0.713, respectively). They similarly 

reported a low level of educational attainment with 42% having some primary school or less, 

36% having completed primary school and some secondary school.

Monocyte-associated immune activation and cognitive performance

Higher levels of sCD14 were associated with lower NPZ-6 in an analysis of both HIV-

infected and HIV-uninfected groups (r=0.0001, p=0.037). No interaction effect of HIV-status 

was identified. In separate models examining smaller groups stratified by HIV status, no 

association was observed. Similarly, in sub-analyses among HIV-infected, no associations 

were noted among virally suppressed participants (p=0.284) or among participants without 

co-infections (p=0.228). Plasma sCD163 (p=0.938) and neopterin (p=0.659) were not 

associated with NPZ-6 in the overall sample or in any of the sub-groups (p=0.963, p=0.835).

Intestinal integrity-associated and T-cell activation markers and cognitive performance

Levels of I-FABP were not associated with NPZ-6 scores in the overall sample (p=0.074) 

and HIV-status interaction effects were not noted. When we examined for associations in 

only HIV-infected participants, a marginal effect was noted (r=−0.0004, p=0.049) that was 

stronger among virally suppressed HIV-infected participants examined alone (r=−0.0004, 

p=0.025). The frequencies of HLA-DR and CD38 expression on both CD4+ and CD8+ T-

lymphocytes were not associated with NPZ-6 in the overall sample (p=0.654, p=0.503) or in 

any of the sub-groups (p=0.763, p=0.927). No association was observed among HIV-

infected participants without co-infections.
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DISCUSSION

Among our primary hypotheses, only plasma sCD14 levels were associated with overall 

cognitive performance in a sample of both HIV-infected and HIV-uninfected participants. 

Within these models, HIV status did not appear to modulate the effect seen between immune 

activation and cognition in this cohort from East Africa. In exploratory examinations, plasma 

I-FABP, a marker of enterocyte damage, was inversely associated with cognitive 

performance, but only in the HIV-infected group. This effect remained present in those that 

were virally suppressed. This effect was not seen when examining the group without co-

infections. The co-infections we quantified included syphilis, hepatitis B, and hepatitis C. 

Other gut co-infections are common in Africa, including bacterial pathogens such as E. coli 
spp (including enterotoxigenic type), Shigella spp, Salmonella spp and Campylobacter spp. 

(40%), followed by parasites (27%) such as Cryptosporidium spp, Cyclospora spp, 

Entamoeba spp and Blastocystis hominis and then viruses (22%), mainly rotavirus and 

adenovirus. A high prevalence of Cryptosporidium parvum, Cystoisospora belli and 

microsporidia is reported in HIV-infected adults from the same region (Fletcher et al, 2011). 

In contrast to other reports, we did not find associations between sCD163 and cognitive 

performance. Other exploratory immune activation markers similarly were not associated 

with cognitive performance, including neopterin and T-cell activation markers.

Considering that HIV did not modulate the correlations seen suggests that contributions 

from non-HIV-related inflammation, potentially from gut- associated inflammatory changes, 

may play an important role. Early depletion of mucosal CD4+ T cells, loss of immune 

homeostasis in the gut, and alteration of the normal gut microbiome composition (dysbiosis) 

are all phenomenon that have been linked to loss of intestinal integrity and persisting 

immune activation, even after cART and virologic control (Klatt et al, 2013).

Our finding of I-FABP correlating to worse cognitive performance has not previously been 

reported and is in contrast with one other study of HIV- infected women in the U.S. where 

no association was found (Imp et al, 2017). A prior study from Uganda suggested a 

contradicting trend-level decrease in I-FABP among ART-naïve PLWH, although the 

difference did not meet statistical significance (p=0.07) (Olwenyi et al, 2015). Because these 

findings were noted only in group level sub-analyses and since no serostatus interaction 

effects were noted in our main models, these findings should be interpreted with caution. 

Higher than expected levels of I-FABP in HIV-uninfected participants were seen and similar 

to levels seen among HIV-infected individuals samples taken from the U.S. (Sandler et al, 

2011) This leads us to consider unique competing sources of immunological and gut 

changes in Uganda that could impact I-FABP’s association to HIV outcomes.

These results differ from findings in resource-rich settings that find associations with sCD14 

and sCD163, but not I-FABP, which infer a monocyte-driven process (Imp et al, 2017). This 

discrepancy displays the importance of population context, especially that of co-infections, 

when assessing the pathogenesis of cognitive impairment. One could postulate that 

infections endemic to these regions lead to gut microbial translocation and chronic immune 

activation. For example, intestinal hookworm infection has been suggested to contribute to 
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cognitive impairment, but the evidence is limited and conflicting (Bartsch et al, 2016; Hotez 

et al, 2011; Welch et al, 2017; Taylor-Robinson et al, 2015).

We evaluated participants without co-infections of tuberculosis, hepatitis B, hepatitis C, 

syphilis, and cryptococcosis noting that the effects seen were no longer present; however, 

this may be due to smaller sample size limiting power. AFRICOS’s study design limited our 

ability to control for other endemic parasitic and enteric diseases, work that might add depth 

to these hypotheses. However, the known elevated frequency of gut co-infections in this 

population (Fletcher et al, 2013; Tumwine et al, 2002) that are likely linked to gut microbial 

translocation, further strengthens our finding that elevated sCD14 and I-FABP levels but not 

sCD163 are associated with worse cognitive performance. Since gut microbial translocation 

exists in the context of HIV infection, (Klatt et al, 2013)we can further surmise that this 

neuropathogenic mechanism is, at least partially, contributing to cognitive impairment in the 

context of HIV infection in East Africa.

We recognize several potential limitations to our work. As with other epidemiological 

studies, AFRICOS includes only a limited neuropsychological testing battery, thus, limiting 

our understanding of global cognition (Robert- son et al, 2010; Wong et al, 2007; Njamnshi 

et al, 2008; Oshinaike et al, 2010). The AFRICOS methods also limit our ability to assess 

endemic bio- logical vulnerabilities, especially parasitic and enteric diseases. This reduces 

our ability to select for HIV-specific contributions to inflammation. Finally, we cannot 

determine causality because this study was cross-sectional. Prior studies suggest that 

inflammation has a role in the progression of cognitive impairment (Gorelick, 2010; Simen 

et al, 2011). Despite these limitations, our measures were developed and validated in the 

African context and piloted with minor adaptions to local culture for accurate use, 

strengthening this work (Milanini et al, 2018). The use of co-enrolled HIV-uninfected 

controls to examine internally standardized performance is a further strength as we did not 

rely on external normative data that can add external systematic variability.

In conclusion, higher levels of plasma sCD14 but not sCD163, neopterin, or frequency of 

HLA-DR+CD38+ on both CD4+ or CD8+ T-lymphocytes are inversely associated with 

worse cognitive performance in men and women from Uganda and Kenya regardless of HIV 

status. Higher levels of I-FABP were associated with worse cognitive performance, but only 

in the HIV- infected group, perhaps due to higher propensity for dysbiosis, which has been 

described in the setting of HIV infection. Our findings add to prior studies by linking 

inflammation to cognition in the African context.
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Table 1.

Demographic characteristics for all participants at their initial visit (n=394).

Characteristics HIV-Uninfected (n=104), (%) HIV-Infected (n=290), (%) p-value

Sex, female 52 (50) 168 (58) .162

Age, mean (SD; range) 38.9 (9.9; 19–69) 40.9 (9.5; 19–68) .072

Education .713

 Some primary school or less 44 (42) 115 (40) -

 Completed primary school and some secondary school 36 (35) 98 (34) -

 Completed secondary school and some post-secondary school 32 (31) 64 (22) -

Ability to read and write 94 (90) 264 (91) .767

Employed, by self-report 43 (41) 133 (46) .411

Current depressive symptoms .896

 CES-D 15–21 54 (52) 143 (50) -

 CES-D ≥22 21 (20) 59 (20) -

Co-infection

 Hepatitis B (n=100) 6 (6) 16 (6) .856

 Hepatitis C (n=102) 2 (2) 4 (1) .686

 Syphilis (n=103) 7 (7) 29 (10) .332

HIV disease characteristics
†

 CD4 count, mean (SD) 402.4 (232) -

 Plasma HIV RNA, mean (SD) 53,107.8 (280,454) -

 Virally suppressed 199 (69) -

 cART-naïve 65 (32) -

 On cART 217 (75) -

†
Includes HIV-infected subjects only. “Current” refers to within the past week. CES-D=Center for Epidemiological Studies Depression scale. 

Hepatitis B=Hepatitis B surface antigen. Hepatitis C=Hepatitis C antibody. Tuberculosis=QuantiFERON or TBXpert Test. Cryptococcus=Serum 
Cryptococcus antigen. Syphilis=Serum RPR or VDRL. Virally suppressed<500 copies/mL=combination antiretroviral therapy.
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Table 3.

Immune activation markers by HIV serostatus (n=394).

Overall HIV-Uninfected HIV-Infected p-value comparing HIV− and 
HIV+

N Mean SD N Mean SD N Mean SD

sCD14 394 1953 636.5 104 1661 574.1 290 2058 637.0 0.001

sCD163 394 1119 794.4 104 1116 1075.9 290 1120 668.3 0.961

I-FABP 394 2171 2528.3 104 1406 1350.5 290 2447 2784.9 0.003

Neopterin 100 7.4 9.40 28 8.3 13.73 72 7.0 7.15 0.543

CD4+ HLA-DR+CD38+ 333 4.4 5.65 73 3.9 6.60 260 4.5 5.36 0.395

CD8+ HLA-DR+CD38+ 333 8.0 9.22 73 6.7 8.67 260 8.4 9.35 0.164

SD=Standard deviation. sCD14=soluble CD14. sCD163=soluble CD163. I-FABP=Intestinal fatty acid-binding protein. T-lymphocyte CD4+HLA-

DR+CD38+. T-lymphocyte CD8+HLA-DR+CD38+.
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