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Abstract

Chromosome conformation capture (3C) and its variants are powerful experimental techniques for 

probing intra- and inter-chromosomal interactions within cell nuclei at high resolution and in a 

high-throughput, quantitative manner. The contact maps derived from such experiments provide an 

avenue for inferring the 3D spatial organization of the genome. This review provides an overview 

of the various computational methods developed in the past decade for addressing the very 

important but challenging problem of deducing the detailed 3D structure or structure population of 

chromosomal domains, chromosomes, and even entire genomes from 3C contact maps.

INTRODUCTION

Eukaryotic chromosomes are made up of chromatin, a fibrous complex of DNA and histone 

proteins.1 Understanding how the chromatin fiber is spatially organized inside the cell 

nucleus has become an increasingly important topic of study.2-4 The reasons for the growing 

interest include: a greater appreciation for the biological roles of chromatin organization in 

all cellular and nuclear processes;5 an increasing numbers of cancers,6-8 developmental 

defects,9, 10 and neurological disorders11, 12 being linked to defects in chromatin 

organization; and recent developments in powerful microscopy and DNA sequencing 

technologies providing a wealth of new data.13-16 The most obvious role of chromatin 

organization is in packaging the enormously long genomic DNA into the tiny confines of the 

cell nucleus, while enabling ready access to genes and regulatory elements on demand.17, 18 

Chromatin organization also plays critical roles in DNA transcription and recombination by 

bringing into proximity multiple functional DNA elements that are otherwise distant on the 

DNA sequence. Two striking illustrations of such long-range interactions, mediated by 

chromatin looping, include the classical case of promoter-enhancer interactions required for 

initiating transcription19 and the fascinating rosette-like organization of the immunoglobulin 

heavy chain locus that appears in developing B-cells to facilitate V(D)J recombination.20, 21 
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Lastly, chromatin organization enables physical segregation of genomic elements based on 

their function. For instance, mammalian genomes are organized into topologically 

associating domains (TADs) harboring common epigenetic marks at the 100 kb to 1 Mb 

scale,22-24 into tissue-specific compartments of active and inactive chromatin at ~5 Mb 

scales,25-27 and into the well-known chromosome territories at the largest scale.28

Biology has traditionally relied on light and electron microscopy for studying intracellular 

organelles and structures. However, these approaches are not ideal for visualizing the 3D 

organization of chromatin in vivo, owing to the low, diffraction-limited resolution of light 

microscopy (~200 nm) and to the highly invasive and non-specific nature of electron 

microscopy.29 Typically, chromatin folding has been visualized by multicolor fluorescence 

in situ hybridization (FISH), which can simultaneously provide the 3D positions of multiple 

genomic loci separated by >100 kb along DNA sequence or >200 nm in space,30 though 

discerning the folded configuration of chromatin remains challenging. While limitations in 

resolution can be overcome by super-resolution microscopy techniques,31, 32 these lack the 

throughput necessary to study more than a few chromatin regions at once.

A recently developed set of experimental methods, known as chromosome conformation 

capture (3C), has enabled researchers to study chromatin interactions and conformations at 

an unprecedented resolution and throughput (Fig. 1).33, 34 These methods begin by treating 

the chromatin inside cell nuclei with chemicals like formaldehyde. In this manner, DNA loci 

that are in close spatial proximity to each other become cross-linked, typically via 

intervening proteins. Next, the cross-linked DNA is digested using a restriction enzyme, 

yielding two kinds of DNA fragments: isolated and cross-linked fragments, with only the 

latter kind containing information about the interacting genomic loci. These loci are 

identified and quantified from the cross-linked fragments through a series of biochemical 

and bioinformatic steps. Then, by counting the number of times that each pair of loci is 

observed in cross-linked fragments collected from millions of cells, one can construct a 2D 

contact map that quantifies the frequency of interactions between all pairs of loci. While the 

original 3C method detected interactions between only a few preselected pairs of loci,35 the 

latest and most advanced 3C variant, known as Hi-C, takes advantage of high-throughput 

sequencing to provide a comprehensive map of interactions across the entire genome at 

resolutions of up to ~1 kb.36, 37 Importantly, because the frequencies of interactions between 

genomic loci must on average be related to their spatial proximity in some reciprocal 

manner, the contact maps also contain valuable information about the 3D conformation of 

the underlying chromatin fiber. Inferring such structural information from contact maps is 

however a challenging task, because many unknowns are associated with the underlying 

chromatin fiber, including its physical properties, its variability across populations of cells, 

and the uncertainties in the measured contact counts, and because of the high dimensionality 

of the configurational space. To tackle this multidimensional structure-determination 

problem, different strategies, assumptions, and approximations have been proposed to 

develop a variety of ingenious computational approaches, which have been described by 

many excellent reviews.38-45

In this review, we provide our perspective on these computational approaches, which can be 

generally categorized into three classes. The first class assumes a functional relationship 
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between spatial distance and interaction frequency, enabling the optimization of chromatin 

conformation directly in the distance space. The second class does not invoke any such 

functional relationship, but uses polymer models to directly predict chromatin interactions, 

thus enabling the optimization of structures in the interaction frequency space. The third 

class also uses a distance-frequency relationship, but describes the measured interaction 

frequencies in probabilistic terms, thus enabling the optimization of structures within the 

statistical parameter space. The three classes of approaches are not completely mutually 

exclusive, as some approaches aptly combine features of different classes. For instance, 

some aspects of polymer modeling may also be used in the first and third class of methods. 

Nevertheless, such classification serves to organize the several possible components of a 

computational protocol for obtaining 3D chromatin conformation from 3C data. This review 

article does not cover other interesting aspects of 3C experiments, such as the experimental 

protocols, the computational pipelines for generating contact maps, and the vast amount of 

chromosome biology and physics learnt from such maps using de-novo polymer models. For 

information on these topics we refer the reader to several pertinent reviews.46-52

PROBLEM DEFINITION

All computational methods considered in this review take as input a 2D contact map and 

generate as output one or more 3D conformations of chromatin. Before describing these 

methods, we define their input and output in mathematical terms.

Hi-C experiments can generate up to ~109 sequence reads.53 However, even such large 

numbers of reads are insufficient to cover all possible inter-fragment interactions, whose 

number is much larger. For instance, the MboI enzyme generates ~106 fragments from the 

human genome, involving ~1012 possible inter-fragment interactions. Therefore, contact 

maps are typically constructed by dividing the genome into “bins” that are larger than the 

fragments46 Interactions are then counted across genomic bins rather than fragments. 

Denoting the total number of bins by N, a Hi-C contact map is represented as a symmetric N 
× N matrix

C ≡
c11 … c1N
⋮ ⋱ ⋮

cN1 … cNN

(1)

where cij represents the count of fragment pairs with one fragment in bin i and the other in 

bin j. The contact maps are then corrected for various experimental biases such as those 

arising from sequence mappability, density of restriction sites, and GC content.54 The 

contact maps of 3C and 5C experiments, which probe only selected pairs of interactions and 

can afford to probe them at much higher precision, are however best described in terms of 

the original inter-fragment interaction counts.55 In 5C, which relies on distinct sets of 

forward and reverse oligonucleotide probes that may also differ in numbers, only 

interactions between fragments associated with oppositely oriented primers can be probed, 

and hence the contact matrix is no longer symmetric and is also not square in most cases. 

Nevertheless, the computational approaches developed for Hi-C maps may be adapted for 

maps obtained from 3C and 5C, and vice versa, as long as differences in the definition and 
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resolution of the interacting loci (fragments versus bins) between the two types of 

techniques are taken into account.56 The contacts in Eq. 1 are often converted to interaction 

frequencies (IFs) or contact probabilities via fij = cij/∑i,jcij and the resulting “normalized” 

matrix is denoted by F.

Given a contact map C, or F, as input, the desired computational output consists of one or 

more 3D conformations of the chromatin fiber that are consistent with that contact map. One 

such conformation, or structure, can be described by a 3 × N matrix

R ≡ [r1, r2, ⋯, rN] (2)

where ri ≡ [xi,yi,zi]T represents the position vector of genomic bin i = 1,…,N in terms of 

Cartesian coordinates.

DISTANCE-OPTIMIZATION METHODS

The underlying idea in these methods is to convert the contact frequencies fij in the contact 

map into suitable spatial, or Euclidean, distances δij between the interacting loci, and then 

determine the locus coordinates ri of the chromatin conformation whose internal Euclidean 

distances dij ≡ ∣ri – rj∣ best match the target distances δij derived from the maps. The single 

solution for the chromatin conformation obtained in this manner is often referred to as the 

“consensus structure” (Fig. 2).

There are two key assumptions inherent in these methods. The first deals with the existence 

of a functional relationship for converting frequencies into distances. Certainly, such 

relationships are available for simple models of polymers. For instance, in ideal chains, 

where segments are connected by freely-rotatable joints, the frequency fij of overlap of two 

segments i and j decays as fij~sij
−3 ∕ 2 with respect to their separation sij ≡ ∣i – j∣ along the 

chain, while their spatial distance increases as dij~sij
1 ∕ 2.57, 58 Combining the two results 

yields the simple inverse relationship dij~fij
−1 ∕ 3 between frequency and distance. 

Chromosomes are however considerably more complex than ideal chains due to energetic 

interactions and heterogeneity of the underlying chromatin fiber and due to confinement and 

molecular crowding effects. Furthermore, the interactions observed in 3C maps arise not 

only from random collisions between loci, but also from protein-mediated loops with 

unknown lifetimes. The dij-fij relationship in chromosomes is generally far too complex to 

be described by any tangible model. Nevertheless, studies have employed various functions 

to at least capture the reciprocal dependence of locus distances on frequency, often with 

adjustable parameters to obtain the best agreement with experimental data.

The second assumption is that the obtained consensus structure is a reasonable 

approximation of the “average” conformation of chromatin exhibited by the ensemble of 

cells from which the 3C data were derived. Chromosomes, on the other hand, are highly 

dynamic entities and the conformation of chromatin likely varies from cell to cell. This 

conclusion may in fact be directly deduced from the non-binary nature of the interaction 

frequencies.49 Nonetheless, consensus structures may still provide valuable information on 
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the overall structure of chromosomes, and on differences in chromosome organization 

between different populations of cells examined by 3C.

Scoring Function and Constraints.

The consensus structure is obtained by minimizing the deviation of its internal distances dij 

from the corresponding distances δij = ℱ(fij) inferred from the 3C contact map via a 

suitable function ℱ that converts frequencies to distances. In its simplest formulation, this 

deviation is quantified as a weighted sum of squares of the individual deviations of the 

internal distances from the distance restraints

S(R) = ∑i = 1
N − 1 ∑j = i + 1

N wij(dij − δij)2
(3)

where wij are weights and S(R) is the objective or scoring function that needs to be 

minimized to attain the consensus structure denoted by R0. Without wij, the scoring function 

would be dominated by pairs of loci with large δij. Since the largest distances are inferred 

from the smallest fij values, the largest δij represent the least reliable inter-locus distances. 

Thus, to ensure that the scoring function is appropriately weighted based on the reliability of 

each restraint, wij should ideally decrease with δij (or increase with fij). A popular weighting 

function is wij = 1 ∕ δij
2 , 59-61 though wij = 1/δij,62 wij = 1,63-65 and wij ∝ ∣Zscore(fij)∣p, with 

p = 0.5 or 2,66, 67 have also been used. Interestingly, the latter approach assigns larger 

weights to frequencies that deviate from its average value in the map, irrespective of whether 

fij is smaller or larger than the average. Instead of using a functional form for wij(δij), one 

approach used two different values of wij, a large value for all δij smaller than some cutoff 

distance and a small one for larger distances.68 In some cases, the nature of the weighting 

function is restricted by the optimization approach. For instance, the multidimensional 

scaling approach discussed below generally requires wij = 1,45, 69, 70 though using log-

transformed distances may allow wij = 1 ∕ δij
2  to be used.71 The quadratic form of the above 

scoring function implies that even small deviations of the structure from the targeted 

distances δij get penalized. Hence, any uncertainties in the function ℱ used to derive the δij’s 

propagate to the obtained consensus structure. To alleviate some of the inherent bias 

introduced through the uncertain function ℱ, several approaches have attempted to use “flat-

bottomed” restraints that do not penalize deviations from δij until they become larger than a 

cutoff.72-74 Another approach devised a bell-shaped Lorentzian scoring function that assigns 

larger weights to consistent distance restraints whose values are not affected by the violation 

of inconsistent restraints.75

The scoring functions discussed above constrains the path of the chromatin fiber based 

purely on the distance restraints obtained from 3C data. However, because of the two 

assumptions and the data reliability issues discussed above, the consensus structures 

obtained after optimization may not be physically or biologically realistic. In addition, as 

this scoring function lacks an associated length scale, all structures proportional to R0 are 

equally valid solutions. Hence, the scoring function is often accompanied by additional 

structural constraints based on physical properties of chromatin and biological data. Chain 

connectivity and excluded volume represent two commonly implemented physical 
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constraints. The first constraint, which accounts for the physical connectivity of adjacent loci 

i and i + 1, is usually implemented as an upper-bound limit dmax on the spatial distance 

between the two loci given their lengths and the linear density of chromatin.61, 63, 72 The 

second constraint, accounting for the excluded volume of each locus, is typically 

implemented as a lower-bound limit dmin on the spatial distance between all locus pairs i and 

j, where dmin is either the diameter of the chromatin fiber for high-resolution structures, or a 

suitable larger value for coarser models.63, 72, 73, 76 Two common biological constraints 

include confinement and position restraints. The confinement constraint ensures that every 

locus in the genome is located inside the cell nucleus, usually approximated as a sphere of 

size consistent with that obtained from microscopy.61, 63 Confinement constraints may also 

be imposed on individual chromosomes, as they are known to occupy specific territories 

within the nucleus.28 In this case, the size of the confinement domain may be obtained from 

whole-chromosome FISH painting or estimated by scaling down the size of the nucleus with 

the ratio of the chromosome to genome length.60 Microscopy also provides information on 

the positioning of specific chromosomal regions, such as centromeres, telomeres, and lamin-

associated domains, thus allowing related constraints to be implemented.61, 63, 76

Frequency-Distance Conversion.

The relationship used for converting frequencies into distances plays a key role in these 

methods. The simple relationship δij = γfij
−1 ∕ 3 obtained from the polymer physics of ideal 

chain and fractal-globule models provides one possible option.61, 73 A softer version of this 

inverse relationship, δij = γ/fij, has also been used, especially in some of the earlier methods.
59, 63 The unknown prefactor γ that sets the scale of the system is generally chosen or 

optimized so that the strongest frequencies yields an appropriate contact distance, e.g., 

thickness of chromatin fiber, or that the resulting structure exhibits a more or less uniform 

density in the nucleus.61 Recognizing that chromosomes are complex and likely not to 

follow any single, tangible relationship between frequency and distance, many recent 

methods have begun to use a more open relationship δij = γfij
−α, where parameter α is used 

as an unknown parameter that also needs to be optimized.62, 65, 75, 77-79 Values of α obtained 

in this manner have been found to range between 0.5 and 1.4, highlighting the variable and 

complex nature of chromatin. Extending the concept of variability even further, one study 

assigned locus-dependent α’s to account for the tendency of some loci to co-cluster.80 

Several approaches have also considered using linear relationships, e.g., δij = −mfij +c (with 

m > 0), to only assign ℱ within a select range of frequencies deemed to be sufficiently 

reliable.60, 66

A more robust alternative to assuming relationships for ℱ is to derive such a function 

directly from a combination of 3D-FISH and 3C measurements, which respectively provide 

inter-locus distances and corresponding interaction frequencies. Such a strategy has been 

used by several researchers,64, 67, 70, 81 yielding various different kinds of calibration curves. 

In some cases, the δij vs. fij data could be well described by the power-law function δij~fij
−α

with α = 0.2570 and α = 0.39–0.49,81 while in other cases it was better described by a 

decaying exponential function64 and a 5th-degree polynomial.67, 82 An alternative approach 

is to derive the embedding function itself during optimization via nonlinear dimensionality 
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reduction.69, 83 One of these studies69 recovered a reciprocal relationship between δij and fij 

that could in fact be described by the power-law δij~fij
−α. However, the recovered exponent 

α was found to vary across different Hi-C data sets, attesting to the large variability in 

chromatin behavior or in Hi-C experiments, and to the inaccuracy inherent in using a single 

function ℱ.

Structure Determination.

The last aspect of these approaches involves optimizing chromatin conformation by 

minimizing the scoring function, often subject to the additional constraints mentioned 

earlier. A variety of optimization approaches have been employed, which may be roughly 

classified into two categories: (i) methods that use classical numerical optimization 

algorithms, which smartly traverse the multidimensional vector space R to locate the global 

minimum R0, and (ii) methods that use the established mathematical formalism of 

multidimensional scaling to obtain R0 through matrix algebra operations.

Classical numerical optimization offer flexibility, easy integration of a wide variety of 

weights and constraints, and the opportunity to observe intermediate structural solutions. 

While gradient-descent (or gradient-ascent) optimization provide a simple and efficient 

approach for optimizing scoring functions containing a few distance restraints and no 

constraints,59, 74, 75 more sophisticated optimization methods are required when analyzing 

contact maps involving hundreds of loci (bins) with an even larger number of constraints. A 

number of studies have used the open-source IPOPT software for such optimization.
63, 64, 68, 80 IPOPT is an interior-point gradient-based algorithm that is especially adept at 

tackling high-dimensional, nonlinear constrained optimization problems.84 Another 

commonly used optimization approach is simulated annealing.85 Here, the loci are 

represented by particles that interact with each other via harmonic potentials representing 

each of the distance restraints, i.e., particles i and j interact with a harmonic spring of 

equilibrium length δij and spring constant 2wij, whereupon the scoring function simply 

becomes the total energy of this system of interacting particles. The particle positions are 

sampled stochastically or deterministically using Monte Carlo (MC)66, 82, 86 or molecular 

dynamics (MD)65, 72, 73 simulations at a fictitious temperature. This temperature is set to a 

high value at the beginning of the simulation and is gradually lowered in steps during the 

simulation, enabling both rapid exploration of the configuration space and increased chance 

of trapping a configuration at or at least near the global minimum. In addition, multiple 

copies of simulations are performed to collect many possible candidates for the global 

minimum. Such candidates can then be clustered based on structural similarity to identify 

the consensus structure.66 While external constraints are easily handled in MC methods, 

they typically need to be converted into stiff potentials and moved into the scoring function 

in MD simulations.

Multidimensional scaling (MDS)87 provides a more elegant and efficient alternative to 

determining the consensus structure, though this approach works best with quadratic scoring 

functions without constraints and with equal weights. Given a complete set of pairwise 

distances between points in some vector space of high dimension K, MDS allows one to 

infer the vector coordinates of those points in a space of dimension k ≤ K so that the 
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cumulative deviation in the inferred distances from the given distances is minimized. This 

approach has found applications in sensor network localization88 and in determining 

molecular structures based on interatomic distances obtained from nuclear magnetic 

resonance.89 More recently, MDS has been use to determine chromatin conformations that 

best satisfy distance restraints. While the most general forms of MDS scoring, or stress, 

functions require numerical algorithms known as stress majorization to obtain optimal 

structures,90 the simplest form of MDS (with wij = 1) can be solved algebraically. This 

involves formulating a suitably centered N × N “Gram” matrix from distances δij inferred 

from the contact map, and then determining the largest three eigenvalues and corresponding 

eigenvectors of the Gram matrix. Simple rescaling of normalized eigenvectors by the square-

root of their corresponding eigenvalues then yields the desired consensus structure.45 Such 

an approach was first applied by the developers of the original 3C technique on the limited 

number of interactions they obtained.35 Since then, the approach has been applied to the 

more exhaustive Hi-C contact maps, which pose additional challenges. One of the main 

challenges in dealing with Hi-C data, especially from single cells, is that the contact maps 

are often quite sparse, i.e., contain many zero cij’s. Furthermore, due to low reliability of 

some interactions, pairs of inferred distances may not satisfy the triangle inequality (δij + δjk 

≥ δik for any loci i, j, and k). Hence, significant efforts have been devoted to assigning more 

reliable distances to missing or low frequency data using shortest-path approaches (e.g., the 

Floyd-Warshall algorithm) adopted from graph theory,45, 78, 91 recurrence plots adopted 

from non-linear time-series analysis,92 and regularization terms that account for missing 

data.62 Another strategy for dealing with map sparseness is multi-staged implementation of 

MDS, where MDS is first applied at high resolution to strongly interacting domains with 

large cij, e.g., TADs, and then applied at a lower resolution to weaker interactions across 

these domains.70 Researchers have also begun to consider optimization on distance 

manifolds to reduce the importance of distances derived from low frequencies86 or to 

entirely eliminate the use of the function ℱ.69, 83

POLYMER PHYSICS-BASED METHODS

Approaches based on polymer physics involve optimizing the parameters of a polymer-chain 

model of the chromatin fiber, whose conformational ensemble best recapitulates the 

experimentally-derived 3C contact maps. As shown in Fig. 3, such “training” of the model is 

usually accomplished via an iterative process involving three components: a polymer model, 

a sampling algorithm, and a parameter optimizer. The polymer model captures the physical 

properties of chromatin fiber, using a few known and unknown parameters. The sampling 

algorithm generates a thermodynamic ensemble of chromatin conformations consistent with 

the parameters of the model. These conformations are used for generating a “predicted” 

version of the contact map. The parameter optimizer compares the predicted map against the 

experimental map to suggest parametric refinements to the model in order to improve the 

agreement between the two maps. This process is repeated until the best possible agreement 

is achieved. Since all information about inter-locus interactions is embedded in the polymer 

model, which is assumed to accurately capture the conformational behavior of the chromatin 

fiber, these methods do not need to invoke any specific functional relationship between 

spatial distance dij and interaction frequency fij. Furthermore, it is not necessary to generate 
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conformations that are individually consistent with the contact map; only the conformation 

ensemble as a whole should be consistent. Therefore, these approaches by construction 

incorporate variability in chromatin structures and interactions across members of the 

conformational ensemble, mimicking the population nature of the interactions derived from 

3C experiments.

Polymer Model.

The interaction frequencies probed by the 3C method arise from a combination of specific 
interactions, usually attributed to protein-mediated looping of chromatin, and non-specific 
interactions, associated with random collisions between loci. A polymer model representing 

chromatin should capture both kinds of interactions in its ensemble of conformations.

The frequencies of non-specific interactions between loci are dictated by the separation 

distance between the loci along the chromatin fiber, by the physical properties of the fiber, 

and by its confinement. Each of these effects can be captured in a bead-chain model, where 

each bead represents a segment of the chromatin fiber. Usually the beads represent segments 

of fixed length, which can be as short as ~3 kb93-95 to as long as ~500 kb,96 depending on 

the desired resolution. Adjacent beads along the fiber are connected by rigid bonds,94, 95 

harmonic springs,93, 97 or finite extensible nonlinear elastic springs98-100 to account for the 

stretching resistance of the fibers. Such “connectivity” restraints are already sufficient to 

produce polymer-like conformations. Chromatin fibers, however, are also resistant to 

bending, and their bending rigidity is often treated using harmonic93 or cosine potentials99 

in the bending angle subtended by three adjacent beads along the fiber. The excluded volume 

of the beads prevents them from penetrating each other, and can be represented by hard-

sphere101 or short-range repulsive potentials93, 99 between non-adjacent beads. The above 

polymer representation is often referred to as the self-avoiding wormlike chain (SA-WLC). 

Confinement effects arising from nuclear boundaries can also be incorporated using 

excluded-volume potentials.95, 96, 98, 99 When modeling individual chromosomes or 

chromosomal domains, these confinement effects may arise from other chromosomes or 

domains whose boundaries are not known. Such unknown effects can be implicitly included 

in the models for specific interactions.

The choice of interaction potentials depends on the resolution of the model. At high 

resolutions, where beads represent the actual thickness of the chromatin fiber, i.e., ~30 nm, 

stiff bonded and excluded-volume potentials are used. Since the bead sizes are shorter than 

the persistence length of chromatin, a bending potential is also required to obtain realistic 

fiber conformations.93 Most parameters in these potentials can be fixed based on 

experimental estimates of chromatin thickness, elastic modulus, and persistence length.93 At 

lower resolutions, where beads represent folded-up balls of the fiber, much softer bonded 

and excluded-volume potentials need to be used, and the bending potential becomes 

redundant.97

The specific interactions arising from chromatin looping and the confinement effects 

described earlier are the primary unknowns of the model. These interactions can be 

approximated by looping restraints between pairs of beads. Possible implementations of the 

restraints include harmonic spring potentials,93, 101 a square-well potential,94 or its smoother 
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differentiable form.98 Then, the unknown parameters, to be determined by the optimization 

procedure, are the locations of the looping restraints along the fiber, together with the 

stiffness and equilibrium lengths of the harmonic restraints, or the depth and width of the 

square-well restraints. These restraints can be established across all pairs of beads, thus 

counting on the optimization algorithm to identify the true looping partners, while 

converging the strengths of unnecessary restraints to zero values.94, 98 Alternatively, 

researchers have applied restraints only across those locus pairs exhibiting strong peaks in 

the contact maps.93, 95 To further reduce the number of adjustable parameters, the 

equilibrium lengths of the harmonic restraints are set to zero,93 as excluded-volume 

interactions can enforce a minimum distance even between strongly looped segments, and 

the widths of the square-well restraints are often set to a physically reasonable value.99

Conformational Sampling.

A key step in these methods involves generating at each optimization step an ensemble of 

bead-chain conformations consistent with its parameters at that step. In theory, a molecular 

system at equilibrium should exhibit conformations consistent with its thermodynamic state, 

or, more technically, its statistical-mechanical ensemble. In the canonical ensemble with 

fixed number of molecules, volume, and temperature, the probability ρ of observing a 

specific conformation R should follow the Boltzmann distribution ρ(R) ∝ exp ( −U(R)/

kBT), where U (R) is the total potential energy of the conformation, kB is the Boltzmann 

constant, and T is the temperature. Whether chromosomes obey such a distribution or even 

represent an equilibrium system is debatable, but in the absence of any concrete alternatives, 

this distribution at least provides a useful starting point for obtaining physically-realistic 

conformations.99 Ideally, to obtain the most realistic ensembles, U and T should be 

quantitatively described. This may however be unfeasible in the case of low-resolution 

models that use more ad-hoc energy potentials and temperature.96, 97

Various sampling methods have been used in the context of generating Boltzmann-

distributed conformations of chromatin. Monte Carlo (MC) simulations provide a 

computationally efficient and flexible strategy for sampling conformations.94, 95 In the most 

common implementation, the Metropolis-Hastings algorithm,102 conformations are sampled 

through simple trial “moves”, such as translation of randomly chosen beads, which are 

accepted with a probability Pacc = min [1,exp ( −ΔU/kBT)], where ΔU is the change in the 

potential energy associated with each move. Such an approach, repeated over millions of 

trial moves, eventually yields the desired ensemble of conformations. However, this 

approach becomes inefficient for sampling the conformations of long polymer chains, 

especially those strongly confined and possessing looping restraints. More efficient sampling 

of chains has been achieved through biased regrowth of chains via geometric sequential 

importance sampling,95 or through use of quaternions, instead of Euler angles, for 

implementing rotational moves on rigid clusters of beads within chains.103 Molecular 

dynamics (MD) simulations provide an easily implementable approach for sampling 

conformations.96 A number of freely-available MD simulation software such as 

LAMMPS104 and GROMACS105 work well with user-supplied interaction potentials. Other 

sampling methods such as Langevin dynamics99 and Brownian dynamics simulations93, 97 

provide a good compromise between efficiency and usability.
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The sampled conformations are used to compute the predicted interaction frequencies 

denoted by f ij. Though the spatial distance at which two segments of chromatin get 

crosslinked in 3C experiments is not known, it is reasonable to assume that crosslinking 

occurs at small distances on the order of the fiber diameter. By setting a reasonable distance 

threshold ξ for contact, typically 30 nm or smaller, f ij calculation simply boils down to 

counting the fraction of conformations in the ensemble with dij,k ≤ ξ, where dij,k is the 

shortest of the distances between pairs of beads representing loci i and j in structure k. In 

other words, f ij = 1
n ∑k = 1

n Θ(ξ − dij, k), where Θ is the Heavyside step function and n is the 

size of the ensemble.93, 94 Some approaches use the smoother sigmoidal function for 

counting contacts.99 Two particularly attractive approaches for obtaining f ij involves 

estimating them from distributions of inter-bead distances,106 or their mean-square values,97 

which can both be more reliably measured from the ensemble than the direct counting 

method for loci exhibiting very small f ij.

Parameter Optimization.

The last component in the optimization loop adjusts the parameters P(m) of the polymer 

model (where m is the iteration number) based on differences in f ij
(m) predicted from the 

simulated conformations and the 3C map fij to obtain a new set of parameters P(m + 1) that 

should achieve better agreement between the two maps in the next iteration. The 

optimization stops when the difference between the maps becomes smaller than some 

specified tolerance, yielding the desired ensemble of conformations.

The original 3C or ChIP-chip techniques can probe interactions between only a handful of 

loci. If the interactions are sufficiently independent of each other, i.e., changing one 

interaction does not influence other interactions, then the imposed looping restraints can be 

optimized independently via simple rules that increase or decrease a restraint strength when 

its predicted interaction frequency is weaker or stronger than the experimental counterpart. 

For instance, one study optimized the stiffnesses kij of harmonic restraints via 

kij
(m + 1) = kij

(m) ε(fij) ∕ ε f ij
(m) a

, where ε is an inverse error function and a is a parameter that 

governs the accuracy and speed of convergence101. The chosen function not only ensured 

that kij’s were correctly up- or down-scaled based on the relative magnitudes of the 

predicted and experimental frequencies, but that strong restraints were adjusted more 

aggressively than the weaker ones.

More formal approaches are required for carrying out optimization of systems involving the 

large numbers of interactions probed by 5C or Hi-C experiments, where interactions are also 

more likely to be correlated. This requires defining an error function S(k) = 1
2 ‖F(k) − F‖2 that 

quantifies the difference between the predicted and experimental maps, where k is a vector 

of all imposed restraint stiffnesses kij. The objective is then to minimize this error under the 

condition that all kij > 0. This is most naturally achieved through a gradient-descent 

algorithm wherein the stiffnesses are updated via k(m + 1) = k(m) −h ∇S(m)/∥∇S(m)∥, where h 
is a step size and ∇S(m) is the gradient of the scoring function with respect to each restraint 
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stiffness.97 Alternatively, a reweighting scheme may be used to update restraint strengths, as 

done recently for optimizing the depths Bij of square-well restraints.94 Here, the existing 
ensemble of conformations is used for predicting how the existing set of interactions might 

change with small perturbations in Bij via 

f ij
(m) = ∑k = 1

n Θ(ξ − dij, k
(m) )exp ( − ΔEk ∕ kBT ) ∕ ∑k = 1

n exp ( − ΔEk ∕ kBT ), where ΔEk is the 

change in the energy of all restraints in the kth conformation in the ensemble due to the 

change in Bij and Θ is the previously defined function for counting contacts. A Monte Carlo 

search in Bij’s is carried out to minimize the deviation between the reweighted and 

experimental frequencies. These locally optimized parameters are then used in the next 

iteration to generate a new ensemble of conformations, and the process is repeated until 

convergence.

Instead of directly optimizing restraints, an alternative strategy involves optimizing the 

elements of a transformation matrix W that relates the interaction frequencies of the 

restrained pairs of beads to the strengths of their restraints via the linear relationship k = Wf.
93 The approach boils down to determining the elements of W that yield a set of restraint 

stiffnesses, such that the simulated ensemble of conformations using these stiffnesses 

reproduces the experimental interaction frequencies of the restrained loci. Within the 

optimization algorithm, this requires using the current elements of the matrix W(m) to 

predict two sets of stiffnesses: one set is obtained from the experimental frequencies, via 

k(m) = W(m)f, and the other set is obtained from the frequencies of the current ensemble, via 

k(m) = W(m)f (m)
. The difference between the two stiffnesses ε(m) = k(m) − k(m)

 is then used to 

update the matrix via the least mean-square algorithm: W(m + 1) = W(m) + 2μmε(m) ⋅ f (m)
, 

where μm is a “gain factor” that governs the stability and speed of convergence. The above 

iteration is repeated until the matrix predicts similar stiffnesses from the predicted and 

experimental frequencies, implying that both maps are also similar. A key advantage of this 

approach is that the converged matrix provides an explicit relationship between restraints 

and frequencies, revealing how each restraint affects the interactions between all pairs of 

restrained loci. This allows one to distinguish true looping partners from “secondary” 

interactions that yield peaks in the contact map due to the looping of neighboring loci.

Researchers have also attempted to optimize restraint strengths using the maximum entropy 

principle.98, 99 The underlying concept here is to impose the fewest or softest possible 

restraints to a “baseline” polymer model that still allows the restrained system to reproduce 

the experimental contact maps. If the potential energy of the baseline model is denoted by 

U0(R), then the potential energy of the optimally restrained system is given by U(R) = 

U0(R) + ∑i,jαijfSW(rij), where fSW (r) is a smooth square-well potential of a prescribed width 

defining contact distance and unit depth that simultaneously defines the potential energy of 

the restraint and counts interactions between loci i and j since f ij is simply the ensemble 

average ⟨fSW(rij)⟩. The parameters αij represent Lagrange multipliers that define the 

strengths of the restraints, whose values are obtained by maximizing the free energy 

associated with imposing the constraint that the predicted contact map must match the 

experimental map.98 This is typically achieved using an optimization scheme involving 

cumulant expansion of the free energy. The maximum-entropy approach can be extended 
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further to include other kinds of experimental data into the model, including the local 

structure of chromatin and the association tendency between similar types of chromatin, i.e., 

loci exhibiting similar histone modifications.99

A few methods using polymer models do not strictly follow every aspect of the optimization 

scheme described in Fig. 3. For instance, in one approach, the simulated ensemble of 

conformations were required to satisfy only one-sided constraints arising from excluded 

volume interactions and nuclear confinement, without following any specific 

thermodynamic distribution.96 Another approach used simulations of a confined polymer 

model without any looping restraints to model the Hi-C “background” contacts arising from 

non-specific interactions, i.e., random collisions between loci and confining obstacles.95 The 

remaining contacts that were not accounted for by the unrestrained polymer model were 

assigned to specific looping interactions, which were then added to the model as distance 

constraints in the second stage of the optimization. A third approach used a polymer model 

with essentially no constraints, and generated Boltzmann-distributed conformations using a 

fictitious energy given by U(R) = ∑i,jfijdij, rather than the characteristic potential energy of 

polymer chains.103

MAXIMUM LIKELIHOOD AND BAYESIAN METHODS

The statistical methods known as maximum likelihood (ML) and Bayesian inference can be 

used to estimate the unknown parameters of a system by processing some data D with an 

appropriate statistical model. Whereas ML yields point estimates of the desired parameters, 

Bayesian inference yields their probability distribution and can also take advantage of prior 

knowledge or beliefs about the system under study. Both methods have been applied to the 

problem of inferring 3D conformations of chromatin from contact maps. In this context, the 

data D are obtained from 3C experiments, and the unknown parameters include the 

chromatin conformation R and the parameters θ of a statistical model that describes the 

production of the data D. Common to both methods is the construction of a likelihood 

function, denoted by P(D∣R,θ), which describes the probability of observing the data given 

the parameters. ML involves maximizing P(D∣R,θ) to obtain the best estimates of R and θ, 

thus yielding a “consensus” structure R0 consistent with the available data D. On the other 

hand, Bayesian inference also requires defining the prior distribution of the parameters, 

P(R,θ), and sampling the posterior distribution, P(R,θ∣D), thus yielding an ensemble of 

structures R consistent with the underlying population (Fig. 4).

Likelihood function.

Formulating the likelihood function P(D∣R,θ) requires choosing (i) a representation for the 

system, (ii) the form of the observed data, and (iii) a statistical model describing the 

behavior of the system. To represent the 3D conformation of a chromosome, various 

formulations have been adopted. A simple representation involves points or beads 

corresponding to the restriction fragments generated by 5C or Hi-C experiments.56,107 

Another natural choice is a chain of points or beads matching the genomic segments used to 

define the bins of the contact matrix. Such segments are typically of equal length,71, 108-112 

but can also be defined by hierarchical clustering of the contact matrix113 or by matching the 
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extents of TADs.108, 114 The volume of each bead may be proportional to the length of the 

genomic segment represented by the bead.113 Actual bead diameters can be determined from 

values of chromatin density in the nucleus.111 Also, each bead may have both a hard-core 

radius, to enforce excluded volume, and a larger soft-core radius, to detect contacts between 

beads.113 Although chromosomes are suitably represented as continuous chains of beads, 

contact matrices often include gaps due to poor mappability of reads. Beads that fall in those 

gaps are omitted from some optimization procedures.71, 109, 110

The second requirement of the likelihood function is an appropriate form for the data D. A 

possible choice is the matrix C of contact counts cij.56, 71, 108-111, 115 In some cases, matrices 

from multiple experiments are used simultaneously, allowing integration of data from 

different restriction enzymes.115 Using contact counts from Hi-C experiments requires some 

care in regard to experimental biases.54 These can be ignored for simplicity,56 or can be 

explicitly modeled by including appropriate covariates in the likelihood function.108-110, 115 

Alternatively,71, 112, 113 the contact matrix may be corrected using published 

procedures54, 116-118 before computing the likelihood function. Further conversion of contact 

counts cij to frequencies fij may be required for some likelihood formulations.56, 113 The 

likelihood function can also be defined using data D in the form of distances δij between 

pairs of loci i and j.107, 112 These distances may be obtained from cij by assuming δij = γcij
−α. Here, γ can be set arbitrarily112 or estimated from published data, such as the average 

spatial distance between genomic loci,107 and α can be treated as an unknown parameter.107 

In one study, α was varied within a specified range and, to choose the best value, the 

inferred structures were compared to a known structure using the Spearman correlation 

coefficient of the internal distances.112 The likelihood function may also rely on data from 

other types of experiments. For example, FISH measurements have been used to constrain 

the radius of gyration of the inferred chromosome structure.111

The last requirement is a statistical model that yields the probability of observing each data 

point. For example, each contact count cij, may be assumed to obey a binomial distribution, 

which in turn is approximated by a normal distribution with an unknown mean μij and 

standard deviation σij equal to the mean plus a small constant.56 On the other hand, the 

discrete nature of cij suggests they be modeled as independent Poisson random variables, 

thus yielding

P (D ∣ R, θ) = ∏1 ≤ i < j ≤ N
e−μijμij

cij

cij!
(4)

where each mean contact count μij is in turn related to the spatial distance dij between the 

interacting loci i and j. The relation is an inverse power law, log μij = α0 + α1 log dij, where 

α1 < 0, and α0 > 0 determines the scale of the 3D structure.56, 71, 108 Because such scale 

cannot be derived from contact counts alone, the value of α0 may be set arbitrarily,56, 109, 110 

deduced by assuming d1,n = 1,108 or inferred using non-metric MDS.71 The definition of 

mean contact counts μij can also be refined to include experimental biases inherent in the Hi-

C data. In this case log μij = α0 + α1 log dij + vT
ijβ, where vij is a vector of covariates 

quantifying the biases, and β is a vector of corresponding coefficients.108, 109, 115
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Although convenient for modeling contact counts, the Poisson distribution may not be 

adequate for contact maps containing many zero entries. To overcome this issue, the use of a 

zero-truncated Poisson model was proposed,109, 110 where the log likelihood is computed by 

excluding the terms associated with zero cij’s. Another potential problem is that the cij’s may 

not be truly independent, because neighboring loci along a chromosome may form similar 

contacts with farther loci. Moreover, the actual variance of the cij’s may be larger than 

allowed by the Poisson distribution. These problems can be addressed by including 

additional random variables in log μij that account for variance over-dispersion and 

interdependency of contact counts.110

Instead of using contacts cij in the likelihood function, one can use distances δij = γcij
−α, 

which can be assumed to follow a normal distribution with mean dij and variance σ2107, 112:

P (D ∣ R, θ) = ∏1 ≤ i < j ≤ N
1

σ 2πexp − 1
2σ2 (δij − dij)2

(5)

The parameters α and σ can be inferred together with the distances dij.107 Another option is 

to keep α constant and to eliminate the variance from Eq. 5 by assuming that σ2 ∝ ∑(δij – 

dij)2.112 Although the above examples of likelihood functions are generally applicable to 

data from bulk Hi-C experiments, analysis of data from single-cell Hi-C experiments 

requires different statistical models. One approach is to express the log-likelihood as a sum 

of logistic functions of dij, thus introducing adjustable parameters for the contact distance 

and the steepness of the step.111

The likelihood function can be pushed even further. For example, the need for an explicit 

relation between cij and dij can be avoided, and a population of conformations for an entire 

diploid genome can be inferred at once via a single likelihood maximization. These 

ambitious requirements were met by expressing the likelihood function in terms of two large 

matrices: a 2N × 2N × M matrix R containing the coordinates of the beads for all diploid 

genome structures in the population, and a 2N × 2N × M binary matrix W assigning contacts 

to pairs of beads that overlap within each estimated structure, where N is the number of 

beads per haploid genome and M is the population size.113 Estimating M genomic structures 

simultaneously also allows estimation of interaction frequencies, which are compared 

directly to the contact map F. The resulting likelihood function is thus P(F∣R) = 

P(F∣W)P(W∣R), i.e., a product of the probability of observing the assigned contacts W given 

the estimated structures R, and the probability of observing the Hi-C interaction frequencies 

F given the contact assignments W.

Likelihood maximization.

Having defined the likelihood function, one can proceed to determine a consensus structure 

R0 that recapitulates the observed data D. Assuming such structure to be the most probable 

given the data, then the task is to find R and θ that maximize P(D∣R,θ). To achieve this goal, 

several optimization techniques can be employed with various tradeoffs in computational 

efficiency and reliability. A sufficiently simple likelihood function that depends only on R 
can be maximized using the gradient ascent method or the adaptive gradient algorithm.112 
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More complex scenarios can be handled with appropriate iteration schemes. For instance, 

optimization of both R and the parameters α0 and α1 can be performed through a 

coordinate-descent algorithm that randomly initializes R and then alternates between (i) 

maximizing the likelihood with respect to α0 and α1 with a fixed conformation R, and (ii) 

maximizing the likelihood with respect to R while keeping α0 and α1 fixed.71 The 

individual optimization problems can be solved by using the interior point filter algorithm 

implemented in the IPOPT code.84

Even more challenging functions require iteration at multiple levels. For example, 

maximizing the likelihood function P(F∣R) = P(F∣W)P(W∣R), used in Ref. 113, entails 

optimizing a structure matrix R and a contact assignment matrix W that are both very large. 

Here, one iteration level involves two steps: (i) updating the contact assignments in W by 

maximizing P(F∣W), and (ii) estimating R by maximizing P(W∣R).113 Specifically, P(F∣W) 

is maximized by comparing inter-bead distances to appropriate thresholds determined from 

R, while P(W∣R) is maximized through simulated annealing and conjugate gradient 

algorithms in IMP.119 Another iteration level takes advantage of the idea that enforcing 

frequent contacts before infrequent ones can efficiently guide the search for an optimal 

structure. Thus, the above procedure is repeated by incrementally populating the matrix F 
with sets of contact probabilities arranged from largest to smallest.113

One advantage of using ML is that additional constraints can be introduced without 

complicating the likelihood function. For example, the excluded volume of beads, the 

confinement of beads within the nuclear volume, and the distance of certain beads from the 

nuclear periphery based on FISH data can all be enforced by using constrained optimization 

methods.113

Bayesian inference.

An alternative to ML is Bayesian inference, which explicitly recognizes the existence of 

probability distributions for chromatin structures and auxiliary parameters. This approach, 

named inferential structure determination, was previously shown to be effective in obtaining 

the structure of macromolecules from nuclear magnetic resonance data.120 The general 

scheme is derived from Bayes’ theorem to yield the posterior distribution of conformation R 
and parameters θ given the observed data D, i.e., P(R,θ∣D) = P(D∣R,θ)P(R,θ)/P(D), where 

the now familiar likelihood function P(D∣R,θ) is multiplied by P(R,θ), which is the prior 

distribution of R and θ based on some assumed behavior of R. The normalizing constant 

P(D) ensures that 0 ≤ P (R,θ∣D) ≤ 1, but is usually not needed to estimate R and θ from 

P(R,θ∣D). Thus, to evaluate the posterior distribution P(R,θ∣D), it is only necessary to define 

an appropriate prior distribution P (R,θ). This requirement can be sidestepped by assuming a 

uniform distribution, i.e., a non-informative prior, so that P(R,θ∣D) ∝ P(D∣R,θ),56, 108-110 or 

one can take advantage of the prior to obtain conformations R that are more physically 

realistic. For example, the dependency between the 3D positions of neighboring genomic 

loci can be modeled with a normal distribution, thus yielding the prior 

P (R, θ) ∝ ∏i ≥ 2exp −λ(li − li − 1)dli, li − 1
2 , where the li’s are integer indices of the genomic 

loci for which contact counts are available, and the tunable parameter λ determines the 

smoothness of the chain.115 Another option is to assume that the potential energy U of a 
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conformation obeys the Boltzmann distribution,107, 111 yielding P(R,θ) ∝ exp(−U(R,θ)/

kBT). Such a formulation affords great flexibility in choosing relevant physical properties of 

chromatin. For instance, U may include potentials for stretching, bending, and excluded 

volume, using physical parameters θ similar to those used in polymer models.107, 111

Once the likelihood function and priors are defined, the posterior distribution P(R,θ∣D) can 

be sampled to infer conformations R and model parameters θ from the observed data D. The 

purpose of sampling may be to find a single consensus structure that maximizes the 

posterior,108-110, 115 or to obtain an ensemble of conformations that can be further studied, 

e.g., via clustering methods.56,107 A general approach for sampling the posterior distribution 

is to employ Markov chain Monte Carlo (MCMC) with the Metropolis-Hastings algorithm,
102 which draws conformations from the posterior without requiring evaluation of P(D). 

Specific refinements of this strategy may be required based on the complexity of the 

posterior. When the latter lacks adjustable model parameters, MCMC may be adequate by 

itself to produce a conformation ensemble.56 In this case, starting with a random initial 

structure, each MC step generates a proposal structure by randomly displacing a randomly 

chosen point in the chain.

The presence of unknown model parameters requires more elaborate schemes. A possible 

solution is to use Gibbs sampling,121 which alternates between chromosome structures and 

model parameters.108-111 In regards to chromosome structures, the Hamiltonian, or Hybrid, 

MC method122 can be used to efficiently sample the posterior distribution of R while 

keeping θ fixed.108-111 In this case, each MC step produces a proposal conformation by 

performing a short MD simulation, where the 3D coordinates are updated by numerical 

integration.109, 110 Complicated posteriors may lead the Gibbs sampler to become trapped in 

local peaks. A smart solution to this problem is to combine he Gibbs sampler with replica 

exchange MC,123 where a fictitious inverse temperature determines the weight of the 

likelihood function on the posterior distribution.111, 124 Additional improvements are 

possible: the model parameters can be initialized using Poisson regression and then refined 

using adaptive rejection sampling.108 Moreover, the initial conformations R can be obtained 

using sequential importance sampling with a rejection control technique that improves 

efficiency.108

Besides the Gibbs sampler, other schemes have been proposed. For example, a posterior that 

includes a distance penalty to enforce the connectivity of the chain115 can be maximized by 

iterating over two steps: (i) fitting a generalized linear model (GLM) obtained from the log 

likelihood function by omitting the terms for α1 and the distance penalty, and (ii) 

minimizing the distance penalty by adjusting groups of sequential coordinates to obtain an 

initial structure, followed by updating the GLM coefficients through simulated annealing 

with Hamiltonian dynamics.115 Another iterative scheme uses the expectation maximization 

algorithm125 to estimate the model parameters while also generating an ensemble of 

conformations.107 After initializing the model parameters and generating an initial ensemble 

of structures through Brownian dynamics, the computation alternates between two steps. In 

the expectation step, a gradient ascent algorithm is used to refine each structure by 

maximizing its likelihood, which is calculated from the posterior using the current estimates 

of model parameters. In the maximization step, a grid search is performed to estimate the 
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model parameters that maximize the likelihood of the ensemble of conformations refined in 

the previous step.107

CONCLUSION

In this review, we have provided an overview of available methods for converting 2D contact 

data from Hi-C experiments into 3D chromatin conformations that are consistent with such 

data. We have found it expedient to group such methods into three classes. The first class 

includes methods that covert contact frequencies into internal distances and feed the latter to 

a scoring function whose optimization yields a single consensus structure. The second class 

includes methods that avoid the conversion from contact frequencies to internal distances 

and instead use polymer models to obtain conformation ensembles that recapitulate the 

experimental contact frequencies. The third class includes methods that relate the contact 

frequencies to internal distances through a statistical model, whose parameters are then 

optimized to agree with the contact frequencies.

Each class of methods includes a variety of techniques and refinements that enable structural 

recovery at different scales, ranging from domains, to chromosomes, to whole diploid 

genomes. The large number of proposed methods creates opportunities for further research 

and improvement. For example, choosing the method most appropriate for a given biological 

question will benefit from efforts to assess objectively the strengths and weaknesses of the 

available methods.126 Also, careful evaluation and comparison of present and future 

methods will benefit from the availability of standardized test cases where the solution 

structure or ensemble is known in advance. This practice is well established in the Critical 

Assessment of Structure Prediction (CASP) experiments, which are periodically performed 

to track the progress of computational methods for predicting protein structure from amino 

acid sequence.127 However, CASP relies on experimental data that are currently unavailable 

to provide the ground truth for chromatin conformation inference, which is therefore more 

difficult to validate than protein structure prediction. The variety of available methods for 3D 

genome structure determination and their likely complementary strengths and weaknesses 

also suggest the possibility to apply such methods simultaneously in order to obtain a 

consensus solution based on suitable criteria. Similar strategies have been proposed, for 

example, to improve the reliability of protein-ligand predictions,128, 129 protein structure 

alignments,130 protein structure comparison,131 and protein secondary structure prediction.
132-134

There are also opportunities for further improvement of the current methods and their 

specific implementations. For example, a major area of concern is computational efficiency, 

especially when attempting to reconstruct the structure of whole diploid genomes at high 

resolution. Execution speed and complexity of the reconstructed structures may both 

increase by exploiting high-performance hardware, such as large computer clusters and 

GPUs, which have already been used for 3D genome visualization.77 Efficiency could also 

be improved through the use of multi-resolution models, where increasingly refined models 

of chromatin are threaded through structural solutions obtained from lower-resolution 

models and then locally optimized at higher resolution. Such approaches have found 

applications in building high-resolution models of bacterial genomes,82, 135, 136 and similar 
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ideas could be applied to obtaining refined structures of eukaryotic genomes using available 

high-resolution models of chromatin.137-140 Also, the accuracy of the reconstructed 

structures may be improved by deriving constraints from additional experimental techniques 

such as super-resolution microscopy and soft X-ray tomography.141 This trend has already 

begun with the integration of epigenetic data from ChIP-seq and DNase-seq experiments 

toward the prediction of chromatin conformation.142-144 Lastly, it remains to be explored 

whether the reconstruction of 3D genomic structure from experimental data can be improved 

by taking advantage of increasingly popular, data-greedy machine learning algorithms. For 

example, deep neural networks145 have been applied to predict transcription factors binding 

sites,146 protein secondary structure,147 and protein-protein interactions.148 Indeed, as the 

quantity of experimental data continues to grow, such strategies are already finding their way 

into predicting 3D chromatin architecture.149

ACKNOWLEDGMENTS

D.M. was supported by grants from the National Institutes of Health (5F32DK112682 and 1K01DK119687).

REFERENCES

1. Alberts B et al. Molecular Biology of the Cell, Sixth Edition Molecular Biology of the Cell, Sixth 
Edition, 1–1342 (2015).

2. Parmar JJ, Woringer M & Zimmer C How the Genome Folds: The Biophysics of Four-Dimensional 
Chromatin Organization. Annual Review of Biophysics 48, null (2019).

3. Szalaj P & Plewczynski D Three-dimensional organization and dynamics of the genome. Cell 
Biology and Toxicology 34, 381–404 (2018). [PubMed: 29568981] 

4. Bickmore WA in Annual Review of Genomics and Human Genetics, Vol 14, Vol. 14. (eds. 
Chakravarti A & Green E) 67–84 (Annual Reviews, Palo Alto; 2013).

5. Dekker J et al. The 4D nucleome project. Nature 549, 219–226 (2017). [PubMed: 28905911] 

6. Zhang Y et al. Spatial Organization of the Mouse Genome and Its Role in Recurrent Chromosomal 
Translocations. Cell 148, 908–921 (2012). [PubMed: 22341456] 

7. Akdemir KC, Chin L, Futreal A & Grp IPSA Spatial organization of the genome and genomic 
alterations in human cancers. Human Genomics 10, 1 (2016). [PubMed: 26744305] 

8. Smith KS, Liu LL, Ganesan S, Michor F & De S Nuclear topology modulates the mutational 
landscapes of cancer genomes. Nature Structural & Molecular Biology 24, 1000-+ (2017).

9. Zhang M, Wang FC, Kou ZH, Zhang Y & Gao SR Defective Chromatin Structure in Somatic Cell 
Cloned Mouse Embryos. Journal of Biological Chemistry 284, 24981–24987 (2009).

10. Cuartero S & Merkenschlager M Three-dimensional genome organization in normal and malignant 
haematopoiesis. Current Opinion in Hematology 25, 323–328 (2018). [PubMed: 29702522] 

11. Ausio J, de Paz AM & Esteller M MeCP2: the long trip from a chromatin protein to neurological 
disorders. Trends in Molecular Medicine 20, 487–498 (2014). [PubMed: 24766768] 

12. Iwase S & Martin DM Chromatin in nervous system development and disease. Molecular and 
Cellular Neuroscience 87, 1–3 (2018). [PubMed: 29248671] 

13. Elisa Z et al. Technical implementations of light sheet microscopy. Microscopy Research and 
Technique 81, 941–958 (2018). [PubMed: 29322581] 

14. Girkin JM & Carvalho MT The light-sheet microscopy revolution. Journal of Optics 20, 20 (2018).

15. Hauser M et al. Correlative Super-Resolution Microscopy: New Dimensions and New 
Opportunities. Chemical Reviews 117, 7428–7456 (2017). [PubMed: 28045508] 

16. Reuter JA, Spacek DV & Snyder MP High-Throughput Sequencing Technologies. Molecular Cell 
58, 586–597 (2015). [PubMed: 26000844] 

17. Dogan ES & Liu C Three-dimensional chromatin packing and positioning of plant genomes. 
Nature Plants 4, 521–529 (2018). [PubMed: 30061747] 

Meluzzi and Arya Page 19

Methods. Author manuscript; available in PMC 2021 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



18. Fazary AE, Ju YH & Abd-Rabboh HSM How does chromatin package DNA within nucleus and 
regulate gene expression? International Journal of Biological Macromolecules 101, 862–881 
(2017). [PubMed: 28366861] 

19. Maston GA, Evans SK & Green MR in Annual Review of Genomics and Human Genetics, Vol. 7 
29–59 (Annual Reviews, Palo Alto; 2006).

20. Jhunjhunwala S, van Zelm MC, Peak MM & Murre C Chromatin Architecture and the Generation 
of Antigen Receptor Diversity. Cell 138, 435–448 (2009). [PubMed: 19665968] 

21. Ebert A, Hill L & Busslinger M in Molecular Mechanisms That Orchestrate the Assembly of 
Antigen Receptor Loci, Vol. 128 (ed. Murre C) 93–121 (Elsevier Academic Press Inc, San Diego; 
2015).

22. Dixon JR, Gorkin DU & Ren B Chromatin Domains: The Unit of Chromosome Organization. 
Molecular Cell 62, 668–680 (2016). [PubMed: 27259200] 

23. Gonzalez-Sandoval A & Gasser SM On TADs and LADs: Spatial Control Over Gene Expression. 
Trends in Genetics 32, 485–495 (2016). [PubMed: 27312344] 

24. Dekker J & Heard E Structural and functional diversity of Topologically Associating Domains. 
Febs Letters 589, 2877–2884 (2015). [PubMed: 26348399] 

25. Lieberman-Aiden E et al. Comprehensive Mapping of Long-Range Interactions Reveals Folding 
Principles of the Human Genome. Science 326, 289–293 (2009). [PubMed: 19815776] 

26. Wang JY & Jia ST New Insights into the Regulation of Heterochromatin. Trends in Genetics 32, 
284–294 (2016). [PubMed: 27005444] 

27. Dixon JR et al. Chromatin architecture reorganization during stem cell differentiation. Nature 518, 
331–336 (2015). [PubMed: 25693564] 

28. Cremer T & Cremer M Chromosome Territories. Cold Spring Harbor Perspectives in Biology 2 
(2010).

29. Rouquette J, Cremer C, Cremer T & Fakan S in International Review of Cell and Molecular 
Biology, Vol 282, Vol. 282. (ed. Jeon KW) 1–90 (Elsevier Academic Press Inc, San Diego; 2010). 
[PubMed: 20630466] 

30. Wang SY et al. Spatial organization of chromatin domains and compartments in single 
chromosomes. Science 353, 598–602 (2016). [PubMed: 27445307] 

31. Cremer C, Szczurek A, Schock F, Gourram A & Birk U Super-resolution microscopy approaches 
to nuclear nanostructure imaging. Methods 123, 11–32 (2017). [PubMed: 28390838] 

32. Boettiger AN et al. Super-resolution imaging reveals distinct chromatin folding for different 
epigenetic states. Nature 529, 418-+ (2016). [PubMed: 26760202] 

33. Sati S & Cavalli G Chromosome conformation capture technologies and their impact in 
understanding genome function. Chromosoma 126, 33–44 (2017). [PubMed: 27130552] 

34. Barutcu AR et al. C-ing the Genome: A Compendium of Chromosome Conformation Capture 
Methods to Study Higher-Order Chromatin Organization. Journal of Cellular Physiology 231, 31–
35 (2016). [PubMed: 26059817] 

35. Dekker J, Rippe K, Dekker M & Kleckner N Capturing chromosome conformation. science 295, 
1306–1311 (2002). [PubMed: 11847345] 

36. Belton JM et al. Hi-C: A comprehensive technique to capture the conformation of genomes. 
Methods 58, 268–276 (2012). [PubMed: 22652625] 

37. Belaghzal H, Dekker J & Gibcus JH Hi-C 2.0: An optimized Hi-C procedure for high-resolution 
genome-wide mapping of chromosome conformation. Methods 123, 56–65 (2017). [PubMed: 
28435001] 

38. Lin DJ, Bonora G, Yardimci GG & Noble WS Computational methods for analyzing and modeling 
genome structure and organization. Wiley Interdisciplinary Reviews-Systems Biology and 
Medicine 11, 14 (2019).

39. Bianco S, Chiariello AM, Annunziatella C, Esposito A & Nicodemi M Predicting chromatin 
architecture from models of polymer physics. Chromosome Research 25, 25–34 (2017). [PubMed: 
28070687] 

40. Zhang B & Wolynes PG Genomic Energy Landscapes. Biophysical Journal 112, 427–433 (2017). 
[PubMed: 27692923] 

Meluzzi and Arya Page 20

Methods. Author manuscript; available in PMC 2021 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



41. Tiana G & Giorgetti L Integrating experiment, theory and simulation to determine the structure and 
dynamics of mammalian chromosomes. Current Opinion in Structural Biology 49, 11–17 (2018). 
[PubMed: 29128709] 

42. Le Dily F, Serra F & Marti-Renom MA 3D modeling of chromatin structure: is there a way to 
integrate and reconcile single cell and population experimental data? Wiley Interdiscip. Rev.-
Comput. Mol. Sci 7, 13 (2017).

43. Serra F et al. Restraint-based three-dimensional modeling of genomes and genomic domains. 
FEBS Lett. 589, 2987–2995 (2015). [PubMed: 25980604] 

44. Rosa A & Zimmer C in New Models of the Cell Nucleus: Crowding, Entropic Forces, Phase 
Separation, and Fractals, Vol. 307 (eds. Hancock R & Jeon KW) 275–349 (Elsevier Academic 
Press Inc, San Diego; 2014).

45. Lesne A, Riposo J, Roger P, Cournac A & Mozziconacci J 3D genome reconstruction from 
chromosomal contacts. Nat. Methods 11, 1141–1143 (2014). [PubMed: 25240436] 

46. Lajoie BR, Dekker J & Kaplan N The Hitchhiker's guide to Hi-C analysis: Practical guidelines. 
Methods 72, 65–75 (2015). [PubMed: 25448293] 

47. Forcato M et al. Comparison of computational methods for Hi-C data analysis. Nature Methods 14, 
679-+ (2017). [PubMed: 28604721] 

48. Sajan SA & Hawkins RD in Annual Review of Genomics and Human Genetics, Vol 13, Vol. 13. 
(eds. Chakravarti A & Green E) 59–82 (Annual Reviews, Palo Alto; 2012).

49. Dekker J, Marti-Renom MA & Mirny LA Exploring the three-dimensional organization of 
genomes: interpreting chromatin interaction data. Nat. Rev. Genet. 14, 390–403 (2013). [PubMed: 
23657480] 

50. Schmitt AD, Hu M & Ren B Genome-wide mapping and analysis of chromosome architecture. 
Nature Reviews Molecular Cell Biology 17, 743–755 (2016). [PubMed: 27580841] 

51. Nicoletti C, Forcato M & Bicciato S Computational methods for analyzing genome-wide 
chromosome conformation capture data. Current Opinion in Biotechnology 54, 98–105 (2018). 
[PubMed: 29550705] 

52. Xu C & Corces VG Towards a predictive model of chromatin 3D organization. Seminars in Cell & 
Developmental Biology 57, 24–30 (2016). [PubMed: 26658098] 

53. Rao SSP et al. A 3D Map of the Human Genome at Kilobase Resolution Reveals Principles of 
Chromatin Looping. Cell 159, 1665–1680 (2014). [PubMed: 25497547] 

54. Yaffe E & Tanay A Probabilistic modeling of Hi-C contact maps eliminates systematic biases to 
characterize global chromosomal architecture. Nature Genetics 43, 1059–U1040 (2011). [PubMed: 
22001755] 

55. Ferraiuolo MA, Sanyal A, Naumova N, Dekker J & Dostie J From cells to chromatin: Capturing 
snapshots of genome organization with 5C technology. Methods 58, 255–267 (2012). [PubMed: 
23137922] 

56. Rousseau M, Fraser J, Ferraiuolo MA, Dostie J & Blanchette M Three-dimensional modeling of 
chromatin structure from interaction frequency data using Markov chain Monte Carlo sampling. 
BMC Bioinformatics 12, 16 (2011). [PubMed: 21226914] 

57. De Gennes P-G & Gennes P-G Scaling concepts in polymer physics. (Cornell university press, 
1979).

58. Rubinstein M & Colby RH Polymer physics, Vol. 23 (Oxford university press New York, 2003).

59. Fraser J et al. Chromatin conformation signatures of cellular differentiation. Genome Biol. 10 
(2009).

60. Peng C et al. The sequencing bias relaxed characteristics of Hi-C derived data and implications for 
chromatin 3D modeling. Nucleic Acids Res. 41, 11 (2013).

61. Ay F et al. Three-dimensional modeling of the P. falciparum genome during the erythrocytic cycle 
reveals a strong connection between genome architecture and gene expression. Genome Res. 24, 
974–988 (2014). [PubMed: 24671853] 

62. Zhang Z, Li G, Toh K-C & Sung W-K 3D chromosome modeling with semi-definite programming 
and Hi-C data. J. Comput. Biol. 20, 831–846 (2013). [PubMed: 24195706] 

Meluzzi and Arya Page 21

Methods. Author manuscript; available in PMC 2021 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



63. Duan Z et al. A three-dimensional model of the yeast genome. Nature 465, 363–367 (2010). 
[PubMed: 20436457] 

64. Tanizawa H et al. Mapping of long-range associations throughout the fission yeast genome reveals 
global genome organization linked to transcriptional regulation. Nucleic Acids Res. 38, 8164–
8177 (2010). [PubMed: 21030438] 

65. Adhikari B, Trieu T & Cheng JL Chromosome3D: reconstructing three-dimensional chromosomal 
structures from Hi-C interaction frequency data using distance geometry simulated annealing. 
BMC Genomics 17, 9 (2016). [PubMed: 26819243] 

66. Bau D et al. The three-dimensional folding of the alpha-globin gene domain reveals formation of 
chromatin globules. Nature Structural & Molecular Biology 18, 107-+ (2011).

67. Umbarger MA et al. The three-dimensional architecture of a bacterial genome and its alteration by 
genetic perturbation. Molecular cell 44, 252–264 (2011). [PubMed: 22017872] 

68. Xie WJ et al. Structural modeling of chromatin integrates genome features and reveals 
chromosome folding principle. Sci Rep 7, 2818 (2017). [PubMed: 28588240] 

69. Zhu GX et al. Reconstructing spatial organizations of chromosomes through manifold learning. 
Nucleic Acids Res. 46, 15 (2018).

70. Rieber L & Mahony S miniMDS: 3D structural inference from high-resolution Hi-C data. 
Bioinformatics 33, I261–I266 (2017). [PubMed: 28882003] 

71. Varoquaux N, Ay F, Noble WS & Vert JP A statistical approach for inferring the 3D structure of the 
genome. Bioinformatics 30, 26–33 (2014).

72. Nagano T et al. Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature 
502, 59 (2013). [PubMed: 24067610] 

73. Stevens TJ et al. 3D structures of individual mammalian genomes studied by single-cell Hi-C. 
Nature 544, 59-+ (2017). [PubMed: 28289288] 

74. Trieu T & Cheng JL MOGEN: a tool for reconstructing 3D models of genomes from chromosomal 
conformation capturing data. Bioinformatics 32, 1286–1292 (2016). [PubMed: 26722115] 

75. Trieu T & Cheng JL 3D genome structure modeling by Lorentzian objective function. Nucleic 
Acids Res. 45, 1049–1058 (2017). [PubMed: 28180292] 

76. Paulsen J et al. Chrom3D: three-dimensional genome modeling from Hi-C and nuclear lamin-
genome contacts. Genome Biol. 18, 15 (2017). [PubMed: 28118844] 

77. Szalaj P et al. An integrated 3-Dimensional Genome Modeling Engine for data-driven simulation 
of spatial genome organization. Genome Res. 26, 1697–1709 (2016). [PubMed: 27789526] 

78. Li J, Zhang W & Li X 3D genome reconstruction with ShRec3D+ and Hi-C data. IEEE/ACM 
transactions on computational biology and bioinformatics 15, 460–468 (2018). [PubMed: 
26955049] 

79. Segal MR & Bengtsson HL Reconstruction of 3D genome architecture via a two-stage algorithm. 
BMC Bioinformatics 16, 10 (2015). [PubMed: 25592313] 

80. Liu T & Wang Z Reconstructing high-resolution chromosome three-dimensional structures by hi-C 
complex networks. BMC Bioinformatics 19, 496 (2018). [PubMed: 30591009] 

81. Shavit Y, Hamey FK & Lio P FisHiCal: an R package for iterative FISH-based calibration of Hi-C 
data. Bioinformatics 30, 3120–3122 (2014). [PubMed: 25061071] 

82. Yildirim A & Feig M High-resolution 3D models of Caulobacter crescentus chromosome reveal 
genome structural variability and organization. Nucleic Acids Res. 46, 3937–3952 (2018). 
[PubMed: 29529244] 

83. Ben-Elazar S, Yakhini Z & Yanai I Spatial localization of co-regulated genes exceeds genomic 
gene clustering in the Saccharomyces cerevisiae genome. Nucleic Acids Res. 41, 2191–2201 
(2013). [PubMed: 23303780] 

84. Wächter A & Biegler LT On the implementation of an interior-point filter line-search algorithm for 
large-scale nonlinear programming. Mathematical Programming 106, 25–57 (2006).

85. Ingber L Simulated annealing: Practice versus theory. Mathematical and computer modelling 18, 
29–57 (1993).

86. Paulsen J, Gramstad O & Collas P Manifold based optimization for single-cell 3D genome 
reconstruction. PLoS Comput. Biol. 11, e1004396 (2015). [PubMed: 26262780] 

Meluzzi and Arya Page 22

Methods. Author manuscript; available in PMC 2021 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



87. Borg I & Groenen P Modern multidimensional scaling: Theory and applications. Journal of 
Educational Measurement 40, 277–280 (2003).

88. Ji X & Zha H in IEEE INFOCOM 2004, Vol. 4 2652–2661 (IEEE, 2004).

89. Glunt W, Hayden TL & Raydan M Molecular conformations from distance matrices. Journal of 
Computational Chemistry 14, 114–120 (1993).

90. De Leeuw J & Mair P Multidimensional scaling using majorization: SMACOF in R. (2011).

91. Szalaj P et al. 3D-GNOME: an integrated web service for structural modeling of the 3D genome. 
Nucleic Acids Res. 44, W288–W293 (2016). [PubMed: 27185892] 

92. Hirata Y, Oda A, Ohta K & Aihara K Three-dimensional reconstruction of single-cell chromosome 
structure using recurrence plots. Sci Rep 6, 9 (2016). [PubMed: 28442706] 

93. Meluzzi D & Arya G Recovering ensembles of chromatin conformations from contact 
probabilities. Nucleic Acids Res. 41, 63–75 (2012). [PubMed: 23143266] 

94. Giorgetti L et al. Predictive polymer modeling reveals coupled fluctuations in chromosome 
conformation and transcription. Cell 157, 950–963 (2014). [PubMed: 24813616] 

95. Gursoy G, Xu Y, Kenter AL & Liang J Computational construction of 3D chromatin ensembles 
and prediction of functional interactions of alpha-globin locus from 5C data. Nucleic Acids Res. 
45, 11547–11558 (2017). [PubMed: 28981716] 

96. Kalhor R, Tjong H, Jayathilaka N, Alber F & Chen L Genome architectures revealed by tethered 
chromosome conformation capture and population-based modeling. Nature biotechnology 30, 90 
(2012).

97. Le Treut G, Kepes F & Orland H A Polymer Model for the Quantitative Reconstruction of 
Chromosome Architecture from HiC and GAM Data. Biophys. J. 115, 2286–2294 (2018). 
[PubMed: 30527448] 

98. Di Pierro M, Cheng RR, Aiden EL, Wolynes PG & Onuchic JN De novo prediction of human 
chromosome structures: Epigenetic marking patterns encode genome architecture. Proceedings of 
the National Academy of Sciences 114, 12126–12131 (2017).

99. Zhang B & Wolynes PG Topology, structures, and energy landscapes of human chromosomes. 
Proceedings of the National Academy of Sciences 112, 6062–6067 (2015).

100. Di Pierro M, Zhang B, Aiden EL, Wolynes PG & Onuchic JN Transferable model for 
chromosome architecture. Proceedings of the National Academy of Sciences 113, 12168–12173 
(2016).

101. Junier I, Dale RK, Hou C, Képès F & Dean A CTCF-mediated transcriptional regulation through 
cell type-specific chromosome organization in the β-globin locus. Nucleic Acids Res. 40, 7718–
7727 (2012). [PubMed: 22705794] 

102. Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH & Teller E Equation of State 
Calculations by Fast Computing Machines. The Journal of Chemical Physics 21, 1087–1092 
(1953).

103. Caudai C, Salerno E, Zoppe M & Tonazzini A Inferring 3D chromatin structure using a multiscale 
approach based on quaternions. BMC Bioinformatics 16, 11 (2015). [PubMed: 25592753] 

104. Plimpton S Fast parallel algorithms for short-range molecular dynamics. Journal of computational 
physics 117, 1–19 (1995).

105. Van Der Spoel D et al. GROMACS: fast, flexible, and free. Journal of computational chemistry 
26, 1701–1718 (2005). [PubMed: 16211538] 

106. Meluzzi D & Arya G Efficient estimation of contact probabilities from inter-bead distance 
distributions in simulated polymer chains. J. Phys.-Condes. Matter 27, 12 (2015).

107. Wang SY, Xu JB & Zeng JY Inferential modeling of 3D chromatin structure. Nucleic Acids Res. 
43, 12 (2015).

108. Hu M et al. Bayesian Inference of Spatial Organizations of Chromosomes. PLoS Comput. Biol. 9, 
14 (2013).

109. Park J & Lin S 245–261 (Springer International Publishing, Cham; 2015).

110. Park J & Lin SL Impact of data resolution on three-dimensional structure inference methods. 
BMC Bioinformatics 17, 13 (2016). [PubMed: 26823083] 

Meluzzi and Arya Page 23

Methods. Author manuscript; available in PMC 2021 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



111. Carstens S, Nilges M & Habeck M Inferential Structure Determination of Chromosomes from 
Single-Cell Hi-C Data. PLoS Comput. Biol. 12, 33 (2016).

112. Oluwadare O, Zhang YX & Cheng JL. A maximum likelihood algorithm for reconstructing 3D 
structures of human chromosomes from chromosomal contact data. BMC Genomics 19, 17 
(2018). [PubMed: 29301490] 

113. Tjong H et al. Population-based 3D genome structure analysis reveals driving forces in spatial 
genome organization. Proc. Natl. Acad. Sci. U. S. A. 113, E1663–E1672 (2016). [PubMed: 
26951677] 

114. Hua N et al. Producing genome structure populations with the dynamic and automated PGS 
software. Nat. Protoc. 13, 915–926 (2018). [PubMed: 29622804] 

115. Zou CC, Zhang YP & Ouyang ZQ HSA: integrating multi-track Hi-C data for genome-scale 
reconstruction of 3D chromatin structure. Genome Biol. 17, 14 (2016). [PubMed: 26821746] 

116. Imakaev M et al. Iterative correction of Hi-C data reveals hallmarks of chromosome organization. 
Nat. Methods 9, 999-+ (2012). [PubMed: 22941365] 

117. Cournac A, Marie-Nelly H, Marbouty M, Koszul R & Mozziconacci J Normalization of a 
chromosomal contact map. Bmc Genomics 13, 13 (2012). [PubMed: 22233093] 

118. Hu M et al. HiCNorm: removing biases in Hi-C data via Poisson regression. Bioinformatics 28, 
3131–3133 (2012). [PubMed: 23023982] 

119. Russel D et al. Putting the Pieces Together: Integrative Modeling Platform Software for Structure 
Determination of Macromolecular Assemblies. Plos Biology 10, 5 (2012).

120. Rieping W, Habeck M & Nilges M Inferential Structure Determination. Science 309, 303–306 
(2005). [PubMed: 16002620] 

121. Geman S & Geman D STOCHASTIC RELAXATION, GIBBS DISTRIBUTIONS, AND THE 
BAYESIAN RESTORATION OF IMAGES. Ieee Transactions on Pattern Analysis and Machine 
Intelligence 6, 721–741 (1984). [PubMed: 22499653] 

122. Duane S, Kennedy AD, Pendleton BJ & Roweth D HYBRID MONTE-CARLO. Physics Letters 
B 195, 216–222 (1987).

123. Swendsen RH & Wang JS REPLICA MONTE-CARLO SIMULATION OF SPIN-GLASSES. 
Physical Review Letters 57, 2607–2609 (1986). [PubMed: 10033814] 

124. Habeck M, Nilges M & Rieping W Replica-exchange Monte Carlo scheme for Bayesian data 
analysis. Physical Review Letters 94, 4 (2005). [PubMed: 15918241] 

125. Dempster AP, Laird NM & Rubin DB MAXIMUM LIKELIHOOD FROM INCOMPLETE 
DATA VIA EM ALGORITHM. J. R. Stat. Soc. Ser. B-Methodol. 39, 1–38 (1977).

126. Trussart M et al. Assessing the limits of restraint-based 3D modeling of genomes and genomic 
domains. Nucleic Acids Res. 43, 3465–3477 (2015). [PubMed: 25800747] 

127. Moult J, Fidelis K, Kryshtafovych A, Schwede T & Tramontano A Critical assessment of 
methods of protein structure prediction (CASP)Round XII. Proteins-Structure Function and 
Bioinformatics 86, 7–15 (2018).

128. Plewczynski D, Lazniewski M, Von Grotthuss M, Rychlewski L & Ginalski K VoteDock: 
Consensus Docking Method for Prediction of Protein-Ligand Interactions. Journal of 
Computational Chemistry 32, 568–581 (2011). [PubMed: 20812324] 

129. Ren XD et al. Novel Consensus Docking Strategy to Improve Ligand Pose Prediction. Journal of 
Chemical Information and Modeling 58, 1662–1668 (2018). [PubMed: 30044626] 

130. Stamm M & Forrest LR Structure alignment of membrane proteins: Accuracy of available tools 
and a consensus strategy. Proteins-Structure Function and Bioinformatics 83, 1720–1732 (2015).

131. Sharma A & Manolakos ES Multi-criteria protein structure comparison and structural similarities 
analysis using pyMCPSC. Plos One 13, 15 (2018).

132. Wei Y, Thompson J & Floudas CA CONCORD: a consensus method for protein secondary 
structure prediction via mixed integer linear optimization. Proceedings of the Royal Society a-
Mathematical Physical and Engineering Sciences 468, 831–850 (2012).

133. Kieslich CA, Smadbeck J, Khoury GA & Floudas CA conSSert: Consensus SVM Model for 
Accurate Prediction of Ordered Secondary Structure. Journal of Chemical Information and 
Modeling 56, 455–461 (2016). [PubMed: 26928531] 

Meluzzi and Arya Page 24

Methods. Author manuscript; available in PMC 2021 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



134. Kandoi G, Leelananda SP, Jernigan RL & Sen TZ in Prediction of Protein Secondary Structure, 
Vol. 1484 (eds. Zhou Y, Kloczkowski A, Faraggi E & Yang Y) 35–44 (Humana Press Inc, 
Totowa; 2017).

135. Hacker WC, Li S & Elcock AH Features of genomic organization in a nucleotide-resolution 
molecular model of the Escherichia coli chromosome. Nucleic Acids Res. 45, 7541–7554 (2017). 
[PubMed: 28645155] 

136. Le TB, Imakaev MV, Mirny LA & Laub MT High-resolution mapping of the spatial organization 
of a bacterial chromosome. Science 342, 731–734 (2013). [PubMed: 24158908] 

137. Grigoryev SA, Arya G, Correll S, Woodcock CL & Schlick T Evidence for heteromorphic 
chromatin fibers from analysis of nucleosome interactions. Proceedings of the National Academy 
of Sciences 106, 13317–13322 (2009).

138. Arya G, Zhang Q & Schlick T Flexible histone tails in a new mesoscopic oligonucleosome model. 
Biophys. J. 91, 133–150 (2006). [PubMed: 16603492] 

139. Arya G & Schlick T Role of histone tails in chromatin folding revealed by a mesoscopic 
oligonucleosome model. Proceedings of the National Academy of Sciences 103, 16236–16241 
(2006).

140. Nam G-M & Arya G Torsional behavior of chromatin is modulated by rotational phasing of 
nucleosomes. Nucleic Acids Res. 42, 9691–9699 (2014). [PubMed: 25100871] 

141. Smith EA et al. Quantitatively Imaging Chromosomes by Correlated Cryo-Fluorescence and Soft 
X-Ray Tomographies. Biophysical Journal 107, 1988–1996 (2014). [PubMed: 25418180] 

142. Di Pierro M, Cheng RR, Aiden EL, Wolynes PG & Onuchic JN De novo prediction of human 
chromosome structures: Epigenetic marking patterns encode genome architecture. Proceedings of 
the National Academy of Sciences of the United States of America 114, 12126–12131 (2017). 
[PubMed: 29087948] 

143. MacPherson Q, Beltran B & Spakowitz AJ Bottom-up modeling of chromatin segregation due to 
epigenetic modifications. Proceedings of the National Academy of Sciences of the United States 
of America 115, 12739–12744 (2018). [PubMed: 30478042] 

144. Brackley CA et al. Predicting the three-dimensional folding of cis-regulatory regions in 
mammalian genomes using bioinformatic data and polymer models. Genome Biology 17, 16 
(2016). [PubMed: 26831908] 

145. Pouyanfar S et al. A Survey on Deep Learning: Algorithms, Techniques, and Applications. Acm 
Computing Surveys 51, 36 (2019).

146. Alipanahi B, Delong A, Weirauch MT & Frey BJ Predicting the sequence specificities of DNA- 
and RNA-binding proteins by deep learning. Nature Biotechnology 33, 831-+ (2015).

147. Guo YB, Wang BY, Li WH & Yang B Protein secondary structure prediction improved by 
recurrent neural networks integrated with two-dimensional convolutional neural networks. 
Journal of Bioinformatics and Computational Biology 16, 19 (2018).

148. Zhang L, Yu GX, Xia DW & Wang J Protein-protein interactions prediction based on ensemble 
deep neural networks. Neurocomputing 324, 10–19 (2019).

149. Schreiber J, Libbrecht M, Bilmes J & Noble WS Nucleotide sequence and DNaseI sensitivity are 
predictive of 3D chromatin architecture. bioRxiv, 103614 (2017).

Meluzzi and Arya Page 25

Methods. Author manuscript; available in PMC 2021 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



HIGHLIGHTS

• Computational methods can infer 3D genome structure from 3C contact 

maps.

• Distance-optimization methods convert contact maps to internal distances.

• Polymer physics methods recapitulate contact maps from polymer model 

simulations.

• Maximum-likelihood and Bayesian methods infer parameters of statistical 

models.
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Figure 1: 
Schematic of the overall pipeline for studying 3D organization of chromatin using 3C 

technology. The primary topic of this review article on computational methods for 

recovering 3D structure and structure populations of chromatin from 2D contact maps is 

highlighted by the dashed box. The maps themselves are generated from the sequences of 

read pairs, which are in turn collected from crosslinked chromatin in a large ensemble of 

cells.
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Figure 2: 
General scheme for computational methods that rely on distance-optimization to generate a 

consensus structure that is consistent with an experimental contact map. Blocks represent the 

main components common to these methods. Arrows represent the main flow of 

information. Not all methods attempt to optimize the parameters of the relation used to 

convert contact frequencies into inter-locus distances.
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Figure 3: 
General scheme for computational methods that use polymer physics to generate an 

ensemble of structures that is consistent with an experimental contact map. Blocks represent 

the main components common to these methods. Arrows represent the main flow of 

information.
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Figure 4: 
General scheme for computational methods that use maximum likelihood or Bayesian 

inference to generate a consensus structure or an ensemble of structures, respectively, that is 

consistent with an experimental contact map. Blocks represent the main components 

common to these methods. Arrows represent the main flow of information.
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