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ABSTRACT: Quinoid-based ligands constitute the most common class of redox-active ligands
used to construct electrically conductive and magnetic metal−organic frameworks (MOFs).
Whereas this chemistry is intensively explored for transition-metal and lanthanide ions, any
related actinide compound has not received attention. In particular, the MOF chemistry of
actinide ions in the lower oxidation states is underexplored. We herein report the synthesis, and
structural and physical property characterization of a uranium(IV) quinoid-based MOF,
[U(Cl2dhbq)2(H2O)2]·4H2O (1, Cl2dhbq

2− = deprotonated 2,5-dichloro-3,6-dihydroxybenzo-
quinone). 1 is a rare example of a U(IV)-based coordination solid and the first material to
incorporate bona fide reducible bridging ligands. Despite the anticipated thermodynamic
driving force, no indications of valence tautomerism are evident from magnetometry, near-IR spectroscopy, and X-band electron
paramagnetic resonance measurements. These initial results suggest that reduction potentials alone are insufficient as guidelines for
the prediction of the occurrence of electron transfer in uranium−quinoid-based materials.

■ INTRODUCTION

Metal−organic frameworks (MOFs), and coordination solids
in general, receive ever-increasing attention and numerous
examples of transition-metal-based MOFs have been reported
to exhibit interesting properties relevant for gas separation and
storage, and catalysis.1−3 Recent studies have highlighted the
possibilities to design MOFs with high electrical conductivity
applicable in supercapacitors and chemical sensors, owing to
the significant orbital overlap between the metal ions and the
bridging ligands.4−6 On the contrary, the f-element-based
MOFs are not as widely explored,7 and actinide-based MOFs
are relatively rare.8−11 Whereas the majority of the existing
uranium MOFs encompass UO2

2+ units,8,12 the reducing
nature of the lower oxidation states U(IV) and U(III) make
these metal ion units interesting components for MOFs
comprising redox-active ligand scaffolds. Notably, the few,
previously reported uranium(IV) MOFs are all based on
redox-inactive carboxylate ligands.13−17 The introduction of
U(IV)−L ↔ U(V)−L• valence tautomerism in MOFs would
parallel the current methodology employed in transition-metal
chemistry to reveal strong magnetic interaction and electronic
conductivity through ligand-based mixed-valency.18 Despite
the growing interest in uranium coordination chemistry of
redox-active ligands,19,20 no noninnocent systems have been
reported to extend beyond the dimensionality of an isolated
molecule. In transition-metal-based coordination solids, an
often-used redox-active ligand is 2,5-dichloro-3,6-dihydrox-
ybenzoquinone (“chloranilic acid”; Cl2dhbqH2), which may be
reduced by up to two electrons, owing to the energetically low-
lying π* orbitals (Figure 1).21,22

Figure 1. Schematic overview of the accessible redox states of
Cl2dhbq

n−.

Several examples of iron-based dihydroxybenzoquinone
coordination solids have been shown to display strong
magnetic interactions and high electrical conductivity
attributed to mixed-valency in the dihydroxybenzoquinone
ligand scaffold.23−27 Whereas many lanthanide systems
incorporating closed-shell dihydroxybenzoquinone ligands
have been reported,28 the only few examples of actinide ion
systems incorporate nonoxidizable Th(IV) and U(VI).28−31 In
aqueous solution, U(IV) is moderately reducing and
comparable in reduction potential to the Fe(III)/Fe(II)
redox-couple.32 It could thus be hypothesized that U(IV)
should be capable of reducing Cl2dhbq

2− to the monoradical
Cl2dhbq

3−, thereby creating a pathway for strong 2p−5f
magnetic superexchange interactions and facilitating hopping
conduction between Cl2dhbq

2−/•3− units. Following this
hypothesis we, herein, report on a unique example of a
uranium(IV) coordination solid constructed using quinoid-
based bridging struts.
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■ RESULTS AND DISCUSSION
The slow diffusion of an aqueous solution of Cl2dhbqH2 into
an aqueous suspension of uranium(IV) sulfate tetrahydrate

yielded a black, crystalline material after several weeks. Single-
crystal X-ray diffraction analysis revealed the solid to be a
three-dimensional polymeric structure, isostructural to the
Th(IV) analogue reported by Robson and co-workers,28 with
the stoichiometry of [U(Cl2dhbq)2(H2O)2]·4H2O (1). X-ray
powder diffractometry (see Figure S1) and elemental analysis
confirm the homogeneity of the material and the absence of
any traces of unreacted starting materials. The local
coordination environment around the crystallographically
unique uranium center is shown in Figure 2 (left) and selected
structural metrics are provided in the figure caption. The
structure comprises a ten-coordinate uranium center bridged
to adjacent uranium centers through four Cl2dhbq

n− ligands,
which coordinate to each uranium center in a bidentate fashion
(Figure 2). The coordination sphere is completed by two water
molecules which are hydrogen-bonded to cocrystallized water

molecules (Figure S2). The C2/c crystallographic space group
generates triangular pores perpendicular to the [1, 0, −1]
crystallographic plane as depicted in Figure 2 (right). Heating
of polycrystalline 1 initially leads to loss of six water molecules
as determined by thermogravimetric analysis (Figure S3) and a
concurrent loss of crystallinity. Likewise, N2-sorption measure-
ments of polycrystalline 1 activated in vacuo at 80 °C reveal no
permanent porosity. The structure features two crystallo-
graphically distinct Cl2dhbq

n− ligands, as shown in Figure 2
(left). The C1−C2 (1.552(2) Å) and C3−C4 (1.531(4) Å)
bond lengths are in the normal range for Cl2dhbq

2− and
significantly longer than the values previously found for
Cl2dhbq

•3− (e.g,. 1.456(3) Å in [(TPyA)CoIII(Cl2dhbq
•3−)-

CoIII(TPyA)]3+; TPyA = tris(2-pyridylmethyl)-amine).33 Sim-
ilarly, the C−O bonds are all in the range of 1.258(3) to
1.267(4) Å, which are far from the 1.312(2) Å found in
[(TPyA)CoIII(Cl2dhbq

•3−)CoIII(TPyA)]3+. Further compari-
son to the bond lengths of the Th(IV) analogue reveals only
little differences with an average Th−O bond length of 2.50 Å
versus 2.47 Å in 1, and an average O−C bond length in the
compound of 1.26 Å versus 1.26 Å in 1.28 Analysis of a crystal
at T = 285 K reveals only a small thermal expansion of the unit
cell (coefficient of thermal expansion = 1.6 × 10−4 K−1, Table
S1) as compared to the 120 K data set. In conclusion, the
structural analysis of 1 suggests the absence of any valence
tautomerism and a formulation of 1 based on U(IV) and
closed-shell Cl2dhbq

2−. Mixed-valency systems commonly
exhibit intense intervalence charge transfer (IVCT) transitions
in the near-infrared energy regime. For Cl2dhbq

n−-based
coordination solids, these transitions are attributed to the
interconversion of Cl2dhbq

2− and Cl2dhbq
•3−.23 The near-

infrared absorption spectra of 1 reveal the absence of any
IVCT bands between 4000 and 10 000 cm−1 (see Figure S4),
suggesting an absence of any organic mixed-valency in 1.
Likewise, the pressed pellet electrical resistance of 1 exceeds
several megaohm at room temperature, reflecting its highly
insulating nature. To corroborate the oxidation state assign-
ment, the magnetic moment of 1 was measured as a function of
temperature and magnetic field (Figures 3 and S5). The room

Figure 2. Left: Local coordination environment of the uranium center in 1 (T = 120 K). Cocrystallized water molecules are omitted for clarity.
Selected bond lengths (Å): U−O1 2.502(2), U−O2 2.477(2), U−O3 2.401(2), U−O4 2.476(2), C1−O1 1.258(3), C2−O2 1.267(4), C1−C2
1.522(4), C3−O3 1.265(3), C4−O4 1.258(3), C3−C4 1.531(4). Right: View of the extended coordination polymer structure shown along the
triangular pores corresponding to viewed perpendicular to the crystallographic [1, 0, −1] plane. Pore-filling cocrystallized water molecules have
been omitted for clarity. Color code: U, blue; Cl, green; O, red; C, gray; H, white.

Figure 3. Left: Temperature dependence of the χT (χ ≡ M/μ0H)
product of a polycrystalline specimen of 1 obtained in a magnetic field
of μ0H = 1 T. Right: Magnetic field dependence of the magnetization
at selected low temperatures.
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temperature value of the magnetic susceptibility-temperature
product (χT) amounts to 0.62 cm3 K mol−1. This value is
significantly lower than the one calculated for the Russell-
Saunders 3H4 (5f

2, gJ = 4/5) term of 1.60 cm3 K mol−1. The
magnetic moment of uranium-based complexes has been
shown to be diagnostic of the oxidation state.34 However, the
room temperature magnetic moments are broadly distributed
around 0.96 cm3 K mol−1 and show overlap with the
corresponding values for both U(III) and U(V). Upon
descending temperature, the χT product gradually decreases
to withdraw (∼6 × 10−3 cm3 K mol−1) at 2 K. The vanishing
χT product suggests the presence of a nonmagnetic ground
state, which is commonly encountered in U(IV), and is thus
not expected to arise from antiferromagnetic U(IV)−U(IV)
interactions. Recently, Arnold and co-workers reported the first
examples of dinuclear U(IV) complexes bridged by quinoid
ligands.35 Their experimental and theoretical investigations
revealed a complete irrelevance of superexchange interactions
across closed-shell quinoids bridging two U(IV) centers. The
low-temperature magnetic field dependence of the magnet-
ization of 1 is shown in Figure 3 (right panel). The
approximately linear behavior of M versus μ0H is reminiscent
of a nonmagnetic ground state with a significant contribution
from temperature-independent paramagnetism. This conclu-
sion is supported by X-band electron paramagnetic resonance
spectroscopy where no resonances could be observed between
room temperature and liquid N2-temperature, suggesting a
complete absence of any Cl2dhbq

•3− radical species in 1
(Figure S6).

■ CONCLUSIONS

We have reported the synthesis and structural characterization
of a rare example of a uranium-based MOF not built on
uranyl(VI)-nodes. Analysis of the structural, spectroscopic, and
magnetic data suggest the presence of uranium in oxidation
state +IV, despite the company of reducible Cl2dhbq

2−

bridging ligands. It is tempting to speculate that, irrespective
of the favorable redox potentials of U(IV), the absence of
strong uranium−ligand covalency may impede the metal−
ligand electron-transfer mechanism found in a plethora of 3d
transition metal ion analogues. These initial results may thus
encourage further interest in the synthesis and characterization
of actinide coordination solids based on redox-active ligands,
with the ultimate goal of authenticating strong magnetic
superexchange interactions and electronic conductivity.

■ EXPERIMENTAL SECTION

Materials and Instrumentation. Warning: Depleted
uranium (primarily 238U, t1/2 = 4.5 × 109 y) is a weak α-
emitter and its chemical compounds are toxic. All manipu-
lations were done in ventilated fume hoods at ambient
conditions. U(SO4)2·xH2O was synthesized following the
procedure reported by Peres et al.36 The x = 4 formulation
was determined by powder X-ray diffraction analysis (see
Figure S7). 2,5-Dichloro-3,5-dihydroxybenzoquinone was
purchased from Sigma-Aldrich and used as received. Elemental
analyses were performed on a Thermo Scientific FlashSmart
CHNS/O Elemental Analyzer. The magnetization and
electrical conductivity data were obtained on a QuantumDe-
sign DynaCool Physical Property Measurement System
equipped with a vibrating sample magnetometer and a 9 T
dc magnet. The sample was immobilized in a standard

QuantumDesign powder capsule attached to a brass sample
holder. The magnetization was measured as a function of
temperature (1.8−300 K) and field (0−9 T) and the data were
corrected for diamagnetic contributions from the sample
holder and the sample. The MIR and NIR attenuated-total-
reflectance (ATR) spectra were collected by a Bruker
VERTEX80v Fourier transform vacuum spectrometer employ-
ing a single-reflection diamond ATR accessory. The apparatus
was configured with KBr (MIR)/CaF2 (NIR) beam splitters,
liquid-nitrogen-cooled HgCdTe (MIR)/InSb (NIR) detectors,
and globar (MIR)/tungsten (NIR) radiation sources. Extended
ATR corrections were applied to account for the wavelength-
dependent penetration depth of the probe beams. The
complementary MIR Fourier transform Raman spectrum was
collected by a Bruker RAM II module employing a 1000 mW
near-infrared Nd:YAG excitation laser (1064 nm) and a liquid-
nitrogen-cooled Ge detector. A Mettler-Toledo thermogravi-
metric analyzer equipped with a built-in calibration weight was
used to obtain data in the temperature range 25−465 °C with
a ramping speed of 0.5 °C min−1.

Synthesis. An aqueous solution of 2,5-dichloro-3,6-
dihydroxybenzoquinone (16 mg, 0.076 mmol) was carefully
layered on top of an aqueous suspension (6.5 mL) of
uranium(IV) sulfate tetrahydrate (32 mg, 0.064 mmol) in a
borosilicate vial (⌀ 20 mm). The vial was sealed and left
undisturbed for 2 weeks at room temperature. The highly
crystalline, black material was isolated by filtration. Yield:
∼50%. Anal. Calcd (found) for C12H12Cl4O14U: C, 19.0%
(18.9%); H, 1.6% (1.81%). Characteristic Raman shifts

Table 1. Crystallographic and Refinement Parameters of 1
(120 K)

CCDC number 1897474
empirical formula C12H12Cl4O14U
formula weight 760.05
crystal system monoclinic
space group C2/c
a/Å 13.7293(4)
b/Å 11.3630(4)
c/Å 12.5175(4)
α/deg 90
β/deg 95.847(3)
γ/deg 90
V/Å3 1942.6(1)
Z 4
ρcalc/g cm−3 2.599
μ/mm−1 8.980
F(000) 1424.0
radiation Mo Kα (λ = 0.71073 Å)
2θ range for data collection/deg 5.52−58.988
index ranges −13 ≤ h ≤ 18

−14 ≤ k ≤ 13
−17 ≤ l ≤ 17
−14 ≤ k ≤ 13
−17 ≤ l ≤ 17

reflections collected 9176
independent reflections 2437 [Rint = 0.0282, Rsigma = 0.0249]
data/restrains/parameters 2437/0/148
goodness of fit on F2 1.042
final R indexes [I ≥ 2σ(I)] R1 = 0.0183, wR2 = 0.0435
final R indexes [all data] R1 = 0.0201, wR2 = 0.0442
largest diff. peak/hole/e Å−3 1.53/−0.66
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(cm−1): 292, 389, 738, 1217, 1300, 1382 (cf. Figure S8).
Characteristic IR frequencies (cm−1): 444, 571, 609, 855,
1002, 1250, 1356, 1471 (cf. Figure S8).
X-ray Diffraction. Single crystals of 1 were selected and

mounted on nylon loops on a SuperNova dual source CCD-
diffractometer. The crystal was kept at 120 K during data
collection. Using Olex2,37 the structure was solved by direct
methods using the SIR200438 structure solution program and
refined by Least Squares using version 2014/7 of ShelXL
(Table 1).39 All nonhydrogen atoms were refined anisotropi-
cally. Hydrogen atom positions were calculated geometrically
and refined using the riding model. The X-ray powder patterns
were measured on a Huber G670 powder diffractometer using
Cu Kα1 (λ = 1.5406 Å, quartz monochromator) radiation .
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