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ABSTRACT: Nanopores bear great potential as single-mole-
cule tools for bioanalytical sensing and sequencing, due to their
exceptional sensing capabilities, high-throughput, and low cost.
The detection principle relies on detecting small differences in
the ionic current as biomolecules traverse the nanopore. A
major bottleneck for the further progress of this technology is
the noise that is present in the ionic current recordings, because
it limits the signal-to-noise ratio (SNR) and thereby the
effective time resolution of the experiment. Here, we review the
main types of noise at low and high frequencies and discuss the
underlying physics. Moreover, we compare biological and solid-
state nanopores in terms of the SNR, the important figure of
merit, by measuring translocations of a short ssDNA through a selected set of nanopores under typical experimental
conditions. We find that SiNx solid-state nanopores provide the highest SNR, due to the large currents at which they can be
operated and the relatively low noise at high frequencies. However, the real game-changer for many applications is a
controlled slowdown of the translocation speed, which for MspA was shown to increase the SNR > 160-fold. Finally, we
discuss practical approaches for lowering the noise for optimal experimental performance and further development of the
nanopore technology.
KEYWORDS: biological nanopores, solid-state nanopores, translocation, ion current noise, signal-to-noise ratio, single-molecule detection,
biosensors, DNA sequencing

Nanopores are promising tools for biosensing applica-
tions and sequencing of DNA and proteins, as they
can resolve single analyte molecules, resolve struc-

tural modifications of molecules, and even discriminate
between nucleotide sequences.1−10 The detection mechanism
is simple: While passing through the pore, a (part of a)
molecule transiently blocks the ionic current, thereby inducing
a small dip in the current signal, which is detectable by the
electronics (Figure 1). The electrical read-out is carried out by
an amplifier, which senses and amplifies the current signal,
followed by a digitizer that performs the analog-to-digital
conversion (ADC) of the data. Digital low-pass (LP) filtering
is typically used to reduce the high-frequency noise and thus
improve the signal-to-noise ratio (SNR). Such a gain in SNR
comes, however, at the expense of a lower time resolution,
thereby imposing an inherent trade-off.
The detection of analytes with nanopores thus is, on the one

hand, limited by the ionic current noise which requires LP
filtering that sets a finite operating bandwidth,11,12 but on the
other hand, by the fast speed (typically submilliseconds) at
which molecules translocate through the pore, which

conversely requires a high time resolution for accurate
sampling. Various approaches have been investigated in
order to slow down the molecular translocation. For biological
nanopores, a DNA-translocating motor protein (such as a
helicase or polymerase) has been used to slowly feed a ssDNA
strand into a protein pore for DNA sequencing.13−15 For solid-
state nanopores fabricated in thin SiNx membranes16−18 or
two-dimensional (2D) materials (graphene,19−21 boron
nitride,22−24 molybdenum disulfide25−27), various efforts have
been made to either increase time resolution16,17,28−31 or slow
down the translocation process32 by the use of ionic liquids,27

pore surface engineering,33 mechanical manipulation with a
double pore system,34 optical trapping,35 and sequential DNA
unzipping.36 Nevertheless, while fingerprinting approaches
have been developed to detect individual portions of a DNA
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sequence using dCas9,7,37 streptavidin,38 DNA hairpins,39 or
DNA-origami as probes,40 the SNR has not yet allowed de novo
DNA sequencing with solid-state pores. An understanding of
the noise sources that affect nanopore systems and how these
govern the SNR is key for achieving signals wherein molecular
structures can be resolved fast and reliably. Noise character-
istics of nanopores have been reported in various isolated
reports, but a systematic overview and comparison between
biological and solid-state nanopores is lacking.
In this review, we first describe the typical noise sources that

affect the ionic current recordings of biological and solid-state
nanopores, both at low and high frequencies. Next, we
compare their respective performances of various nanopores
using ssDNA poly(dT) translocations as a test system. We
assess the SNR under typical experimental conditions for
different protein pores Mycobacterium smegmatis porin A (the
M2 mutant with a neutral constriction and positively charged
vestibule, subsequently referred to as MspA),41 Staphylococcus
aureus alpha-hemolysin (α-HL),42,43 Fragaceatoxin C (the
mutant of FraC with a positively charged constriction, referred
to as ReFraC),44,45 and SiNx

29 and MoS2
46 solid-state

nanopores. We find that biological pores generally exhibit
lower noise (Figure 2a). Nevertheless, solid-state nanopores
achieve the best SNR, largely because of the higher voltages
and bandwidths that such devices can operate at, as compared
to biological nanopores. Finally, we discuss approaches for
lowering the ionic current noise and improving the SNR in
biological and solid-state nanopores.

NOISE SOURCES IN NANOPORES
Noise refers to any statistical fluctuation of a signal. It can be
characterized by the standard deviation σ or root-mean-square
(rms) variation around the average value as measured over the
full bandwidth B of the signal and by its power spectral density
(PSD). Generally, noise is undesirable, as it can distort or even
completely mask the actual signal. Nanopores typically operate

by measuring a through-pore ionic current that is driven by a
constant applied bias voltage. For the open-pore current
measurement, where no analyte molecules are present, any
deviation from the baseline current can be regarded as noise
(Figure 2a).
Understanding the origins of noise is fundamental for

optimizing signal detection. Nanopore systems exhibit a range
of different noise sources.48,49 In Figure 2b, we illustrate the
major current noise sources that affect nanopore systems at
different frequencies. Generally, these can be divided in (i)
low-frequency (≲100 Hz) 1/f noise and protonation noise; (ii)
shot noise and thermal current noise (∼0.1−2 kHz), which are
both white noise sources (i.e., frequency-independent); (iii)
high-frequency dielectric (∼1−10 kHz); and (iv) capacitive
(>10 kHz) noise.
In the low-frequency range, 1/f noise (also referred to as

“flicker” or “pink” noise) typically is the dominant source of
noise. Its power decreases with frequency f following a 1/fβ

scaling, with β ≈ 1. While this type of noise is found in many
biological and physical systems, a fundamental understanding
of it is still missing.50 Based on phenomenological evidence, 1/
f noise in nanopores has been associated with physical
processes such as slow fluctuations in the number and mobility
of the charge carriers,51−54 nanometer-sized bubbles in the
pore channel,55 noise arising from the electrodes,56 mechanical
fluctuations of the freestanding membrane (e.g., for 2D
materials),23,57,58 and conformational changes in the case of
biological nanopores.59,60 Smeets et al.61 found that Hooge’s
phenomenological formula54 could effectively describe the 1/f
noise in solid-state56,61−64 nanopores:

S
I

N fI f,1/
H

2

c

α
= β

(1)

where Hooge’s constant, αH, is an empirical parameter that
quantifies the magnitude of 1/f noise fluctuations, I the ionic

Figure 1. Fundamental principle of nanopore sensing. (a) A nanopore separates two aqueous compartments filled with electrolyte solution
(e.g., potassium chloride), and small molecules (e.g., DNA) are electrokinetically pulled through the pore by an applied potential. (b) While
passing through the nanopore, the molecule temporarily induces a partial current blockade which is detected by an amplifier. The signature
of a single-molecule translocation event is generally characterized by the amplitude of the current blockade, which is proportional to the
volume of the molecule in the nanopore, and by the dwell time, which depends on the electrophoretic driving force and transient
interactions between the passing molecule and the pore surface.
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current, and Nc the number of charge carriers in the pore
volume, which was further validated by follow-up stud-
ies.56,62−64 As discussed below, solid-state nanopores typically
feature a relatively pronounced 1/f noise, whose microscopic
origin often remains unresolved. For biological pores, the low-
frequency noise is typically dominated by protonation noise,
which is generated by protonation/deprotonation of ionizable
sites within the protein channel.65−67 It can be described by
fluctuations between two different current levels with mean
lifetimes τ1 and τ2 for the protonated and deprotonated states,
respectively, yielding a Lorentzian-shaped component in the
frequency spectrum (for a complete derivation see Machlup et
al.):68

S
i

f
4( ) 1

1 (2 )I ,protonation

2 2

1 2
2

τ
τ τ π τ

= Δ
+ + (2)

where Δi is the difference in current between the two levels,
and τ is the characteristic relaxation time that can be expressed
as τ = τ1τ2/(τ1 + τ2). For α-HL, for example,66 τ was found to
be 3.1 × 10−5 s. A distribution of multiple Lorentzian processes
such as in eq 2 can lead to 1/f noise.51 Temporal
conformational changes of the pore channel can also generate
conductance fluctuations resulting in 1/f noise. Such a

phenomenon, also known as “channel breathing”, was reported
to affect protein pores such as bacterial porin channels.59,60

In the midfrequency range (typically ∼0.1−2 kHz), a
frequency-independent white noise is observed that derives
from thermal noise (also known as Johnson−Nyquist noise)
and shot noise. Thermal current noise is fundamental to any
dissipative element69,70 and adds to the current noise as

S
k T
R

4
I ,thermal

B=
(3)

where kB is the Boltzmann constant, T is temperature, and R
the equivalent resistance of the nanopore. Shot noise, on the
other hand, is due to the quantization of charge and is
generated when charge carriers flow across a potential
barrier.71,72 Its current-dependent contribution to the noise
can be expressed as

S Iq2I ,shot = (4)

where q is the charge of a single carrier. In practice, shot noise
and thermal noise are comparable in magnitude for the
conditions that are typically used in nanopore experiments.
Another contribution to the nanopore noise originates from

the loss conductance of the membrane and chip support.48,49

Such dissipation, resulting from dipolar relaxation and charge
carrier migration (details can be found in Chen et al.),73

generates thermal energy causing thermal noise, also known as
dielectric noise.74,75 As this loss conductance scales linearly
with frequency, this noise can be described by

S kT C Df8I ,dielectric chipπ= (5)

where Cchip is the parasitic capacitance, and D a dissipation
factor of the dielectric materials constituting the membrane
and support chip. This source of noise typically dominates in
the 2−10 kHz frequency range. To estimate Cchip, one can
simply use the expression for a parallel plate capacitor C = εA/
d, where ε is the dielectric constant of the membrane material,
and A and d are the area and the thickness of the membrane,
respectively. For f > 10 kHz, the current noise is determined by
the input-referred thermal voltage noise vn across the total
capacitance Ctot at the amplifier input:48,49

S C v f4I ,capacitance
2

tot
2

n
2 2π= · (6)

where vn is the input voltage noise (3 nV/Hz−1 for the
commonly used amplifier Axopatch 200B,76 Molecular
Devices, San Jose, USA). Ctot is the total capacitance including
the membrane and support chip capacitance Cchip, the
capacitance Camp at the input of the amplifier, and the
capacitance Cw of the wiring between the electronics and the
pore. Notably, SI, capacitance has an even stronger, f 2, frequency
dependence than SI, dielectric. The total current noise of a
nanopore system over its full bandwidth is the sum of all
contributions (Figure 2b), i.e., the sum of eqs 1−6.

NOISE IN BIOLOGICAL NANOPORES
Biological nanopores are formed by the spontaneous insertion
of membrane proteins into a lipid bilayer, which creates
nanopores with typical diameters ranging from ∼1−4 nm,77

although larger pores with diameters up to ∼40 nm, e.g., the
nuclear pore complex,78 are also found in nature. Figure 3a
shows a schematic of a standard setup for measuring the ionic
current through such a protein pore. Briefly, a thick (tens of
micrometers) insulating film of amorphous polytetrafluoro-

Figure 2. Ionic current noise in nanopores. (a) Example current
traces for a 1.3 nm diameter solid-state SiNx nanopore (red) and a
1.4 nm diameter biological α-HL pore (green), performed at a
constant applied bias of 100 mV in 1 M KCl buffer at pH 7 at a
bandwidth of 10 kHz (light) and 1 kHz (dark). α-HL pore was
measured using the typical Montal−Muller approach,47 with a
bilayer diameter of ∼100 μm, as described by Maglia et al.3 The
solid-state pore was fabricated on a Si-supported 20 nm-thick SiNx
freestanding membrane using transmission electron microscopy.
Currents through both pores were amplified with Axopatch 200B.
(b) Schematic of the current PSD for a typical nanopore. Common
types of noise are highlighted in the various frequency ranges.
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ethylene (PTFE, or Teflon) separates two liquid compart-
ments and contains a ∼50−100 μm-sized hole where the lipid
bilayer is assembled.3,79 Teflon is the preferred support
material due to the relatively low high-frequency noise and
ease of fabrication.80 Insertion of a protein pore (Figure 3b)
short-circuits the insulating bilayer membrane and an ionic
current between the two reservoirs can be measured by a pair
of Ag/AgCl electrodes. The current signal is amplified by a
transimpedance amplifier (e.g., Axopatch 200B) and digitized

by an analog-to-digital converter (ADC, e.g., Axon Digidata,
same supplier). To shield from external radiative electric noise,
the flow-cell and the amplifier headstage are enclosed in a
metallic Faraday cage.3 For biological nanopores, ionic
conductances are typically on the order of 0.1−2 nS.
Characteristic examples of the current PSD for three

biological nanopores (α-HL,42 MspA, and ReFraC44) are
shown in Figure 3c, as measured at 1 M KCl, pH 7.5, under 50
mV applied bias. Noticeably, both α-HL and MspA exhibit a

Figure 3. Noise in biological and solid-state nanopores. (a) Standard setup used for measuring the ionic current through a biological
nanopore embedded within a lipid membrane. (b) Sketch of a biological MspA nanopore. Adapted with permission from ref 14. Copyright
2010 National Academy of Sciences. (c) Typical current PSD for three biological nanopores, ReFraC (D10R/K159E mutant of FraC)44

(red), α-HL (blue), and the D90N/D91N/D93N/D118R/E139 K/D134R mutant of MspA (green), measured in the same setup at 50 mV
applied voltage, 1 M KCl salt, pH 7. (d) Low-frequency protonation noise of α-HL as a function of pH. Adapted with permission from ref 67.
Copyright 1995 The Biophysical Society. (e) Current noise Irms measured at a 4.3 kHz bandwidth of a lipid bilayer setup (where no pore was
inserted) vs the size of the bilayer membrane. Adapted with permission from ref 80. Copyright 2003 The Biophysical Society. (f) Schematic
of a typical flow cell for measuring the ionic current through a solid-state nanopore. Adapted with permission from ref 4. Copyright 2015
Elsevier. (g) Sketch of a solid-state nanopore fabricated onto a Si-supported SiNx membrane. (h) Current PSD for a 15.6 nm SiNx solid-state
nanopore. Data were measured at 100 mV applied voltage for 1 M KCl salt.61 (i) Relative low-frequency noise SI/I

2 at 1 Hz versus salt
concentration. Solid line shows a fit to the data using Hooge’s relation, cf. eq 1. (h) and (i) were adapted with permission from ref 61.
Copyright 2008 National Academy of Sciences. (j) Current noise Irms measured at a 1 MHz bandwidth vs capacitance of the nanopore chip.
Adapted with permission from ref 16. Copyright 2014 American Chemical Society.
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noise plateau at low frequencies (<1 kHz) which is due to
protonation noise, cf. eq 2 for f ≪ 1/τ. The associated PSD is
∼10−4 to 10−3 pA2/Hz, which is higher than the corresponding
white noise of ∼10−5 pA2/Hz, set by the sum of thermal and
shot noise, eqs 3 and 4. In the context of single-molecule

sensing, protonation noise in biological nanopores was first
investigated by Bezrukov and Kasianowicz in the mid
1990s.66,67 Spectral analysis of the current noise of α-HL
pores revealed the presence of a Lorentzian-shaped component
at low-frequencies (0.2−2 kHz). Given the strong dependence

Figure 4. Detection of DNA homopolymer poly(dT) with protein and solid-state nanopores. (a) Example of a translocation event,
illustrating the SNR. (b) Schematic comparing the relative sizes of MspA (green), α-HL (red), ReFraC (blue), MoS2 (black), and solid-state
SiNx (purple). Adapted with permission from ref 2. Copyright 2015 IOP Publishing Ltd. (c) Example of translocation events of poly(dT)
molecules through MspA14 channel (green), α-HL pore (red), ReFraC pore (blue), 1.4 nm MoS2 pore (black), and 1.4 nm SiNx pore
(purple, Adapted with permission from ref 18. Copyright 2013 American Chemical Society) all in a 1 M KCl solution at transmembrane
voltages of 180 mV, 180 mV, 180 mV, 300 mV, and 1 V and at bandwidths of 30 kHz, 10 kHz, 10 kHz, 10 kHz, and 500 kHz, respectively.
Experiments for biological pores were done using an Axopatch 200B amplifier, a Teflon-supported lipid membrane (∼50−100 μm wide;
DPhPC lipids), 10−30 kHz bandwidth, 1 M KCl, pH 7.5, and a forward bias voltage of 180 mV, as in ref 106. The solid-state SiNx pore was
built on a glass chip and measured with the VC100 high-bandwidth, low-noise voltage-clamp amplifier (Chimera Instruments, New York,
NY, USA) which allowed for low-noise measurements at high bandwidth. A broad bandwidth of 500 kHz was required in order to fully
resolve the fast translocations (∼22 μs)18 of poly(dT)30 through the solid-state SiNx pore. Notably, the positively charged constriction of
ReFraC causes the negatively charged poly(dT)50 to translocate with much slower (491 ± 114 μs) translocation times compared to MspA
(17.7 ± 1.1 μs), which permitted to filter out more high-frequency noise. (d) Comparison of various figures of merit for different nanopore
systems under typical experimental conditions. Io indicates the open pore ionic current at the applied bias V.
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on pH (Figure 3d), this noise source was associated with the
reversible protonation of ionizable residues occurring in the α-
HL constriction. This notion was further established in a later
work by Nestorovich et al.,65 where the bacterial porin, OmpF,
was shown to produce a similar pH-dependence of the
protonation noise.
ReFraC instead shows a pronounced 1/f noise with a PSD of

∼10−1 pA2/Hz at 1 Hz, which is almost three times more than
for α-HL and MspA. 1/f noise in biological nanopores was first
studied by Benz and co-workers59,81 and described using
Hooge’s model, eq 1. The low-frequency fluctuations observed
in a family of bacterial porins were associated with a number of
possible phenomena, e.g., gating of the pore channel.59 In later
work by Bezrukov and Winterhalter,60 conformational changes
of the protein pore channel, termed “channel breathing”,82

were discussed as the main cause for the observed 1/f noise.
At higher frequencies (>1 kHz), the noise in biological

nanopores is dominated by dielectric noise arising from the
loss conductance of the lipid membrane. In fact, since the
dielectric loss and dielectric constant of the Teflon are
relatively low (D = (0.8−2) × 10−4 and εr = 1.89−1.93,
respectively), the major contribution to the dielectric noise is
set by the capacitance of the thin lipid bilayer membrane. This
can be attenuated by reducing the area of the Teflon hole
(Figure 3e).80,83 A noise characterization at even higher
frequencies (MHz-GHz; above the experimentally accessible
frequency range) was performed using molecular dynamics
simulations based on a comprehensive model of MspA.84

NOISE IN SOLID-STATE NANOPORES
Solid-state nanopores are generally fabricated in a freestanding
membrane of a solid-state material such as silicon nitride
(SiNx),

85 graphene,19 hexagonal boron nitride (h-BN),86 or
molybdenum disulfide (MoS2),

46 with thicknesses ranging
from ∼0.3 to 30 nm. In common nanopore chips (Figure 3g),
such a membrane is structurally supported by a ∼200−500
μm-thick substrate material, typically silicon(Si),85 glass
(SiO2),

16 or Pyrex.87,88 Nanopores can be drilled into the
membrane in a variety of ways, e.g., by using a transmission
electron microscope (TEM),89,90 focused ion beam milling
(FIB),91,92 reactive ion etching (RIE),93 laser-etching,94,95 or
by dielectric breakdown,96,97 resulting in pore diameters from
sub-1 nm to tens of nanometers. In a standard solid-state
nanopore experiment, the chip is sandwiched between two
rubber O-rings that seal two compartments containing the
electrolyte solution (Figure 3f). Alternatively, solid-state pores
of ∼5−50 nm size can be made by mechanical pulling of
hollow glass (SiO2) pipettes,98−100 which are immersed in
electrolyte during the measurement. Current sensing, amplifi-
cation, and recording is the same as for biological nanopores.
Figure 3h displays a typical current PSD measured for a 15

nm diameter SiNx solid-state nanopore61 in a 20 nm-thick
membrane. Characteristic of solid-state nanopores is the
pronounced 1/f noise that dominates the low-frequency part
of the spectrum (<100 Hz). It can originate from a range of
physical processes, see eq 1 and associated discussion. Smeets
et al.55 showed that poor wettability of the pore surface,
associated with the formation of nanobubbles, resulted in high
1/f noise in SiNx. Tabard-Cossa et al.

101 discussed that high 1/
f noise in SiNx pores correlates with surface contamination:
inhomogeneities of the pore surface resulted in fluctuations of
the number and mobility of charge carriers due to trapping at
the pore surface,63,101 analogous to 1/f noise found in

semiconductors.102 As shown by Smeets et al.,61,62 such low-
frequency noise in SiNx pores obeys Hooge’s relation, eq 1,
which describes an inverse proportionality between the 1/f
current noise power and the number of charge carriers present
within the nanopore volume (Figure 3i).54 For nanopores
made in 2D materials, the 1/f noise depends strongly on the
size of the freestanding area,22,57,58,103 indicating that
mechanical fluctuations of the ultrathin 2D membrane
(thickness <1 nm) are the main source. The high-frequency
noise in solid-state nanopores is dominated by dielectric (∼2−
10 kHz) and capacitive noise (>10 kHz),16,104 see Figure 3j.
The PSD of these noise sources depends mostly on the
capacitance of the chip, cf. eq 5 and 6, which in turn is set by
the membrane and substrate size, thickness, and dielectric
constant. Additionally, parasitic capacitances from the amplifier
and the interconnects between nanopore and amplifier
contribute to the total capacitance at the amplifier input.

COMPARING THE PERFORMANCE OF BIOLOGICAL
AND SOLID-STATE NANOPORES
So far, we provided a general overview of the typical noise
sources in biological and solid-state nanopores. We now turn
to a mutual comparison between these two classes of
nanopores. We compare their performances in terms of the
SNR, a more relevant figure of merit than the mere magnitude
of the current noise. We define the SNR as the ratio between
the signal modulation ΔI produced by the translocation of a
ssDNA molecule and the baseline current rms (Irms) measured
at the operating bandwidth (Figure 4a). Although other
definitions of SNR are found in the literature, e.g., as the ratio
between open pore current and baseline current noise Io/
Irms

105 or the capability to discern current levels when
sequencing DNA,13,41 we find this definition the most
appropriate for the diverse nanopore systems compared in
our study.
Given that the experimental conditions reported in the

literature differ considerably, we carried out a dedicated
comparative study by complementing reported data with data
that were, to the extent possible, obtained in our lab under the
same experimental conditions. The bandwidth was chosen
such as to fully resolve the current blockade ΔI generated by
the poly(dT) substrate (avoiding a reduced ΔI due to a too
narrow bandwidth). The translocation time, in turn, is
determined by a combination of electrophoresis, electro-
osmosis, and interactions between the passing molecule and
the pore surface, which will depend on each individual
nanopore system. The applied bias was chosen as to maximize
the current signal and is limited by experimental conditions, as
will be discussed below. We selected five popular nanopore
systems, MspA, a-HL, ReFraC, MoS2, and SiNx, that are
commonly used and that were shown to possess good
spatiotemporal resolution, allowing for accurate discrimination
of short homopolymers.13,27,29,44,107 All pores considered had a
similar diameter of ∼1.3 nm. Figure 4b illustrates the relative
sizes of the different pores.
Nanopore experiments probing the translocation of poly-

(dT)50 were carried out in-house using three biological pores,
MspA, α-HL, and ReFraC. We compared these data to
experimental results on two types of solid-state nanopores,
SiNx

29 and MoS2,
27 that were measured at the same electrolyte

conditions. Translocation data of poly(dT)80 through a 1.4 nm
MoS2 pore were kindly shared by the Radenovic lab,

46 whereas
poly(dT)30 data for a 1.4 nm SiNx pore with ∼5 nm length
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were taken from the literature.29 Figure 4c shows examples of
single-molecule poly(dT) translocations for the 5 pores. A
range of SNR values are observed, with, at face value, a better
performance for SiNx and ReFraC than for MoS2, α -HL, and
MspA.
Figure 4d quantitatively compares the data for the different

nanopore systems. For the biological nanopores, ReFraC gives
the best SNR of 15, while MspA resulted in a much lower SNR
of 4. This is mainly due to the faster translocations of poly(dT)
through MspA, which required a higher bandwidth (30 kHz),
and hence larger noise, in order to resolve the translocation

events. Conversely, translocations through the positively
charged constriction of ReFraC were significantly slower,
thus permitting to employ a lower bandwidth (10 kHz).
Among the solid-state nanopores, SiNx showed the best SNR:
an impressive value of 37, which was higher than the SNR of 5
obtained for MoS2, as well as higher than the values for all
biological nanopores. The greater SNR for SiNx results from
the very high voltage applied (1000 mV vs 300 mV for MoS2),
producing a particularly large current signal ΔI. The applied
voltage for MoS2 pores was limited by the degradation of the
2D membrane and pore growth under high bias voltages,

Figure 5. Approaches to reduce the noise in nanopore systems. For biological nanopores, low-frequency protonation noise can be minimized
by adjusting the pH far from pKa of the amino acids in the pore constriction, as reported in ref. 66 or by mutating the ionizable amino acids
(Arg, Lys, Asp, Glu) to neutral ones (e.g., Asn), as was done for MspA. Reprinted with permission from ref 106. Copyright 2008 National
Academy of Sciences. Low-frequency 1/f noise instead can only be avoided by selecting a pore that is mechanically stable under an applied
bias, e.g. MspA or α-HL. High-frequency noise can be minimized by reducing the size of the freestanding lipid membrane by, e.g., employing
a nanocapillary as a support (reprinted with permission from ref 123. Copyright 2011 American Chemical Society) and by reducing the
capacitance of the interconnects by smart CMOS integration (reprinted with permission from ref 105. Copyright 2013 American Chemical
Society). For solid-state nanopores, low-frequency 1/f noise can be reduced by coating the surface with a hydrophilic, homogeneous
material, e.g., Al2O3, as reported in ref 115. For 2D-materials, 1/f noise can be suppressed by lowering the area of the freestanding 2D
membrane. Adapted with permission from ref 17. Copyright 2015 Springer Nature. High-frequency noise can be minimized by employing
dielectric chip substrate materials, e.g. glass or by tight integration of the amplifier and nanopore chip (adapted with permission from ref 28.
Copyright 2012 Springer Nature).
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which typically limited the applied bias to <400 mV. In
biological nanopores, the range of bias voltages is limited by
the membrane stability, affected by electroporation and rupture
around 200−300 mV.108,109 Note furthermore that the SiNx
nanopore system was operated at a much higher bandwidth
(500 kHz vs 10 kHz for MoS2), the regime where dielectric
and capacitive noise dominate. This is advantageous for high-
voltage sensing, since these noise sources do not scale with
voltage, cf. eqs 5 and 6. As a result, the high bias voltage
improves the signal (ΔI), while it does not affect the noise.
Lastly, we note that, while MoS2 has a lower SNR than SiNx, it
features a better spatial resolution along the molecule, given its
0.7 nm pore length, as compared to the ∼5 nm of SiNx.
Finally, it is important to point out that the above

comparison was carried out for voltage-driven translocation
of DNA through nanopores. A controlled slowdown of the
translocation speed can change these numbers dramatically.
Indeed, despite the fact that Figure 4d shows that the best SNR
was obtained for the solid-state SiNx nanopores, with values
exceeding those of biological nanopores, todays commercial-
ized nanopore-based DNA sequencers employ protein pores to
read off DNA bases with (sub)-nucleotide resolution over very
long reads.15,110 Using a helicase to slow down ssDNA
molecules through MspA, allowed Laszlo et al.41 to use a very
low LP filter frequency of ∼200 Hz and fully resolve the
stepwise DNA translocation at half-base resolution. By
comparing the noise at a 200 Hz bandwidth with the signal
obtained for voltage-driven poly(dT) translocations in our
experiments, we find an exquisite SNR of ∼650 for MspA − 2
orders of magnitude higher than the SNR = 4 noted above.
Applying the same reasoning to α -HL and ReFraC increases
their SNR to ∼270 and ∼220, respectively, i.e., somewhat
lower values, consistent with their higher low-frequency noise
compared to MspA (Figure 3c). Thus, in the context of DNA
sequencing, the real game-changer lies in the enzymatic control
over the translocation speed by use of an additional motor
protein.13,15,41,107,111 For solid-state nanopores, despite the
progresses in slowing down the DNA translocation,27,32−36

time control has so far remained a challenge, and accordingly,
DNA sequencing has not yet been realized with such
nanopores. Furthermore, mechanical instability of solid-state
nanopores over time, which particularly affects smaller pores,
should be minimized in order to achieve sufficiently long
observation times.

APPROACHES TO OVERCOME NOISE LIMITATIONS
Figure 5 shows important approaches to lower the ionic
current noise in nanopores. We first describe efforts to reduce
the low-frequency noise. As protonation noise is the main
source of low-frequency noise in biological nanopores, it is
advantageous to choose a pH value that is far away from the
pKa of the ionizable amino acids to attenuate the noise.
Another way to reduce it, is to remove charged amino acids
near the constriction site, which is expected to yield lower
noise levels. Furthermore, increasing the conformational
stiffness of biological pores can help to reduce conductance
fluctuations associated with channel breathing.
For solid-state nanopores, the low-frequency 1/f noise can

be efficiently suppressed by surface functionalization of the
SiNx nanopore with a hydrophilic surface layer, such as Al2O3
or SiO2.

112−115 In principle, any surface treatment that reduces
the amount of contaminants and improves hydrophilicity of
the pore surface will lower the 1/f noise. Indeed, Tabard-Cossa

et al.101 showed that piranha treatment (30% H2O2/H2SO4,
1:3) substantially reduced the 1/f noise by up to 3 orders of
magnitude. Beamish et al.116 demonstrated that cyclic
application of high electric fields to the nanopore also
suppressed this noise source. Similar to protein pores, work
from Wen et al.56 showed that the 1/f noise could be
minimized by choosing a pH that is far from the isoelectric
point of the nanopore material (∼5 for Si3N4).

117,118

Nanopores built with 2D materials suffer from pronounced
1/f noise that was found to correlate with the area and
thickness of the freestanding 2D membrane.47,48 A decrease of
the freestanding area was shown to reduce the 1/f noise, while
employing multilayer membranes was also helpful for
obtaining less noise, though that approach is less desirable
due to a loss of spatial resolution.23,57,58 Use of freestanding
2D membranes that are directly grown on a SiNx-supporting
membrane was also shown to lower the 1/f noise for both
graphene119 and MoS2

120 pores, as compared to transferred 2D
membranes.19,57

The noise at higher frequencies, constituted by dielectric
and capacitive noise, has a well-characterized physical origin,
namely the thermal voltage noise in conjunction with the loss
conductance of the membrane and substrate materials as well
as the amplifier input capacitance. Suppression of dielectric
noise is generally achieved by minimizing the capacitance Cchip
and dielectric loss D of the chip, cf. eq 5. To effectively
decrease capacitive noise, the total input capacitance Ctot needs
to be reduced, see eq 6 and related discussion. In biological
nanopores, the high-frequency noise can be reduced by
decreasing the area of the lipid bilayer. Mayer et al.80 fabricated
Teflon holes of only ∼25 μm in diameter with soft lithography
using SU-8 resist as master mold, providing a Cchip of 10−28
pF. By using a U-shaped Teflon patch tube as the support,
Akeson and co-workers83,106 built horizontal bilayers <20 μm
in diameter. Lipid bilayers with a comparable size were also
created with the droplet-interface-bilayer (DIB) technique.121

Kitta et al.122 reported on the fabrication of yet smaller
bilayers, with sizes down to 2−3 μm in diameter, by using a
heated tungsten tip to create a microhole across the Teflon
film.
Similarly sized 1−3 μm bilayers can be obtained by inserting

protein pores into giant unilamellar vescicles (GUVs) and
using patch-clamp pipets to measure the conductance of the
pores.124,125 More recently, Gornall et al.123 showed that
borosilicate glass nanopipets with diameters as low as 230 nm
could be fabricated and used for current recordings on an
OmpF protein channel. Hartel et al.126 achieved high-
bandwidth (>500 kHz) recordings with biological pores with
complementary metal-oxide-semiconductor (CMOS)-sus-
pended membranes that were built directly over a ∼30 μm
well on top of a CMOS-amplifier chip. This offered a reduction
of the total input capacitance Ctot to <4 pF and provided a
bandwidth as high as 1 MHz and a SNR > 8 at 500 kHz, for
detecting the gating of a RyR1 pore (type 1 ryanodine
receptor).126 Combined with extended β distribution data
analysis127 (which exploits the characteristics of the excess
current noise to reconstruct the true current signal), it was
possible to achieve a time resolution of 35 ns.126

For reducing the high-frequency noise in SiNx solid-state
nanopores, an established method, first reported by Tabard-
Cossa et al.,101 is to lower Cchip by coating the area of the chip
around the pore with a dielectric, e.g. PDMS, thereby providing
additional thickness to the chip membrane surrounding the
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pore and thus a low series capacitance. Similarly, a substantial
reduction of Cchip was achieved by employing a dielectric, e.g.,
amorphous glass16,17 or Pyrex23,88 as substrate material instead
of the commonly used crystalline silicon which is intrinsically
conductive. In work by Balan et al.,17 glass chips were shown to
reduce Cchip to <1 pF, compared to >300 pF for standard
silicon chips.61 Similarly to biological nanopores, the highest
working bandwidths were so far achieved by integrating a low
Cchip nanopore device with an on-chip CMOS-amplifier,28,30

which lowered the total input capacitance to Ctot ≈ 4 pF. In
this way, ssDNA molecules were recorded using ultrathin (<4
nm) sub-2 nm pores yielding a SNR > 10 at 5 MHz.30 In 2D
nanopores, the high-frequency noise can be addressed in
similar ways to SiNx pores. The use of glass as substrate
material, combined with a small ∼300 nm freestanding 2D-
membrane of graphene or MoS2, resulted in a Cchip < 2 pF.17

CONCLUSIONS

In this paper, we illustrated the main sources of noise affecting
various nanopore systems, with a particular emphasis on
comparing biological and solid-state nanopores, and we
discussed practical approaches to lower the noise. We
compared the SNR of poly(dT) translocations through a
representative set of biological and solid-state pores and found
that silicon nitride nanopores gave the highest SNR. This can
be attributed to the higher currents (i.e., larger signals) that
solid-state systems offer and to the relatively low high-
frequency noise. Despite these good noise characteristics,
prominent applications such as DNA or protein sequencing
have so far remained out of reach for solid-state nanopores,
because the fast translocation speed provides only a short
observation time per single molecule. There are two ways to
improve this: One can either shift the sampling rate into even
higher frequencies (≫MHz) or alternatively slow down the
translocation of the molecule. The latter strategy has led to the
successful commercialization of DNA sequencers based on
protein nanopores that are coupled with an enzymatic stepping
motor. In our comparison, we found that the SNR of MspA
increased >160-fold by such speed control, mainly due to the
decoupling of the signal from the high-frequency noise.
Additionally, the motor protein provides a ratcheting
mechanism that translocates the substrate with a constant
discrete step size. Since the sensing region of the pore is
typically larger than the individual monomer size (nucleotide
or amino acid), such a mechanism is indispensable to
reproducibly resolve and identify the sequence. Future
improvements of the solid-state nanopore system could thus
be directed toward either a further increase of the temporal
resolution, e.g., by reducing even more the overall parasitic
capacitances, or by creating an efficient slowdown mechanism,
similar to biological nanopores. In general, the understanding
of noise sources, associated time scales, and techniques to
lower the noise at both low and high frequencies are greatly
beneficial to maximize the sensitivity of nanopore detection
and thereby extend the range of its applications.
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VOCABULARY
Nanopore, nanometer-sized hole in a thin freestanding
membrane; single-molecule detection, the capability to sense
individual molecules one by one; root-mean-square current
noise (rms), square root of the average squared value of the
current fluctuations from the mean current; power spectral
density (PSD), current noise power per unit of bandwidth;
signal-to-noise ratio, ratio between the ion current signal that is
produced by a molecule that translocates through a nanopore,
and the ion current noise of the baseline
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