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Abstract

We introduce the basic elements of a spatio-angular theory of fluorescence microscopy, providing 

a unified framework for analyzing systems that image single fluorescent dipoles and ensembles of 

overlapping dipoles that label biological molecules. We model an aplanatic microscope imaging an 

ensemble of fluorescent dipoles as a linear Hilbert-space operator, and we show that the operator 

takes a particularly convenient form when expressed in a basis of complex exponentials and 

spherical harmonics—a form we call the dipole spatio-angular transfer function. We discuss the 

implications of our analysis for all quantitative fluorescence microscopy studies and lay out a path 

towards a complete theory.

1. Introduction

Fluorescence microscopes are widely used in the biological sciences for imaging fluorescent 

molecules that label specific proteins and biologically important molecules. While most 

fluorescence microscopy experiments are designed to measure only the spatial distribution 

of fluorophores, a growing number of experiments seek to measure both the spatial and 

angular distributions of fluorophores by the use of polarizers [1–5] or point spread function 

engineering [6,7].

Meanwhile, single-molecule localization microscopy (SMLM) experiments use spatially 

sparse fluorescent samples to localize single molecules with precision that surpasses the 

diffraction limit. Noise limits the precision of this localization [8,9], and several studies have 

shown that model mismatch (e.g. ignoring the effects of vector optics, dipole orientation 

[10], and dipole rotation [11]) can introduce localization bias as well. Therefore, the most 

precise and accurate SMLM experiments must use an appropriate model and jointly estimate 

both the position and orientation of each fluorophore. Several studies have successfully used 

vector optics and dipole models to estimate the position and orientation of single molecules 

[12–16], and there is growing interest in designing optical systems for measuring the 

position, orientation, and rotational dynamics of single molecules [6,7,17–19].
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While many studies have focused on improving imaging models for spatially sparse 

fluorescent samples, we consider the more general case and aim to improve imaging models 

for arbitrary samples including those containing ensembles of fluorophores within a 

resolvable volume. In particular, we examine the effects of two widely used approximations 

in fluorescence microscopy—the monopole approximation and the scalar approximation.

We use the term monopole to refer to a model of a fluorescent object that treats it as an 

isotropic absorber/emitter. Although the term monopole approximation is not in widespread 

use, we think it accurately describes the way many models of fluorescence microscopy treat 

fluorescent objects, and we use the term to distinguish the monopole model from more 

realistic dipole and higher-order models. Despite their use in models, electromagnetic 

monopole absorber/emitters do not exist in nature. All physical fluorescent objects absorb 

and emit radiation with dipole or higher-order moments, and these moments are always 

oriented in space. For a classical mental model of fluorescent objects we imagine each 

dipole as a small oriented antenna where electrons are constrained to move along a single 

direction.

All fluorescence microscopy models that use an optical point spread function or an optical 
transfer function to describe the propagation of light through the microscope implicitly make 

the monopole approximation. The optical point spread function is the irradiance response of 

an optical system to an isotropic point source, so it cannot model the response due to an 

anisotropic dipole radiator. In this work we define monopole and dipole transfer functions 
that describe the mapping between fluorescent emissions and the measured irradiance. 

Although optical systems are an essential part of microscopes, fluorescence microscopists 

are interested in measuring the properties of fluorophores (not optics), so the monopole and 

dipole transfer functions are more directly useful than the optical transfer function for the 

problems that fluorescence microscopists are interested in solving.

While the monopole approximation applies to the fluorescent object, the scalar 
approximation applies to the fields that propagate through the microscope. Modeling the 

electric fields in a region requires a three-dimensional vector field, but if the electric fields 

are random or completely parallel to one another, a scalar field is sufficient, and we can 

replace the vector-valued electric field, E, with a scalar-valued field, U.

The scalar approximation is often made together with the monopole approximation. For 

example, the Born-Wolf model [20] and the Gibson-Lanni model [21] make both the 

monopole and scalar approximations when applied to fluorescence microscopes. However, 

some models make the monopole approximation but not the scalar approximation. For 

example, the Richards-Wolf model [22] considers the role of vector-valued fields in the 

optical system, but it is implicitly an optical model so when it is applied to fluorescence 

microscopes the monopole approximation is assumed.

This work lies at the intersection of three subfields of fluorescence microscopy: (1) spatial 

ensemble imaging where each resolvable volume contains many fluorophores and the goal is 

to find the concentration of fluorophores as a function of position in the sample, (2) spatio-

angular ensemble imaging where each resolvable volume contains many fluorophores and 
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the goal is to find the concentration and average orientation of fluorophores as a function of 

position in the sample, and (3) SMLM imaging where fluorophores are sparse in the sample 

and the goal is to find the position and orientation of each fluorophore. We briefly review 

how these three subfields use the monopole and scalar approximations.

The large majority of fluorescence microscopes are used to image ensembles of 

fluorophores, and most existing modeling techniques make use of the monopole 

approximation, the scalar approximation, or both. As discussed above, the Gibson-Lanni 

model, the Born-Wolf model, and the Richards-Wolf model are approximate when applied to 

fluorescence microscopy data because they only model monopole emitters. Deconvolution 

algorithms that use these models may make biased estimates of fluorophore concentrations 

since they ignore the dipole excitation and emission of fluorophores.

A small but growing group of microscopists is interested in measuring the orientation and 

position of ensembles of fluorophores [1–5]. These techniques typically use polarizers to 

make multiple measurements of the same object with different polarizer orientations, then 

they use a model of the dipole excitation and emission processes [23] to recover the 

orientation of fluorophores using pixel-wise arithmetic. Although these studies do not adopt 

the scalar or monopole approximations for the angular part of the problem, they adopt both 

approximations when they consider the spatial part of the problem. Existing works either 

ignore the spatial reconstruction problem [1–4] or assume that the spatial and angular 

reconstruction problems can be solved sequentially [5].

The most precise experiments in SMLM imaging do not adopt the scalar or monopole 

approximations. Many works have applied dipole models with vector optics, and several 

works have considered the effects of rotational and spatial diffusion on the images of single 

molecules [7, 24–27]. We will see that the dipole transfer functions are useful tools for 

incorporating angular and spatial diffusion into SMLM simulations and reconstructions.

In the present work we begin to place these three subfields on a common theoretical footing. 

First, in section 2, we consider arbitrary fluorescence imaging models and lay out a plan for 

developing a model for spatio-angular imaging. In section 3 we review the familiar 

monopole imaging model, and in section 4 we extend the model to dipoles. Finally, in 

section 5 we discuss the results and their broader implications.

In this paper we focus on modeling a single-view fluorescence microscope with neither 

polarized excitation nor detection. In future papers of this series we will extend our models 

to include polarized excitation, polarized detection, and multi-view microscopes. 

Additionally, we have restricted this paper to the forward problem—the mapping between a 

known object and the data. In future papers we will consider the inverse problem, and the 

singular value decomposition (SVD) will play a central role.

2. Theory

We begin our analysis with the abstract Hilbert space formalism of Barrett and Myers [28, 

ch. 1.3]. Our first task is to formulate the imaging process as a mapping between two Hilbert 

spaces ℋ:U V , where U is a set that contains all possible objects, V  is a set that contains 
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all (possibly noise-corrupted) datasets, and ℋ is a model of the instrument that maps 

between these two spaces. We denote (possibly infinite-dimensional) Hilbert-space vectors 

in U with f, Hilbert-space vectors in V  with g, and the mapping between the spaces with

g = ℋf . (1)

Throughout this work we will use the letters g, h, and f with varying fonts, capitalizations, 

and arguments to represent the data, the instrument, and the object, respectively.

Once we have identified the spaces U and V , we can start expressing the mapping between 

the spaces in a specific object-space and data-space basis. In most cases the easiest mapping 

to find uses a delta-function basis—we expand object and data space into delta functions, 

then express the mapping as an integral transform. After finding this mapping we can start to 

investigate the same mapping in different bases.

The above discussion is quite abstract, but it is a powerful point of view that will enable us 

to unify the analysis of spatio-angular fluorescence imaging. In section 3 we will 

demonstrate the formalism by examining a familiar monopole imaging model, and we will 

demonstrate the mapping between object and data space in two different bases. In section 4 

we will extend the monopole imaging model to dipoles and examine the mapping in four 

different bases.

3. Monopole imaging

We start by modeling the imaging process for a field of dynamic fluorescent monopoles. We 

have split our model into two pieces: (1) the dynamics of excitation, decay, and diffusion 

processes, and (2) the emission and detection processes. This section treads familiar ground, 

but it serves to establish the concepts and notation that will be necessary when we extend to 

the dipole case.

3.1. Monopole dynamics

We begin by considering a spatial distribution of monopoles that can occupy just two states

—a ground state and an excited state. We use f gr ro, t  to represent the number of 

monopoles in the ground state at position ro per unit volume at time t per unit time. 

Similarly, we use f ex ro, t  to represent the number of monopoles in the excited state.

Next, we describe all of the transitions between states. If we excite the monopoles with an 

illumination pattern that is uniform in space and time, then the rate of excitation will be the 

product of an excitation constant κ(ex) with the number of monopoles in the ground state. 

Similarly, the rate of molecules decaying from the excited state to the ground state will be 

the product of a decay constant κ(d) with the number of monopoles in the excited state 

(assuming that stimulated emission is negligible).

Finally, we describe the effect of diffusion within each state. If the diffusion is homogeneous 

(independent of position) and isotropic (independent of direction) then the rate of change of 

the spatial distribution will be proportional to a diffusion constant DR multiplied by the 
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Laplacian operator Δℝ3 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2  acting on the spatial distribution of monopoles at 

that point.

Bringing the effects of excitation, decay, and diffusion together yields a pair of coupled 

partial differential equations

∂f gr ro, t
∂t = − κ ex f gr ro, t + κ d f ex ro, t + DRΔℝ3f gr ro, t , (2)

∂f ex ro, t
∂t = − κ ex f gr ro, t − κ d f ex ro, t + DRΔℝ3f ex ro, t . (3)

Eqs. (2) and (3) serve as a minimal model of monopole dynamics, and these equations can 

be generalized to model a broad class of fluorescence imaging techniques. For example, 

space-and time-varying excitation patterns κ ex ro, t  are useful for modeling structured 

illumination microscopes (SIM); space- and time-varying decay constants κ d ro, t  are of 

interest in fluorescence lifetime imaging microscopy (FLIM); space-, time-, and direction-

varying (tensor-valued) diffusion coefficients are of interest in diffusion imaging; and extra 

states and transitions can be added to model single-molecule techniques, stimulated 

emission and depletion (STED) techniques, Forster resonance energy transfer (FRET), and 

photobleaching.

3.2. Monopole detection

Next, we model the monopole emission and detection processes independent of the 

underlying dynamics. In our simple two-state model we can only measure the photons 

radiated during transitions from the excited state to the ground state, which occur at a rate 

κ d f ex ro, t . If we expose a detector for a period te, then the most we can hope to recover 

from our data without knowing more about the dynamics of the system is the quantity

f ro = ∫
0

te
dt κ d f ex ro, t . (4)

The function f ro  represents the number of monopole emissions during the exposure time 

from position ro per unit volume. A complete name for f ro  would be the time-integrated 

monopole emission density rate, but for brevity we will refer to it as the monopole emission 
density.

We identify the set of all possible monopole emission densities as our object space 

U = L2 ℝ3 — the set of square-integrable functions in three-dimensional space. If we 

measure the irradiance on a two-dimensional detector then data space is V = L2 ℝ2  and the 

data can be represented by a function g′ rd′  called the irradiance—the power received by a 

surface per unit area at position rd′ . Note that we have adopted a slightly unusual convention 
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of using primes to denote unscaled coordinates. Later in this section we will introduce 

unprimed scaled coordinates that we will use throughout the rest of the paper.

A reasonable starting point is to assume that the relationship between the object and the data 

is linear—this is true in many fluorescence microscopes because fluorophores emit 

incoherently, so a scaled sum of emissions result in a scaled sum of the irradiance patterns 

created by the individual emissions.

If the mapping is linear, we can write the irradiance as a weighted integral over the 

monopole emission density

g′ rd′ = ∫
ℝ3

dro ℎ′ rd′ , ro f ro , (5)

where ℎ′ rd′ , ro  is the irradiance at two-dimensional position rd′  (roman font) created by a 

point source at three-dimensional position ro (gothic font).

Next, we assume that the optical system is aplanatic—Abbe’s sine condition is satisfied and 

on-axis points are imaged without aberration. Abbe’s sine condition guarantees that off-axis 

points are imaged without spherical aberration or coma [29, ch. 1], so the imaging system 

can be modeled within the field of view of the optical system as a transverse magnifier with 

shift-invariant blur. We split the three-dimensional object coordinate ro into a two-

dimensional transverse coordinate ro⊥ and a one-dimensional axial coordinate ro
∥ to write the 

forward model as

g′ rd′ = ∫
ℝ

dro
∥∫

ℝ2
dro⊥ℎ′ rd′ − mro⊥, ro

∥ f ro⊥, ro
∥ , (6)

where m is a transverse magnification factor. Note that non-paraxial imaging systems that 

satisfy Abbe’s sine condition cannot simultaneously satisfy the Herschel condition when m 
≠ 1 [30, 31], so non-paraxial magnifying imaging systems cannot be shift-invariant in three 

dimensions. For paraxial imaging systems the Abbe sine and Herschel conditions are 

approximately the same, and the imaging system can be described as approximately shift 

invariant in three dimensions.

We can simplify our analysis by changing coordinates and writing Eq. (6) as a transverse 

convolution [28, ch. 7.2.7]. We define a demagnified detector coordinate rd = rd′ /m and a 

normalization factor that corresponds to the total power incident on the detector plane due to 

an in-focus point source Pmono = ∫ℝ2dr ℎ′ mr, 0  where r = rd − ro⊥. We use these scaling 

factors to define the monopole point spread function as

ℎ rd − ro⊥, ro
∥ =

ℎ′ m rd − ro⊥ , ro
∥

Pmono
, (7)

and the scaled irradiance as
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g rd = g′ mrd
Pmono

. (8)

With these definitions we can express the mapping between the object and the data as a 

familiar transverse convolution

g rd = ∫
ℝ

dro
∥∫

ℝ2
dro⊥ℎ rd − ro⊥, ro

∥ f ro⊥, ro
∥ . (9)

We have chosen to normalize the monopole point spread function so that

∫
ℝ2

dr ℎ r, 0 = 1. (10)

The monopole point spread function corresponds to a measurable irradiance, so it is always 

real and positive.

The mapping between the object and the data in a linear shift-invariant imaging system takes 

a particularly simple form in a complex exponential (i.e. Fourier) basis. If we apply the 

Fourier convolution theorem to Eq. (9) we find that

G ν = ∫
ℝ

dro
∥H ν, ro

∥ F ν, ro
∥ , (11)

where we define the scaled irradiance spectrum as

G ν = ∫
ℝ2

dr g r exp −2πir ⋅ ν , (12)

the monopole transfer function as

H ν, ro
∥ = ∫

ℝ2
dr ℎ r, ro

∥ exp −2πir ⋅ ν , (13)

and the monopole spectrum as

F ν, ro
∥ = ∫

ℝ2
dr f r, ro

∥ exp −2πir ⋅ ν . (14)

The monopole point spread function is normalized and real, so we know that the monopole 

transfer function is normalized, H(0, 0) = 1, and conjugate symmetric, H(−ν, 0) = H*(ν, 0), 

where z* denotes the complex conjugate of z.

Notice that Eqs. (9) and (11) are expressions of the same mapping between object and data 

space in different bases. Figure 1 summarizes the relationship between object and data space 

in both bases.
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We have been careful to use the term monopole transfer function instead of the commonly-

used term optical transfer function. We reserve the term optical transfer function for optical 

systems—the optical transfer function maps between an input irradiance spectrum and an 

output irradiance spectrum in an optical system. We can use optical transfer functions to 

model the propagation of light through a microscope, but ultimately we are always interested 

in the object, not the light emitted by the object. We will find the distinction between the 

optical transfer function and the object transfer function to be especially valuable when we 

consider dipoles in section 4.

3.3. Monopole coherent transfer functions

Although the Fourier transform can be used to calculate the monopole transfer function 

directly from the monopole point spread function, there is a well-known alternative that 

exploits coherent transfer functions. The key idea is that the monopole point spread function 

can always be written as the absolute square of a scalar-valued monopole coherent spread 

function, c rd − ro⊥, ro
∥ , defined by

c rd − ro⊥, ro
∥ 2 = ℎ rd − ro⊥, ro

∥ . (15)

Physically, the monopole coherent spread function corresponds to the scalar-valued 

electromagnetic field on the detector with appropriate scaling.

We can plug Eq. (15) into Eq. (13) and use the autocorrelation theorem to rewrite the 

monopole transfer function as

H ν, ro
∥ = ∫

ℝ2
dτ C τ, ro

∥ C∗ τ − ν, ro
∥ , (16)

where we have introduced the monopole coherent transfer function as the two-dimensional 

Fourier transform of the monopole coherent spread function:

C τ, ro
∥ = ∫

ℝ2
dr c r, ro

∥ exp −2πir ⋅ τ . (17)

Physically, the monopole coherent transfer function corresponds to the scalar-valued field in 

a Fourier plane of the detector with appropriate scaling.

The coherent transfer function provides a valuable shortcut for analyzing microscopes since 

it is often straightforward to calculate the field in a Fourier plane of the detector. A typical 

approach for calculating the transfer functions is to (1) calculate the field in a Fourier plane 

of the detector, (2) scale the field to find the monopole coherent transfer function, then (3) 

use the relationships in Fig. 2 to calculate the other transfer functions.
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4. Dipole imaging

Now we consider a microscope imaging a field of dipoles by recording the irradiance on a 

two-dimensional detector. Similar to the monopole case, we split our model in two pieces: a 

dynamics model and an imaging model.

4.1. Dipole dynamics

We consider a distribution of dipoles that can occupy a ground state and an excited state. A 

function that assigns a real number to each point in space ro and time t is not enough to 

specify a dynamic field of dipoles because the dipoles can have different orientations. 

Therefore, we introduce an orientation coordinate so and use the function f gr ro, so, t  to 

represent the number of dipoles in the ground state at position ro per unit volume oriented 

along so per steradian at time t per unit time. Similarly, we use f ex ro, so, t  to represent the 

number of dipoles in the excited state.

We can model the transitions between states in the same way that we did with monopoles. If 

we excite the dipoles with an illumination pattern that is uniform in space, orientation, and 

time, then the rate of excitation will be κ ex f gr ro, so, t . Similarly, the rate of decay from 

the excited state to the ground state will be κ d f ex ro, so, t  (assuming that stimulated 

emission is negligible).

We can model homogeneous and isotropic spatial diffusion in the same way that we did for 

monopoles—the rate of change of the spatial distribution will be the product of a spatial 

diffusion coefficient DR multiplied by the Laplacian Δℝ3 acting on the dipole distribution at 

that point. Similarly, if angular diffusion is homogeneous (independent of orientation so) and 

isotropic (independent of angular diffusion direction) then the rate of the change of angular 

distribution will be the product of an angular diffusion coefficient DS multiplied by the 

spherical Laplacian ΔS2 acting on the dipole distribution at that orientation. If we choose a 

set of spherical coordinates so = θ, ϕ  where θ is the inclination angle and ϕ is the azimuthal 

angle, then the spherical Laplacian takes the form ΔS2 = 1
sin2θ

∂2

∂ϕ2 + 1
sinθ

∂
∂θ sinθ ∂

∂θ .

Bringing everything together yields a pair of coupled partial differential equations

∂f gr ro, so, t
∂t = − κ ex f gr ro, so, t + κ d f ex ro, so, t

+ DRΔℝ3f gr ro, so, t
+ DSΔS2f gr ro, so, t ,

(18)

∂f ex ro, so, t
∂t = κ ex f gr ro, so, t − κ d f ex ro, so, t + DRΔℝ3f ex ro, so, t

+ DSΔS2f ex ro, so, t .
(19)
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Variants of Eqs. (18) and (19) can be used to model a wide range of more realistic dynamics. 

For example, a space-, orientation-, and time-varying excitation pattern κ ex ro, so, t  can be 

used to model spatio-angular structured illumination patterns. Specifically, an orientation-

dependent excitation pattern can be used to model selective excitation with polarized light. 

There is also the possibility of modeling space-, orientation-, and time-varying decay 

constants and diffusion constants.

Finally, we note that many fluorescent molecules have excitation and emission dipole 

moments that are not collinear. We can model these types of molecules by choosing the 

orientation coordinate so to be along the emission dipole moment, then accounting for the 

excitation moment in the excitation rate function κ ex ro, so, t .

4.2. Dipole detection

Next, we model the dipole emission and detection processes independent of the underlying 

dynamics. We can only measure photons radiated during transitions from the excited state to 

the ground state, which occur at rate κ d f ex ro, so, t . If we expose a detector for a period te 

then the most we can hope to recover from our data without knowing more about the 

underlying dynamics is the quantity

f ro, so = ∫
0

tdet
dt κ d f ex ro, so, t . (20)

The function f ro, so  represents the number of dipole emissions during the exposure time 

from position ro per unit volume and orientation so per unit steradian. A complete name for 

f ro, so  would be the time-integrated dipole emission density rate, but for brevity we will 

refer to it as the dipole emission density. We identify the set of all possible dipole emission 

densities as our object space U = L2 ℝ3 × S2 —the set of square-integrable functions on the 

product space of a volume and a two-dimensional spherical surface (the usual spherical 

surface embedded in ℝ3). To visualize functions in object space we imagine a sphere at 

every point in a three-dimensional volume with a scalar value assigned to every surface point 

on each sphere.

Predicting the dipole emission density for a specific experiment requires (1) a model of the 

underlying dynamics (a variant of Eqs. (18) and (19)), (2) a set of initial/boundary 

conditions, (3) a solution of the coupled partial differential equations f ex ro, so, t  (either an 

analytic or a numerical solution), then (4) the computation of the dipole emission density 

using Eq. (20). In Appendix B we demonstrate this procedure for an experiment with an 

instantaneous excitation pulse.

Similar to the monopole case, we model the mapping between the object and the irradiance 

as an integral transform
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g′ rd′ = ∫
S2

dso∫
ℝ3

dro ℎ′ rd′ , ro, so f ro, so , (21)

where ℎ′ rd′ , ro, so  is the irradiance at position rd′  created by a point source at ro with 

orientation so. Notice that we have considered all possible orientations so and integrated over 

the sphere S2. The dipole emission density is always symmetric under angular inversion, 

f ro, so = f ro, − so , so we could have chosen to integrate over a hemisphere and adjusted 

the definition of the dipole emission density by a factor of two. For convenience we will 

continue to integrate over the complete sphere. We note that all functions in this work with 

so as an independent variable are symmetric under angular inversion,so − so.

If the optical system is aplanatic, then we can split the three-dimensional object coordinate 

ro into a transverse coordinate ro⊥ and an axial coordinate ro
∥ and write the forward model as

g′ rd′ = ∫
S2

dso∫
ℝ

dro
∥∫

ℝ2
dro⊥ ℎ′ rd′ − mroro⊥, ro

∥, so f ro⊥, ro
∥, so . (22)

We define the same demagnified detector coordinate rd = rd′ /m and a new normalization 

factor that corresponds to the total power incident on the detector due to an in-focus spatial 

point source with an angularly uniform distribution of dipoles 

Pdip = ∫S2dso∫ℝ2dr ℎ′ mr, 0, so . We use these scaling factors to define the dipole point spread 

function as

ℎ rd − ro⊥, ro
∥, so =

ℎ′ m rd − ro⊥ , ro
∥, so

Pdip
, (23)

and the scaled irradiance as

g rd = g′ mrd
Pdip

. (24)

With these definitions we can express the mapping between the object and the data as

g rd = ∫
S2

dso∫
ℝ

dro
∥∫

ℝ2
dro⊥ ℎ rd − ro⊥, ro

∥, so f ro⊥, ro
∥, so . (25)

Equation (25) is a key result because it represents the mapping between object space and 

data space in a delta function basis. The integrals in Eq. (25) would be extremely expensive 

to compute for an arbitrary object, but the integrals simplify to an efficient sum if the object 

is spatially and angularly sparse. For example, Eq. (25) would reduce to a superposition of 

dipole point spread functions if the object consisted of immobile dipole emitters.

Similar to the monopole case, we have chosen to normalize the dipole point spread function 

so that
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∫
S2

dso∫
ℝ2

dr ℎ r, 0, so = 1. (26)

The dipole point spread function is a measurable irradiance, so it is real and positive.

4.3. Dipole spatial transfer function

We can make our first change of basis by applying the Fourier-convolution theorem to Eq. 

(25), which yields

G ν, ro
∥ = ∫

S2
dso∫

ℝ
dro

∥H ν, ro
∥, so F ν, ro

∥, so , (27)

where we define the dipole spatial transfer function as

H ν, ro
∥, so = ∫

ℝ2
dr ℎ r, ro

∥, so exp −2πir ⋅ ν , (28)

and the dipole spatial spectrum as

F ν, ro
∥, so = ∫

ℝ2
dr f r, ro

∥, so exp −2πir ⋅ ν . (29)

Since the dipole point spread function is normalized and real, we know that the dipole 

spatial transfer function is normalized, ∫S2ds H 0, 0, so = 1, and conjugate symmetric,

H −ν, 0, so = H∗ ν, 0, so .

This basis is efficient for simulating and analyzing objects that are angularly sparse and 

spatially dense; e.g. rod-like structures that contain fluorophores in a fixed orientation, or 

rotationally fixed fluorophores that are undergoing spatial diffusion.

4.4. Dipole angular transfer function

The spherical harmonics are another set of convenient basis functions that play the same role 

as complex exponentials in spatial transfer functions—see Appendix A for an introduction to 

the spherical harmonics. We can change basis from spherical delta functions to spherical 

harmonics by applying the generalized Plancherel theorem for spherical functions

∫
S2

ds p s q∗ s = ∑
ℓ = 0

∞
∑

m = − ℓ

ℓ
Pℓ

mQℓ
m ∗ , (30)

where p s  and q s  are arbitrary functions on the sphere, Pℓ
m and Qℓ

m are their spherical 

Fourier transforms defined by
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Pℓ
m = ∫

S2
ds p s Y ℓ

m ∗ s , (31)

and Y ℓ
m s  are the spherical harmonic functions defined in Appendix A. Equation (30) 

expresses the fact that scalar products are invariant under a change of basis [28, Eq. 3.78]. 

The left-hand side of Eq. (30) is the scalar product of L2 S2  functions in a delta function 

basis and the right-hand side is the scalar product of L2 S2  functions in a spherical harmonic 

function basis. Applying Eq. (30) to Eq. (25) yields

g rd = ∑
ℓ = 0

∞
∑

m = − ℓ

ℓ ∫
ℝ

dro
∥∫

ℝ2
dro⊥Hℓ

m rd − ro⊥, ro
∥ Fℓ

m ro⊥, ro
∥ , (32)

where we have defined the dipole angular transfer function as

Hℓ
m rd − ro⊥, ro

∥ = ∫
S2

dso ℎ rd − ro⊥, ro
∥, so Y ℓ

m ∗ so , (33)

and the dipole angular spectrum as

Fℓ
m ro⊥, ro

∥ = ∫
S2

dso f ro⊥, ro
∥, so Y ℓ

m ∗ so . (34)

Since the dipole point spread function is normalized and real, we know that the dipole 

angular transfer function is normalized, ∫ℝ2dr H0
0 r, 0 = 1, and conjugate symmetric,

Hℓ
−m r, 0 = −1 mHℓ

m ∗ r, 0 .

This basis is efficient for simulating and analyzing objects that are spatially sparse and 

angularly dense; e.g. single fluorophores that are undergoing angular diffusion, or many 

fluorophores that are within a resolvable volume with varying orientations.

4.5. Spatio-angular dipole transfer function

We can arrive at our final basis in two ways: by applying the generalized Plancherel theorem 

for spherical functions to Eq. (27) or by applying the Fourier convolution theorem to Eq. 

(32). We follow the first path and find that

G ν, ro
∥ = ∑

ℓ = 0

∞
∑

m = − ℓ

ℓ ∫
ℝ

dro
∥Hℓ

m ν, ro
∥ Fℓ

m ν, ro
∥ , (35)

where we have defined the dipole spatio-angular transfer function as

Hℓ
m ν, ro

∥ = ∫
S2

dso H ν, ro
∥, so Y ℓ

m ∗ so , (36)
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and the dipole spatio-angular spectrum as

Fℓ
m ν, ro

∥ = ∫
S2

dso F ν, ro
∥, so Y ℓ

m ∗ so . (37)

Since the dipole point spread function is normalized and real, we know that the dipole 

spatio-angular transfer function is normalized, H0
0 0, 0 = 1, and conjugate symmetric,

Hℓ
−m −ν, 0 = −1 mHℓ

m ∗ ν, 0 .

This basis is efficient for simulating and analyzing arbitrary samples because it exploits the 

band limit of the imaging system. We note that most single molecule imaging experiments 

are efficiently described in this basis because of the effects of spatial and rotational diffusion

—see Appendix B for an example.

Figure 3 summarizes the relationships between the four bases that we can use to compute the 

image of a field of dipoles. We reiterate that all four bases may be useful depending on the 

sample.

4.6. Dipole coherent transfer functions

Similar to the monopole case, there is an efficient way to calculate the transfer functions 

using coherent transfer functions. The dipole point spread function can always be written as 

the absolute square of a vector-valued function, c rd − ro⊥, ro
∥, so , called the dipole coherent 

spread function:

c rd − ro⊥, ro
∥, so

2 = ℎ rd − ro⊥, ro
∥, so . (38)

Physically, the dipole coherent spread function corresponds to the vector-valued electric 

field on the detector with appropriate scaling. We need a vector-valued coherent transfer 

function since the polarization of the field plays a significant role in dipole imaging, so the 

dipole point spread function cannot be written as an absolute square of a scalar-valued 

function.

We can plug Eq. (38) into Eq. (28) and use the autocorrelation theorem to rewrite the dipole 

spatial transfer function as

H ν, ro
∥, so = ∫

ℝ2
dτ C τ, ro

∥, so C† τ − ν, ro
∥, so , (39)

where we have introduced the dipole coherent transfer function C τ, ro
∥, so  as the two-

dimensional Fourier transform of the dipole coherent spread function:

C τ, ro
∥, so = ∫

ℝ2
dr c r, ro

∥, so exp −2πir ⋅ τ . (40)
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Physically, the dipole coherent transfer function corresponds to the vector-valued electric 

field created by a dipole oriented along so in a Fourier plane of the detector with appropriate 

scaling. Similar to the monopole case, we can calculate the dipole-orientation-dependent 

fields in a Fourier plane of the detector, scale appropriately to find the dipole coherent 

transfer function, then use the relationships in Fig. 4 to calculate the other transfer functions. 

Finally, we note that the dipole coherent transfer function is identical (up to scaling factors) 

to what Agrawal et al. call the Green’s tensor [6] and Novotny and Hecht’s dyadic point 
spread function multiplied by the dipole moment vector [32].

5. Discussion

5.1. When are alternative bases useful?

Describing a sample f, an imaging system ℋ, or data g in a basis other than a delta function 

basis is useful when the signal is sparse or band-limited in the new basis. Expressing a signal 

in a sparser basis is particularly useful for improving intuition about the signal and for 

reducing computation time.

Throughout this work we have emphasized examples of samples that are sparse in alternative 

bases. For example, dipoles that are undergoing spatial and angular diffusion give rise to 

dipole emission densities that are sparse in a basis of complex exponentials and spherical 

harmonics. In the second of this pair of papers we describe how a common imaging system

—a single-view aplanatic microscope—can be described sparsely in the same basis, and this 

will lead us to a natural definition of the angular band-limit of the imaging system that 

augments the widely known spatial band-limit.

5.2. Alternatives to the spherical harmonics

Throughout this work we have used the spherical harmonic functions as a basis for functions 

on the sphere, but there are other basis functions that can be advantageous in some cases. 

Several works [7, 15, 17, 19, 27, 33] have used the second moments of the Cartesian unit 

vectors in orientation space (or second moments for brevity) as basis functions for the sphere 

because they arise naturally when computing the dipole point spread function. These works 

use an alternative to the dipole angular transfer function that uses the second moments as 

basis functions so the forward model can be written as

g rd = ∑
j = 1

6 ∫
ℝ

dro
∥∫

ℝ2
dro⊥Hj rd − ro⊥, ro

∥ Fj ro⊥, ro
∥ , (41)

where

Hj rd − ro⊥, ro
∥ = ∫

S2
dso ℎ rd − ro⊥, ro

∥, so Zj so , (42)
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Fj ro⊥, ro
∥ = ∫

S2
dso f ro⊥, ro

∥, so Zj so , (43)

and Zj s = sx2, sy2, sz2, sxsy, sysz, sxsz  are the second moments. This formulation is 

convenient because it can exploit the spatial sparsity of the sample, the angular sparsity of 

diffusing samples in the basis of second moments, and the angular band-limit of common 

imaging systems. Additionally, the second moments approach does not require an expansion 

of the dipole point spread function onto spherical harmonics.

The spherical harmonics provide the same conveniences as the second moments: samples 

undergoing angular diffusion can be efficiently described using the spherical harmonics, and 

common imaging systems have an angular band-limit. Additionally, the spherical harmonics 

provide several potential advantages over the second moments. First, the spherical 

harmonics form a complete basis for functions on the sphere, while the second moments 

span a much smaller function space. Descoteaux et al. show that the even order spherical 

harmonics up to order ℓ and the degree-ℓ homogeneous polynomials restricted to the sphere 

span the same 1
2 ℓ + 1 ℓ + 2 -dimensional function space [34]. Therefore, the spherical 

harmonic basis can be extended by adding an extra order of spherical harmonics to the 

existing set of spherical harmonics. Meanwhile, extending the basis of homogeneous 

polynomials without redundant basis vectors requires a completely new set of functions. 

Second, the spherical harmonics are orthogonal, which will allow us to deploy invaluable 

tools from linear algebra—linear subspaces, rank, SVD, etc.— to analyze and compare 

microscope designs. Finally, using the spherical harmonics provides access to a set of fast 

algorithms. The naive expansion of an arbitrary discretized N point spherical function onto 

spherical harmonics (or second moments) requires a O N2  matrix multiplication, while 

pioneering work by Driscoll and Healy [35] showed that the forward discrete fast spherical 

harmonic transform can be computed with a O N logN 2  algorithm and its inverse can be 

computed with a O N3/2  algorithm. To our knowledge no similarly fast algorithms exist for 

expansion onto the higher-order moments.

Zhang et al. [7] have used the second moments to optimize a phase mask that creates a tri-

spot point spread function. The authors formulate a system model as a 6×6 matrix that maps 

the six second moments that describe a rotating single molecule to the six intensity 

measurements from each lobe and polarization of the tri-spot point spread function. They 

show that the measurement matrices for existing phase mask designs are rank 4 or 5, and 

they implement a new rank 6 design that can measure all six second moments. The spherical 

harmonics can be used to similar effect in this problem by rewriting the system matrix in a 

basis of spherical harmonics instead of second moments. Additionally, the spherical 

harmonics form an orthogonal basis, so optimizing the system will be slightly easier (for 

example, the Fisher information matrix will be diagonal in a spherical harmonic basis).

Backer et al. [36] have used the transverse second moments sx2, sy2, sxsy  to design a 

polarized-excitation imaging system and reconstruction algorithm that can recover the 
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transverse distribution of fluorescent molecules. Similarly, Zhanghao et al. [5] have used the 

circular harmonics to design a polarized structured illumination imaging system and 

reconstruction scheme that can recover the transverse distribution of fluorescent molecules. 

The transverse second moments and the circular harmonics share the same relationship as 

the three-dimensional second moments and the spherical harmonics—each pair spans the 

same function space but only the circular/spherical harmonics are orthogonal. The transverse 

second moments and the circular harmonics are useful design tools for restricting the 

number of parameters to estimate, but these approaches artificially restrict the reconstructed 

dipole distributions to the transverse plane. Finally, we note that the relationship between 2D 

and 3D estimation problems is slightly simpler in a second moment basis than a spherical/

circular harmonic basis. In a second moment basis the six second moments that describe the 

3D problem can be truncated to the three second moments that describe the 2D problem. 

Meanwhile, the spherical harmonics that describe the 3D problem require a matrix 

multiplication (not a truncation) to map to the circular harmonics.

The diffusion magnetic resonance imaging community uses both the second moments (or 

second-order tensor) basis functions [37] and the spherical harmonic basis functions [38]. 

Descoteaux et al. have provided an explicit invertible transformation matrix to convert 

between the second moments and the zeroth- and second-order spherical harmonics [34]. 

Since the transformation between these two bases is invertible, functions on the sphere can 

be described with equal accuracy in either basis.

Another difference between the spherical harmonics and the second moments is that the 

spherical harmonics are complex-valued functions while the second moments are real-

valued. Complex-valued spherical harmonics are convenient for mathematical 

manipulations, but we can also work with real-valued spherical harmonics for cheaper 

numerical manipulations or for improving our intuition. One possible definition of real-

valued spherical harmonics is

Y ℓ, m so =

2 −1 mIm Y ℓ
m so if m < 0,

Y ℓ
0 so if m = 0,

2 −1 mRe Y ℓ
m so if m > 0,

(44)

where the pair of lower indices imply that these are real-valued spherical harmonic 

functions. In Fig. 5 we directly compare the real-valued spherical harmonic functions to the 

second moment functions.

5.3. Towards spatio-angular reconstructions

We have focused on modeling the mapping between the object and the data in this paper, but 

ultimately we are interested in reconstructing the object from the data. Considering in-focus 

objects and applying the monopole approximation simplifies the reconstruction problem 

because both object and data space are L2 ℝ2 , so we can directly apply regularized inverse 

filters and maximum likelihood methods. The complete three-dimensional dipole model 

expands object space to L2 ℝ3 × S2 , so the inverse problem becomes much more 
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challenging. In future work we will use the singular value decomposition to find inverse 

filters, and we will consider using polarizers and multiple views to increase the size of data 

space.

6. Conclusions

Many models of fluorescence microscopes use the monopole and scalar approximations, but 

complete models need to consider dipole and vector optics effects. In this work we have 

introduced several transfer functions that simplify the mapping between the dipole emission 

density and the irradiance pattern on the detector. In future papers of this series we will 

calculate these transfer functions for specific instruments and use the results to simulate and 

analyze data collected by these instruments. Also, we note that polarized excitation and/or 

polarization analysis of the fluorescence emission plays an extremely important role in 

measuring/imaging the orientation distributions of dipoles. Although we have not included 

the effects of polarizers in this paper, we plan to extend our work in this direction in 

upcoming papers of this series.
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A.: Spherical harmonics and the spherical Fourier transform

The spherical harmonic function of degree ℓ and order −ℓ ≤ m ≤ ℓ is defined as [39]

Y ℓ
m ϑ, φ = 2ℓ + 1

4π
ℓ − m !
ℓ + m !Pℓ

m cosϑ exp imφ , (45)

where Pℓ
m cosϑ  are the associated Legendre polynomials with the Condon-Shortley phase

Pℓ
m x = −1 m 1 − x2 m /2 d m

dx m Pℓ x , (46)

and Pℓ(x) are the Legendre polynomials defined by the recurrence

P0 x = 1, (47)

P1 x = x, (48)

CHANDLER et al. Page 18

J Opt Soc Am A Opt Image Sci Vis. Author manuscript; available in PMC 2020 February 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ℓPℓ x = 2ℓ − 1 xPℓ − 1 x − ℓ − 1 Pℓ − 2 x . (49)

The spherical harmonics are orthonormal, which means that

∫
S2

ds Y ℓ
m s Y ℓ′

m′ ∗ s = δℓℓ′δmm′, (50)

where δℓℓ′ denotes the Kronecker delta. The spherical harmonics form a complete basis for 

L2 S2 , so an arbitrary square-integrable function on the sphere f s  can be expanded into a 

sum of weighted spherical harmonic functions

f s = ∑
ℓ = 0

∞
∑

m = − ℓ

l
Fℓ

mY ℓ
m s . (51)

We can find the spherical harmonic coefficients Fℓ
m for a given function using Fourier’s trick

— multiply both sides by Y ℓ
m ∗ s , integrate over the sphere, and exploit orthogonality to find 

that

Fℓ
m = ∫

S2
ds f s Y ℓ

m ∗ s . (52)

The coefficients Fℓ
m are called the spherical Fourier transform of a spherical function.

We can build an intuition for the spherical harmonics by building several spherical functions 

from their spherical harmonic components—see Fig. 6. We can build a constant function on 

the sphere with the ℓ = 0, m = 0 spherical harmonic Y 0, 0 ϑ, φ = 1/4π. The ℓ = 2, m = 0 

spherical harmonic Y 2, 0 ϑ, φ = 5/16π 3cos2ϑ − 1  is independent of the azimuthal angle φ, 

so the function is rotationally symmetric about the ϑ = 0 axis (see the fourth column of the 

top row of Fig. 5). Y2,0(ϑ, φ) is negative for 55° < ϑ < 125°, zero for ϑ = 55°, 125°, and 

positive otherwise. The weighted sum of these two spherical harmonics 

Y 0, 0 ϑ, φ + 1
8Y 2, 0 ϑ, φ  results in a rotationally symmetric function that is relatively large 

near the ϑ = 0 axis (the poles) and relatively small near ϑ = π/2 (the equator). The real-

valued ℓ = 2, m = 2 spherical harmonic Y 2, 2 ϑ, φ = 15/16πsin2ϑcos 2φ  (see Eq. (44)) 

depends on both the polar angle ϑ and the azimuthal angle φ, so it is not a rotationally 

symmetric function (see the sixth column of the top row of Fig. 5). The weighted sum of 

these three spherical harmonics Y 0, 0 ϑ, φ + 1
8Y 2, 0 ϑ, φ + 1

8Y 2, 2 ϑ, φ  results in a non-

rotationally symmetric function that is relatively large near the ϑ = 0 axis (the poles) and the 

ϑ, φ = π/2, 0  axis, and relatively small near the ϑ, φ = π/2, π/2  axis. By adding spherical 

harmonics with suitable prefactors, arbitrary square-integrable spherical functions can be 

built using the spherical harmonics (see Eq. (51)).
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Fig. 6. 
Square-integrable functions on the sphere can be written as a weighted sum of spherical 

harmonics. The ℓ = 0, m = 0 spherical harmonic can represent a constant function (left), m = 

0 spherical harmonics can represent rotationally symmetric functions (center), and m ≠ 0 

spherical harmonics can represent non-rotationally symmetric functions (right).

B.: Spatio-angular dynamics

In this appendix we will demonstrate the calculation of the dipole emission density from a 

simple underlying dynamic model. Our analysis is related to Stallinga’s [18], but here we 

consider an ensemble of dipoles diffusing both spatially and rotationally with homogeneous 

and isotropic diffusion coefficients. We start by considering a sample with all of its 

fluorescent molecules in the ground state. At t = 0 an instantaneous pulse excites a spatio-

angular distribution of dipoles so that the initial condition is given by a known function 

f ex ro, so, t = 0 . As time evolves, we assume the fluorescent molecules decay at a constant 

rate κ(d), diffuse spatially with a constant coefficient DR, and diffuse angularly with a 

constant coefficient DS so that the dynamics are governed by the partial differential equation

∂f ex ro, so, t
∂t = −κ d + DRΔℝ3 + DSΔS2 f ex ro, so, t . (53)

As written this equation is difficult to solve, but in a basis of complex exponentials and 

spherical harmonics this equation reduces to an ordinary differential equation. We start by 

expanding f ex ro, so, t  into its frequency components using

f ex ro, so, t = ∑
ℓ = 0

∞
∑

m = − ℓ

ℓ ∫
ℝ3

dv Fℓ
ex , m v, t exp i2πv ⋅ ro Y ℓ

m so . (54)

Plugging this expansion into Eq. (53) we find that

∑
ℓ = 0

∞
∑

m = − ℓ

ℓ ∫
ℝ3

dv
∂Fℓ

ex , m v, t
∂t exp i2πv ⋅ ro Y ℓ

m so =

−κ d + DRΔℝ3 + DSΔS2 ∑
ℓ = 0

∞
∑

m = − ℓ

ℓ ∫
ℝ3

dv

Fℓ
ex , m v, t exp i2πv ⋅ ro Y ℓ

m so .

(55)

We can simplify this equation using the eigenvectors and eigenvalues of the spatial and 

spherical Laplacian operators
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Δℝ3exp 2πiv ⋅ ro = − 2π v 3exp 2πiv ⋅ ro , (56)

ΔS2Y ℓ
m so = − ℓ ℓ + 1 Y ℓ

m so , (57)

to find that

∑
ℓ = 0

∞
∑

m = − ℓ

ℓ ∫
ℝ3

dv
∂Fℓ

ex , m v, t
∂t exp i2πv ⋅ ro Y ℓ

m so =

∑
ℓ = 0

∞
∑

m = − ℓ

ℓ ∫
ℝ3

dv −κ d − DR 2π v 3 − DSℓ ℓ + 1 Fℓ
ex , m v, t exp i2πv ⋅ ro

Y ℓ
m so .

(58)

Comparing both sides we find that

∂Fℓ
ex , m v, t

∂t = −κ d − DR 2π v 3 − DSℓ ℓ + 1 Fℓ
ex , m v, t . (59)

The solution of this equation is given by

Fℓ
ex , m v, t = Fℓ

ex , m v, 0 exp αt , (60)

where α = − κ d − DR 2π v 3 − DSℓ ℓ + 1 .

Eq. (60) shows that as time evolves the initial spectrum Fℓ
ex , m v, 0  decays to the ground 

state while undergoing an effective decay of the high spatial- and angular-frequency 

components. In other words, we can interpret diffusion as a filtering operation applied to the 

spatio-angular spectrum.

Fℓ
ex , m v, t  is the excited state spectrum, but we can only detect photons emitted as 

molecules decay to the ground state during the exposure time te. In other words, we can only 

measure the quantity

Fℓ
m v = ∫

0

te
dt κ d Fℓ

ex , m v, t = Fℓ
ex , m v, 0 κ d

α exp αte − 1 . (61)

The main conclusion of this section is that spatial and angular diffusion can be efficiently 

described in a basis of complex exponentials and spherical harmonics. Although we have 

only considered homogeneous and isotropic diffusion with constant diffusion coefficients, 

the complex exponentials and spherical harmonics can be used to simplify the analysis of 

inhomogeneous and anisotropic diffusion as well. Stallinga has used the spherical harmonics 
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to model angular diffusion in rotationally symmetric potentials [18], and his approach can be 

generalized to arbitrary spatial and angular diffusion potentials.
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Fig. 1. 
The mapping between the object and data space of a monopole fluorescence microscope can 

be computed in two different bases—a delta function basis and a complex exponential basis. 

The change of basis can be computed with a two-dimensional Fourier transform denoted 

ℱℝ2. Gray highlighting indicates which part of each expression is being named.
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Fig. 2. 
The monopole transfer functions are related by a two-dimensional Fourier transform (right 

column). The coherent monopole transfer functions (left column) can be used to simplify the 

calculation of the remaining transfer functions.
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Fig. 3. 
The mapping between the object space and data space of a dipole imaging system can be 

computed in four different bases—a delta function basis, a complex-exponential/angular-

delta basis, a spatial-delta/spherical-harmonic basis, and a complex-exponential/spherical-

harmonic basis. The changes of basis can be computed with the two-dimensional Fourier 

transform denoted ℱℝ2, and the spherical Fourier transform denoted ℱS2. Gray highlighting 

indicates which part of each expression is being named.
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Fig. 4. 
There is one transfer function for each set of object-space basis functions, and these transfer 

functions are related by two-dimensional and spherical Fourier transforms—see center and 

right columns. There is an additional pair of coherent transfer functions that are useful for 

calculating the transfer functions—see left column.
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Fig. 5. 
Top row: Real spherical harmonic basis functions for ℓ = 0 and ℓ = 2. Bottom row: Second 

moments of the Cartesian unit vectors in orientation space. The radius of each glyph 

indicates the value of the function along that direction. Red surfaces indicate positive values 

and blue surfaces indicate negative values. The two sets of basis functions span the same 

function space, but only the real spherical harmonics form an orthogonal basis.
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