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Abstract

We investigate the properties of a single-view fluorescence microscope in a 4 f geometry when 

imaging fluorescent dipoles without using the monopole or scalar approximations. We show that 

this imaging system has a spatio-angular band limit, and we exploit the band limit to perform 

efficient simulations. Notably, we show that information about the out-of-plane orientation of 

ensembles of in-focus fluorophores is recorded by paraxial fluorescence microscopes. 

Additionally, we show that the monopole approximation may cause biased estimates of 

fluorophore concentrations, but these biases are small when the sample contains either many 

randomly oriented fluorophores in each resolvable volume or unconstrained rotating fluorophores.

1. Introduction

In the first of this pair of papers we developed a new set of transfer functions that can be 

used to analyze spatio-angular fluorescence microscopes [1]. In this work we will 

demonstrate these transfer functions by analyzing a single-view fluorescence microscope in 

a 4 f geometry.

The central goal of this work is to understand how much angular information an unmodified 

4 f microscope transmits to the detector. Fluorescence microscopists know that without 

structured illumination or single molecule techniques they can only hope to recover spatial 

frequencies up to the spatial band limit of the optical system 2NA/λ. In this work we will 

find a similar limit for angular frequencies and understand what design factors affect this 

limit.

A secondary goal of this work is to examine the validity of the monopole approximation in 

fluorescence microscopy. Although many works implicitly apply the monopole 

approximation, we have encountered two explicit justifications: (1) the sample contains 

many randomly oriented fluorophores within a resolvable volume or (2) the sample contains 

unconstrained rotating fluorophores. While both of these situations yield monopole-like 
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emitters, neither yields emitters that are perfectly described by the monopole model. We 

investigate the dipole model of fluorophores in detail and find the conditions under which 

the monopole approximation is justified.

We begin in section 2 by specifying the imaging geometry and defining pupil functions for 

imaging systems with and without the monopole approximation. We explicitly relate the 

pupil functions to the coherent transfer functions to establish a connection between physical 

calculations and the transfer functions. Next, in section 3 we calculate the monopole and 

dipole transfer functions in closed form, and we use these transfer functions to perform 

efficient simulations with four numerical phantoms. Finally, in section 4 we discuss the 

results and expand on how the pupil functions can be used to develop improved models for 

spatio-angular microscopes.

2. Theory

During our initial modeling [1] we considered an aplanatic optical system imaging a sample 

of fluorescent emissions—either a monopole emission density, f ro , or a dipole emission 

density, f ro, so —by recording the scaled irradiance on a two-dimensional detector, g(rd). A 

central result was that we could express the relationship between the object (the emission 

densities) and the data (the irradiance) as a linear Hilbert-space operator, and we showed that 

these operators took the form of an integral transform in a delta function basis. In this paper 

we will restrict our attention to in-focus objects, so we will split ro into ro⊥ and ro
∥ and set 

ro
∥ = 0. For in-focus monopole emissions the integral transform takes the form

g rd = ∫
ℝ2

dro⊥ ℎ rd − ro⊥ f ro⊥ , (1)

where ℎ rd − ro⊥  is the monopole point spread function. For dipole emissions the integral 

transform takes the form

g rd = ∫
S2

dso∫
ℝ2

dro⊥ ℎ rd − ro⊥, so f ro⊥, so , (2)

where ℎ rd − ro⊥, so  is the dipole point spread function. Note that we have written Eqs. (1) 

and (2) in their demagnified forms. We will use primes to denote the unscaled detector 

coordinate, rd′ , and unscaled point spread functions, h′.

After expressing the operators in a delta function basis we explored the form of the operators 

with several other choices of basis functions. Tables 1 and 2 summarize our results.

Our task is to calculate the form of the monopole and dipole transfer functions for a specific 

imaging geometry. In this work we will consider an aplanatic optical system in a 4 f 
configuration with an arbitrary first lens (the objective lens) and a paraxial second lens (the 

tube lens) as shown in Fig. 1. A lens can be considered paraxial if the angle α between the 

optical axis of the lens and the marginal ray is small enough that sin α ≈ α. As a rule of 
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thumb, non-paraxial effects only become significant when the numerical aperture of a lens 

exceeds 0.7 [2, ch. 6], but this is only a rough guideline. Commercial microscopes with 

infinity-corrected objectives can almost always can be modeled by considering the tube lens 

as paraxial.

2.1. Monopole pupil functions

We define the monopole pupil function p(rp) of the imaging system as the field immediately 

following the pupil plane created by an on-axis monopole, where rp is an unscaled two-

dimensional coordinate in the pupil plane. In this section we will relate the monopole pupil 

function to the monopole transfer functions by adapting the treatment in Barrett and Myers 

[3, ch. 9.7].

Since monopoles emit scalar fields, the monopole pupil function is a scalar-valued function. 

The optical system is aplanatic, so we can write the field, Up rp, ro⊥ , created at a point in the 

pupil plane rp by a monopole at position ro⊥ as

Up rp, ro⊥ ∝ p rp exp −2πi n0
λf0

rp ⋅ ro⊥ , (3)

where λ is the emission wavelength, and f0 is the focal length of the objective. Equation (3) 

is a restatement of the aplanatic condition for a 4 f optical system—the fields in the pupil 

plane can be written as the pupil function multiplied by a linear phase factor that encodes the 

position of the object.

Since the second lens is paraxial, we can model the relationship between the field in the 

pupil plane and the field on the detector with a scaled Fourier transform [4–6]:

Ud rd′ , ro⊥ ∝ ∫
ℝ2

drpp rp exp −2πi n0
λf0

rp ⋅ ro⊥ exp −2πi n1
λf1

rp ⋅ rd′ , (4)

where rd′  is an unscaled detector coordinate, and f1 is the focal length of the tube lens.

If we define P(τ) as the two-dimensional Fourier transform of the pupil function then we can 

rewrite Eq. (4) as

Ud rd′ , ro⊥ ∝ P n0
λf0

ro⊥ + n1
λf1

rd′ , (5)

which we can simplify further by writing in terms of the magnification m = −
f1n0
f0n1

:

Ud rd′ − mro⊥ ∝ P n1
λf1

rd′ − mro⊥ . (6)

The irradiance on the detector is the absolute square of the field so
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ℎ′ rd′ − mro⊥ ∝ P n1
λf1

rd′ − mro⊥
2

. (7)

If we demagnify the coordinates with rd = rd′ /m and demagnify the irradiance with 

ℎ rd − ro⊥ ∝ ℎ′ m rd − ro⊥ , we find that the monopole point spread function is related to the 

Fourier transform of the monopole pupil function by

ℎ rd − ro⊥ ∝ P − no
λfo

rd − ro⊥
2

. (8)

The monopole point spread function is the absolute square of the monopole coherent spread 

function so

c rd − ro⊥ ∝ P − no
λfo

rd − ro⊥ . (9)

Finally, the monopole coherent transfer function is the Fourier transform of the monopole 

coherent spread function so

C τ ∝ p λfo
no

τ . (10)

Equation (10) is the key result of this section—the monopole coherent transfer function is a 

scaled monopole pupil function.

2.2. Dipole pupil function

We define the dipole pupil function p rp, so  of the imaging system as the electric field 

immediately following the pupil plane created by an on-axis dipole oriented along so. Since 

dipoles emit vector-valued electric fields, the dipole pupil function is a vector-valued 

function. Almost all of the arguments in the previous section carry over to the dipole case. 

Briefly, we can write the electric field created at a point in the pupil rp by a dipole at ro⊥

oriented along so as

Ep rp, ro⊥, so ∝ p rp, so exp −2πi n0
λf0

rp ⋅ ro⊥ . (11)

The second lens is paraxial, so we can find the field on the detector with a Fourier transform

Ed rd′ , ro⊥, so ∝ ∫
ℝ2

drp p rp, so exp −2πi n0
λf0

rp ⋅ ro⊥ exp −2πi n1
λf1

rp ⋅ rd′ . (12)

Note that the Fourier transform of a vector field is the Fourier transform of its scalar-valued 

orthogonal components, so Eq. (12) specifies three two-dimensional Fourier transforms. We 

follow the same manipulations as the previous section and find that the dipole coherent 

transfer function is a scaled dipole pupil function
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C τ, so ∝ p λfo
no

τ, so . (13)

We have restricted our analysis to paraxial tube lenses, but non-paraxial tube lenses (or a 

non-infinity-corrected objective) can be modeled with vector-valued three-dimensional pupil 

functions [2, 7–9].

2.3. Special functions

We adopt and generalize Bracewell’s notation [10] for several special functions which will 

simplify our calculations. First, we define a rectangle function as

Π x =
1 if x < 1

2,

0 else.
(14)

We also define the nth-order jinc function as

jincn r = Jn + 1 πr
2r , (15)

where Jn+1 (r) is the (n + 1)th-order Bessel function of the first kind.

Although the rectangle and jinc functions are defined in one dimension, we will usually 

apply them in two dimensions. In Appendix A we derive the following two-dimensional 

Fourier transform relationships between the jinc functions and the weighted rectangle 

functions

in
exp inϕr
cos nϕr
sin nϕr

jincn r
ℱℝ2

2ν n
exp inϕν
cos nϕν
sin nϕν

Π ν , (16)

where the entries inside the curly braces are to be taken one at a time and {r, ϕr}/{ν, ϕν} are 

conjugate sets of polar coordinates.

Finally, we define the nth-order chat function as the two-dimensional Fourier transform of 

the squared nth-order jinc function

jincn
2 r

ℱℝ2
chatn ν . (17)

In Appendix A we show that the zeroth- and first-order chat functions can be written in 

closed form as

chat0 x = 1
2 cos−1 x − x 1 − x2 Π x

2 , (18)
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chat1 x = 1
2 cos−1 x − x 3 − 2x2 1 − x2 Π x

2 . (19)

3. Results

3.1. Monopole transfer functions

Our first step towards the monopole transfer functions is to calculate the monopole pupil 

function and coherent transfer function. Several works [11, 12] have modeled an aplanatic 

fluorescence microscope imaging monopole emitters with the scalar pupil function

p rp ∝ C rp
fo

Π rp
2fosinα , (20)

where

C x = 1 − x2 −1/4 = 1 + x2

4 + 5x4

32 + ⋯ . (21)

The C x  function models the radial dependence of the field and ensures that power is 

conserved on either side of an aplanatic objective, and the rectangle function models the 

aperture stop of the objective. Applying Eq. (10) and collecting constants we find that the 

coherent monopole transfer function is

C τ ∝ C 2NA
no

τ
νc

Π τ
νc

, (22)

where NA = no sin α and νc = 2NA/λ. This coherent transfer function models objectives 

with an arbitrary numerical aperture, but for our initial analysis we restrict ourselves to the 

paraxial regime. We drop second- and higher-order radial terms to find that

C τ ∝p Π τ
νc

, (23)

where (p) indicates that we have used the paraxial approximation for the objective lens.

We can find the monopole coherent spread function by taking the inverse Fourier transform 

of the monopole coherent transfer function

c r ∝p jinc0 νcr . (24)

The monopole point spread function is the (normalized) absolute square of the monopole 

coherent spread function so

ℎ r =p 4
π jinc0

2 νcr , (25)

which is the well-known Airy disk.
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Finally, we can calculate the monopole transfer function as the two-dimensional Fourier 

transform of the monopole point spread function (or the autocorrelation of the coherent 

transfer function) and find that

H ν =p 4
πchat0

ν
νc

. (26)

3.2. Dipole transfer functions

To calculate the dipole transfer function we proceed similarly to the monopole case—we 

find the pupil function, scale to find the coherent dipole transfer function, then calculate the 

remaining transfer functions.

Several works [6, 13, 14] have calculated the dipole pupil function for a high-NA objective. 

Using Backer and Moerner’s notation we find that the dipole pupil function is given by

p rp, so ∝

C0
rp
fo

+ C2
rp
fo

c 2ϕp C2
rp
fo

s 2ϕp C1
rp
f0

c ϕp

C2
rp
fo

s 2ϕp C0
rp
fo

− C2
rp
fo

c 2ϕp C1
rp
f0

s ϕp

0 0 0

sx
sy
sz

Π

rp
2fos α ,

(27)

where c(x) and s(x) are shorthand for cos(x) and sin(x), {sx, sy, sz} are the Cartesian 

components of so when z is aligned with the optical axis, and

C0 x = 1
2 1 − x2 + 1 1 − x2 −1/4 = 1 + x4

32 + x6

32 + ⋯, (28)

C1 x = x 1 − x2 −1/4 = x + x3

4 + 5x5

32 + ⋯, (29)

C2 x = 1
2 1 − x2 − 1 1 − x2 −1/4 = − x2

4 − x4

8 − 11x6

128 − ⋯ . (30)

Similar to the monopole case, the dipole pupil function conserves power and has a cutoff at 

the objective aperture, but the dipole pupil function is vector-valued to model the complete 

electric field in the pupil plane.
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Scaling the dipole pupil function using Eq. (13) yields the dipole coherent transfer function

C τ, so ∝

C0
λrpτ
n0

+ C2
λrpτ
n0

c 2ϕτ C2
λrpτ
n0

s 2ϕτ C1
λrpτ
n0

c ϕτ

C2
λrpτ
n0

s 2ϕτ C0
λrpτ
n0

− C2
λrpτ
n0

c 2ϕτ C1
λrpτ
n0

s ϕτ

0 0 0

sx
sy
sz

Π τ
νc

.

(31)

We restrict our analysis to the paraxial regime of the objective lens by dropping second- and 

higher-order radial terms to find that

C τ, so ∝p

1 0 2NA
no

τ
νc

cosϕτ

0 1 2NA
no

τ
νc

sinϕτ

0 0 0

sx
sy
sz

Π τ
νc

. (32)

Under the paraxial approximation applied to the objective lens the transverse components of 

the dipole {sx, sy} create purely parallel fields in the pupil plane and the axial component of 

the dipole {sz} creates purely radial fields in the pupil plane. Applying the paraxial 

approximation to the objective lens may seem crude compared to Backer and Moerner’s 

numerical results, but the approximation will allow us to calculate the transfer functions in 

closed form so that we can build an intuition for the limits of the microscope. We also note 

that many existing works in ensemble polarized fluorescence microscopy make stronger 

approximations than ours. For example, Fourkas only considers the total irradiance in the 

pupil plane while ignoring the propagation of fields to the detector [15].

The dipole coherent spread function is the inverse Fourier transform of the dipole coherent 

transfer function. Applying Eq. (16) in reverse yields
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c r, so ∝p

jinc0 νcr 0 NA
no

icosϕjinc1 νcr

0 jinc0 νcr
NA
no

isinϕjinc1 νcr

0 0 0

sx
sy
sz

. (33)

Notice that the radial component of the dipole coherent spread function has a π/2 phase shift 

relative to the parallel component. This phase factor arises because the Fourier transform of 

a real and odd function is purely imaginary.

3.2.1. Paraxial dipole point spread function—The dipole point spread function is 

the (normalized) absolute square of the coherent dipole spread function

ℎ r, so ∝ c r, so c† r, so . (34)

Plugging in the paraxial dipole coherent spread function and normalizing yields

ℎ r, so =p N jinc0
2 νcr sin2ϑ + NA

no

2
jinc1

2 νcr cos2ϑ , (35)

where sin2ϑ = sx2 + sy2, cos2ϑ = sz2, and the normalization factor is

N = 6νc2π−3/2 2 + NA
no

2 −1
. (36)

As discussed above, the parallel and radial fields are out of phase on the detector, so the total 

irradiance is the sum of the contributions from the parallel and radial components. In Fig. 2 

we plot the dipole point spread function for several dipole orientations and numerical 

apertures, and in Fig. 3 we compare the monopole point spread function to the dipole point 

spread function. The paraxial monopole and dipole models are only equivalent when the 

sample consists of transverse dipoles, which is clear if we notice that Eq. (35) reduces to an 

Airy disk when ϑ = π/2—see Novotny and Hecht for a similar observation [16, ch. 4].

All of the figures in this paper use the paraxial approximation applied to the objective lens. 

We estimated the error introduced by this approximation by numerically calculating the 

dipole point spread function using the exact pupil function in Eq. (27) and comparing the 

result to the analytic dipole point spread function in Eq. (35). We found that the maximum 

irradiance error (root mean square irradiance error) in the image plane for NA/no = 0.25, 0.5 

and 0.75 was 1%(0.02%), 5%(0.05%), and 12%(0.12%), respectively. Although the paraxial 

approximation introduces relatively large errors in the fields near the edge of the pupil 

function, the irradiance errors are modest for NA/no < 0.75 because the paraxial pupil 

function is accurate near the optical axis, every point in the pupil contributes to the 

irradiance, and the irradiance is the absolute square of fields. However, note that the paraxial 

approximation introduces increasingly large errors as NA/no approaches 1. Additionally, the 
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paraxial approximation on the objective imposes radial symmetry on the dipole point spread 

function. This radial symmetry is approximate, and the symmetry disappears for high-NA 

objectives.

To demonstrate the paraxial dipole point spread function we simulate a set of equally spaced 

dipoles with varying orientation:

f pℎ1 rx, ry, ϑ, φ = ∑
j = 0

3
∑
k = 0

3
δ rx − j δ ry − k δ cosϑ − cosϑj δ φ − φk , (37)

where ϑj = jπ
6 , φk = kπ

4 , the subscript (ph1) indicates that this is the first phantom, and the 

spatial coordinates are expressed in µm. To find the irradiance pattern created by the 

phantom we plug Eq. (37) into Eq. (2) and use the sifting property to find that

g pℎ1 rx, ry = ∑
j = 0

3
∑
k = 0

3
ℎ rx − j 2 + ry − k 2, ϑj . (38)

In Fig. 4 we plot the phantom and scaled irradiance for an imaging system with NA = 0.75, 

λ = 500 nm, and no = 1.33. For these parameters the maximum irradiance error introduced 

by the paraxial approximation is 6%. We sample and plot the scaled irradiance at 20× the 

Nyquist rate, ∆x = 1/20[(2νc)], so the irradiance patterns are free of aliasing. The output 

demonstrates that the irradiance pattern depends on the dipole inclination, but not its 

azimuth.

3.2.2. Paraxial dipole spatial transfer function—The dipole spatial transfer 

function is the spatial Fourier transform of the dipole point spread function (or the complex 

autocorrelation of the dipole coherent transfer function). Applying the Fourier transform to 

Eq. (35) we find that

H ν, ϑ =p N
νc2

chat0
ν
νc

sin2ϑ + NA
no

2
chat1

ν
νc

cos2ϑ . (39)

In Fig. 5 we plot the dipole spatial transfer function for several dipole orientations and 

numerical apertures. We find that the dipole spatial transfer function is negative for axial 

dipoles at high spatial frequencies, especially for larger numerical apertures. The negative 

dipole spatial transfer function corresponds to a contrast inversion for high-frequency 

patterns of axial dipoles because the irradiance minimum corresponds to the position of the 

dipole.

To demonstrate the dipole spatial transfer function we simulate a set of equally spaced disks 

with varying diameter containing fluorophores with varying orientation

f pℎ2 rx, ry, ϑ = ∑
j = 0

3
∑
k = 0

3
1

Dk
2Π 1

Dk
rx − j 2 + ry − k 2 δ cosϑ − cosϑj (40)
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where Dk = 0.15(1 + k) µm and ϑj = jπ
6 . Notice that we have scaled the disks so that the total 

number of fluorophores in each disk is constant. Also notice that the disk can model a spatial 

distribution of many fluorophores or a single molecule undergoing spatial diffusion within a 

well.

We can calculate the scaled irradiance by taking the spatial Fourier transform of each 

orientation in the phantom, multiplying the result with the dipole spatial transfer function, 

summing over the orientations, then taking the inverse spatial Fourier transform

g pℎ2 rx, ry = ℱℝ2
−1 ∑

j
H ν, ϑj ℱℝ2 f pℎ2 rx, ry, ϑj . (41)

In Fig. 6 we plot the phantom and scaled irradiance with the same imaging parameters as the 

previous section. The small disks create irradiance patterns that are similar to the point 

sources in the previous section, while larger disks create increasingly uniform irradiance 

patterns that hide the orientation of the fluorophores.

3.2.3. Paraxial dipole angular transfer function—To calculate the angular dipole 

transfer function we take the spherical Fourier transform of the dipole point spread function

Hl
m r = ∫

S2
dsoℎ r, so Y l

m ∗ so . (42)

After evaluating the integrals and normalizing, the angular dipole transfer function is

Hl
m r =p N

3 2jinc0
2 νcr + NA

no

2
jinc1

2 νcr Λ0δl0δm0 +

N
3 −2jinc0

2 νcr + 2 NA
no

2
jinc1

2 νcr Λ2δl2δm0,
(43)

where Λl = 4π/ 2l + 1 . Notice that the dipole angular transfer function only has two non-

zero terms that correspond to m = 0 spherical harmonics. These spherical harmonics are 

rotationally symmetric about the optical axis, and this symmetry is imposed by the paraxial 

approximation. When the paraxial approximation is not applied to low-NA imaging systems, 

the higher-order m terms will be very small. As the NA increases, the relative size of the 

higher-order m terms increases. The root mean square error introduced by the paraxial 

approximation is conserved under a change of basis, so the paraxial approximation 

introduces a 0.02%, 0.05%, 0.12% RMS error for NA/no = 0.25, 0.5 and 0.75, respectively.

In Fig. 7 we plot the dipole angular transfer function for both spherical harmonic terms and 

several numerical apertures. Note that the dipole angular transfer function can be negative 

because the spherical harmonics can take negative values. The ℓ = 0 term shows that 

angularly uniform distributions of dipoles create spatial irradiance patterns that are similar 

but not identical to the Airy disk, while the ℓ = 2 term shows a negative pattern because of 

the large contribution of the transverse negative values in the Y 2
0 spherical harmonic.
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To demonstrate the dipole angular transfer function we simulate a set of equally spaced 

fluorophore distributions with varying orientation and angular distributions

f pℎ3 rx, ry, ϑ = ∑
j = 0

3
∑
k = 0

3
δ rx − j δ ry − k f cone ϑ, φ; ϑj, 0, Δk , (44)

where

f cone so; so′, Δ = f cone ϑ, φ; ϑ′, φ′, Δ = 1
4π 1 − cosΔ Π s ⋅ s′

2cosΔ (45)

is an angular double cone distribution with central direction s′ and cone half-angle ∆; 

ϑj = jπ
6 ; and Δk = kπ

6 . Notice that when ∆ = 0 the angular double cone reduces to a single 

direction, and when ∆ = π/2 the angular double cone reduces to an angularly uniform 

distribution. Also notice that the double cone can model angular diffusion or the angular 

distribution of many fluorophores within a resolvable volume.

Our first step towards the irradiance pattern is to calculate the dipole angular spectrum of the 

phantom. In Appendix B we calculate the spherical Fourier transform of the double cone 

distribution Fl, cone
m ϑ′, φ′; Δ  which we can use to express the dipole angular spectrum as

Fl, pℎ3
m rx, ry, ϑ = ∑

j = 0

3
∑
k = 0

3
δ rx − j δ ry − k Fl, cone

m ϑj, 0, Δk . (46)

To calculate the scaled irradiance we multiply the dipole angular spectrum by the dipole 

angular transfer function and sum over the dipoles and spherical harmonics

g pℎ3 rx, ry = ∑
lm

∑
j = 0

3
∑
k = 0

3
Hl

m rx − j 2 + ry − k 2 Fl, cone
m ϑj, 0, Δk . (47)

In Fig. 8 we plot the phantom and scaled irradiance with the same imaging parameters as the 

previous sections. For small cone angles the irradiance patterns are similar to the point 

sources in the previous sections, while larger cone angles create increasingly uniform 

irradiance patterns that hide the angular information about the distributions.

3.2.4. Paraxial dipole spatio-angular transfer function—We can calculate the 

dipole spatio-angular transfer function by taking the spatial Fourier transform of the dipole 

angular transfer function (or the spherical Fourier transform of the dipole spatial transfer 

function) to find that
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Hl
m ν =p N

3νc2
2chat0

ν
νc

+ NA
no

2
chat1

ν
νc

Λ0δl0δm0 +

N
3νc2

−2chat0
ν
νc

+ 2 NA
no

2
chat1

ν
νc

Λ2δl2δm0 .
(48)

In Fig. 9 we plot the dipole spatio-angular transfer function for both spherical harmonic 

terms and several numerical apertures. The ℓ = 0 term shows that an angularly uniform 

distribution of dipoles has a transfer function that is similar but not identical to the monopole 

transfer function with high frequencies increasingly suppressed as the numerical aperture 

increases. The ℓ = 2 term shows a negative pattern because of the large contribution of the 

transverse negative values in the Y 2
0 spherical harmonic. As the numerical aperture increases 

the relative contribution of the positive axial values increases and the ℓ = 2 term becomes less 

negative.

To demonstrate the spatio-angular transfer function, we simulate a set of equally spaced 

disks of fluorophores with varying radius and angular distributions

f pℎ4 rx, ry, ϑ, φ = ∑
j = 0

3
∑
k = 0

3
1

Dk
2Π 1

Dk
rx − j 2 + ry − k 2 f cone

ϑ, φ; π
2 , 0, Δj ,

(49)

where Dk = 0.15(1 + k) µm, and Δj = jπ
6 .

Our first step towards calculating the irradiance pattern is to calculate the dipole spatio-

angular spectrum given by the spatial Fourier transform of the dipole angular spectrum

Fl, pℎ4
m νx, νy = ℱℝ2 ∑

j = 0

3
∑
k = 0

3
1

Dk
2Π 1

Dk
rx − j 2 + ry − k 2 Fl, cone

m

π
2 , 0, Δj .

(50)

To calculate the scaled irradiance we multiply the dipole spatio-angular spectrum by the 

dipole spatio-angular transfer function, sum over the spherical harmonics, then take an 

inverse Fourier transform

g pℎ4 rx, ry = ℱℝ2
−1 ∑

lm
Hl

m νx, νy Fl, pℎ4
m νx, νy . (51)

In Fig. 10 we plot the phantom and scaled irradiance with the same imaging parameters as 

the previous sections. Small cone angles and small disks create relatively unique irradiance 
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patterns, while increasing the cone angle or disk size creates increasingly similar irradiance 

patterns.

4. Discussion

4.1. Interpreting the spherical harmonics

Before we interpret the spherical harmonics it is worthwhile to review the interpretation of 

complex exponentials in monopole fluorescence imaging. We can think of complex 

exponential functions exp i2πro⊥ ⋅ ν  as functions on the plane with coordinates ro⊥ indexed by 

spatial frequencies ν. Complex exponentials with small spatial frequencies |ν| can be used to 

build smooth functions, and complex exponentials with higher spatial frequencies can be 

added to build sharp edge-like functions. Note that the complex exponentials themselves do 

not have a direct physical interpretation—they are purely a mathematical convenience for 

efficiently describing and interpreting imaging systems. A direct physical interpretation 

would require us to interpret negative- and complex-valued “densities”. However, each 

complex exponential component of the emission density creates a single physically 

interpretable plane wave that propagates through the imaging system. This indirect physical 

interpretation of the complex exponentials is valuable for building an intuition for the effects 

of pupil apertures and phase masks.

Similarly, the spherical harmonics Y l
m so  are functions on the sphere with coordinates so

indexed by angular frequencies ℓ and m. Spherical harmonics with small ℓ can be used to 

build smooth spherical functions (for example the ℓ = 0 spherical harmonic is a constant 

function), and spherical harmonics with higher ℓ can be added to build sharp edge-like 

spherical functions. Spherical harmonics with m = 0 (the zonal harmonics) can be used to 

build spherical functions that are rotationally symmetric about the optical axis, and spherical 

harmonics with non-zero m can be used to build non-rotationally symmetric functions. Once 

again, the spherical harmonics do not have a direct physical interpretation, but they are 

useful for efficiently describing and interpreting angular imaging systems.

A single spatio-angular component of the dipole emission density (parameterized by a 

spatial frequency ν and angular frequency ℓ and m) creates a single plane wave that 

propagates through the imaging system along a path in accordance with its spatial frequency. 

When multiple angular components are present at a single spatial frequency, each angular 

component contributes a plane wave traveling along the same path through the imaging 

system. We emphasize that this interpretation is indirect—the complex exponentials and 

spherical harmonics do not have a direct physical interpretation.

4.2. What determines the angular bandwidth?

Spatial imaging systems have a spatial bandwidth that characterizes the highest spatial 

frequency that the system can transfer between object and data space. Similarly, angular 

imaging systems have an angular bandwidth that characterizes the highest angular frequency 

that the system can transfer, but in the angular case there are two different types of angular 

bandwidths that we call the ℓ- and m-bandwidth. The ℓ-bandwidth can be interpreted in a 

similar way to the spatial bandwidth—it characterizes the smallest angular features that the 
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imaging system can measure. The m-bandwidth does not have a direct analog in the spatial 

domain—it characterizes the angular uniformity of the imaging system. If the ℓ- and m-

bandwidths are equal then the imaging system can be said to have an isotropic angular 
bandwidth.

The spatial bandwidth of a fluorescence microscope is well known to be νc = 2NA/λ. In 

other words, we can increase the spatial resolution of a fluorescence microscope by 

increasing the NA of the instrument or by choosing a fluorophore with a shorter emission 

wavelength. Similarly, the angular bandwidth of a fluorescence microscope depends on both 

the instrument and the choice of fluorophore.

The paraxial microscope we considered in this work has an ℓ-bandwidth of ℓc = 2 and an m-

bandwidth of mc = 0, so it does not have an isotropic angular bandwidth. The ℓ-bandwidth of 

the imaging system is constant for dipole imaging systems because dipole radiators only 

emit in the ℓ = 0 and ℓ = 2 bands. Increasing the ℓ-bandwidth requires us to use quadrupole/

higher-order emitters [17], structured/polarized illumination [18, 19], or multi-photon 

excitation [20]. The m-bandwidth of the imaging system is 0 for paraxial microscopes 

because these imaging systems are only sensitive to the inclination angle of dipoles. 

Therefore, paraxial microscopes only transfer information about dipole emission 

distributions that are rotationally symmetric about the optical axis. Increasing the m-

bandwidth requires a non-paraxial optical system or polarizers in the illumination/detection 

path.

4.3. Comparing monopole and dipole models

The only case when the dipole and monopole transfer functions match exactly is when the 

sample consists of dipoles that are completely constrained to the transverse plane of a 

paraxial imaging system. Dipole radiators that do not lie in the transverse plane are not well 

described by the monopole approximation, and the monopole approximation is worst for 

axial dipoles (see Fig. 3).

Applying the monopole approximation to dipoles that are not constrained to the transverse 

plane can lead to biased estimates of the fluorophore concentrations. To see how these biases 

manifest, consider the irradiance pattern created by a disk of dipoles oriented along the optic 

axis—see Figs. 6 or 10. Any reconstruction scheme that uses the monopole approximation 

would attribute the irradiance pattern created by a disk of axially oriented dipoles to a lower 

concentration of monopoles, which is a clear example of a biased estimate caused by model 

mismatch.

However, the common justifications for the monopole approximation—that the fluorophores 

are rotationally unconstrained or that there are many randomly oriented fluorophores in a 

resolvable volume—are good approximations. In both of these cases the irradiance 

contribution from axial dipoles is small compared to the contribution from transverse 

dipoles, and the irradiance patterns are very similar to the pattern created by a monopole 

(within 5% at NA/n0 = 0.75—compare the ℓ = 0 line to the monopole line in Fig. 7).
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4.4. Towards more realistic models

The theoretical model we presented in this work is an extreme simplification of a real 

microscope. We have ignored the effects of thick samples, refractive-index mismatch, 

aberration, scattering, and interactions between fluorophores among others. Because of this 

long list of unconsidered effects, real experiments will likely require extensions of the 

models developed here.

The dipole pupil function provides the simplest way to create more realistic models from the 

simple model in this paper. Phase aberrations can be added to the dipole pupil function with 

Zernike polynomials, and refractive index boundaries can be modeled by applying the work 

of Gibson and Lanni to the dipole pupil function [21]. These additions will model phase 

aberrations, but modeling polarization aberrations will also be necessary, and we anticipate 

that vector Zernike polynomials and the Jones pupil [22–24] will be essential tools for 

modeling dipole imaging systems. We plan to use the dipole pupil function to include the 

effects of non-paraxial objectives, polarizers, and defocus in future papers of this series.

The dipole pupil function also provides an enormous set of design opportunities. The dipole 

imaging problem may benefit from spatially varying diattenuating and birefrigent masks 

[25,26]— a much larger set of possibilities than the well-explored design space of amplitude 

and phase masks [6,26–31]. The dipole pupil function is a step towards Green’s tensor 

engineering [32], and the dipole transfer functions provide a strong framework for evaluating 

dipole imaging designs.

In the simple case considered here we focused on the emission path of the microscope, but 

the excitation path is equally important. Complete models will need to consider the spatio-

angular dependence of excitation. Zhenghao et. al. [19] have taken steps in this direction by 

considering polarized structured illumination microscopy. Rotational dynamics and the 

fluorescence lifetime are also important to consider when incorporating models of the 

excitation process [1, 25, 33, 34].

Finally, we have only considered incoherent dipole radiators in this work, but coherent 

dipole radiators have been modeled in detail by Khadir et al. [35]. We expect that extensions 

of the dipole transfer functions will help simplify and generalize the coherent dipole 

radiation point response function, especially when multiple coherent dipole radiators are 

considered.

5. Conclusions

We have calculated the monopole and dipole transfer functions for paraxial 4 f imaging 

systems and demonstrated these transfer functions with efficient simulations. We have found 

that dipole radiators have an angular frequency cutoff of ℓc = 2, and paraxial imaging 

systems have an angular frequency cutoff of mc = 0. We also found that the monopole and 

scalar approximations are good approximations when the sample consists of unconstrained 

rotating fluorophores or many randomly oriented fluorophores within a resolvable volume. 

Finally, we found that dipole and vector optics effects become larger as rotational order 

increases, and in these cases the dipole transfer functions become valuable tools.
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A.: Relationships between special functions

Our first task is to show that

in
exp inϕr
cos nϕr
sin nϕr

jincn r
ℱℝ2

2ν n
exp inϕν
cos nϕν
sin nϕν

Π ν . (52)

Writing the inverse Fourier transform in polar coordinates yields

= 2n∫
0

1/2
dν νn + 1∫

0

2π
dϕν

exp inϕν
cos nϕν
sin nϕν

exp 2πiνrcos ϕν − ϕr . (53)

The azimuthal integral can be evaluated in terms of an nth order Bessel function (for the 

complex case see [3, ch. 4.111]).

= 2n2πin
exp inϕr
cos nϕr
sin nϕr

∫
0

1/2
dν νn + 1Jn 2πνr . (54)

We can use the following identity [36, ch. 6.561–5]

∫
0

1
du un + 1Jn au = a−1Jn + 1 a (55)

with a change of variable u = 2ν to find the final result

= 2n2πin
exp inϕr
cos nϕr
sin nϕr

∫
0

1 du
2

u
2

n + 1
Jn πur = in

exp inϕr
cos nϕr
sin nϕr

Jn + 1 πr
2r = in

exp inϕr
cos nϕr
sin nϕr

jincn r .

(56)
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Fig. 11. 
The relationships between special functions. The chat functions are defined as the two-

dimensional Fourier transform of the squared jinc functions, and they can be calculated with 

the two-dimensional complex autocorrelations (denoted by⋆2 ) of the complex-weighted 

rectangle functions.

We can use the relationship in Eq. (52) to express the chat functions in terms of a complex 

autocorrelation—see the diagram in Fig. 11. Starting with the definition of the nth-order chat 

function

chatn ν = ∫
ℝ2

dr jincn
2 r exp −2πirν , (57)

we can rewrite the integrand in terms of the absolute square of a simpler function with a 

known Fourier transform

chatn ν = ∫
ℝ2

dr tn r 2exp −2πirν . (58)

tn r = inexp inϕr jincn r . (59)

Now we can apply the autocorrelation theorem to rewrite the Fourier transform as

chatn ν = ∫
ℝ2

dτ Tn τ Tn
∗ τ − ν , (60)

where the function to be autocorrelated can be found with the help of Eq. (52)
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Tn τ = ∫
ℝ2

dr tn r exp −2πir ⋅ τ = 2τ nexp inϕτ Π τ . (61)

It will be more convenient to set up the autocorrelation in Cartesian coordinates

Tn τ = 2n τx + iτy
nΠ τx2 + τy2 . (62)

Plugging Eq. (62) into Eq. (60) gives

chatn ν = 4n∫
ℝ2

dτ τx2 + τy2 − ντx
nΠ τx2 + τy2 Π τx − ν 2 + τy2 . (63)

We can interpret the autocorrelation as an integral over a region of overlap between a circle 

centered at the origin and a circle shifted to the right by ν (a geometric lens). Using the 

construction in Fig. 12 we can express this region as

chatn ν = 4n + 1 ∫
0

1/2
τdτ∫

0

cos−1ν
dϕτ τ2 − ντcosϕτ

n −

∫
0

ν/2
dτx∫

0

τx
ν 1 − ν2

dτy τx2 + τy2 − ντx
n Π ν

2 .

(64)

For n = 0:

chat0 ν = 4 ∫
0

1/2
τdτ∫

0

cos−1ν
dϕτ − ∫

0

ν/2
dτx∫

0

τx
ν 1 − ν2

dτy Π ν
2 , (65)

chat0 ν = 1
2 cos−1 ν − ν 1 − ν2 Π ν

2 , (66)

which is a well-known result [4, 10, 37]. For n = 1:

chat1 ν = 16 ∫
0

1/2
τdτ∫

0

cos−1ν
dϕτ τ2 − ντcosϕτ −

∫
0

ν/2
dτx∫

0

τx
ν 1 − ν2

dτy τx2 + τy2 − ντx Π ν
2 ,

(67)

chat1 ν = 1
2 cos−1 ν − ν 3 − 2ν2 1 − ν2 Π ν

2 . (68)
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Fig. 12. 
Geometric construction for evaluating the autocorrelation. We need to integrate over the 

overlapping region of two circles with radius 1/2 and distance ν between their centers. The 

region is four times the difference in area between a sector of angle cos−1(ν) and radius 1/2 

and a right triangle with base ν/2 and hypotenuse 1/2.

B.: Spherical Fourier transform of a double cone

In this appendix we evaluate the spherical Fourier transform of a normalized double-cone 

angular distribution with central direction s′ and cone half-angle ∆

f cone s; s′, Δ = 1
4π 1 − cosΔ Π s ⋅ s′

2cosΔ . (69)

The spherical Fourier transform is

Fl cone
m s′, Δ = ∫

S2
ds f cone s; s′, Δ Y l

m ∗ s . (70)

The limits of integration will be difficult to find unless we change coordinates to exploit the 

axis of symmetry s′. Since the spherical function is rotationally symmetric about s′ we can 

rotate the function so that the axis of symmetry is aligned with z and multiply by 
4π

2l + 1Y l
m ∗ s′  to account for the rotation [38]

Fl cone
m s′, Δ = 4π

2l + 1Y l
m ∗ s′ ∫

S2
ds f cone ϑ; z, Δ Y l

0 s . (71)

In this coordinate system the double cone is independent of the azimuthal angle, so we can 

evaluate the azimuthal integral and express the function in terms of an integral over ϑ:

Fl cone
m s′, Δ = 2πY l

m ∗ s′ ∫
0

π
dϑ sinϑf cone ϑ; z, Δ Pl cosϑ . (72)

The function f cone ϑ; z, Δ  is only non-zero on the intervals ϑ ∈ [0, ∆] and ϑ ∈ [π − ∆, π] 

so
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Fl cone
m s′, Δ = Y l

m ∗ s′
2 1 − cosΔ ∫

0

Δ
dϑ sinϑPl cosϑ + ∫

π − Δ

π
dϑ sinϑPl cosϑ . (73)

Applying a change of coordinates with u = cos ϑ yields

Fl cone
m s′, Δ = Y l

m ∗ s′
2 1 − cosΔ ∫

cosΔ

1
dϑ Pl u + ∫

−1

−cosΔ
dϑ Pl u . (74)

The Legendre polynomials Pℓ(u) are even (odd) on the interval [–1, 1] when ℓ is even (odd), 

so the pair of integrals will be identical when ℓ is even and cancel when ℓ is odd. For even ℓ,

Fl cone
m s′, Δ = Y l

m ∗ s′
1 − cosΔ∫cosΔ

1
dϑ Pl u . (75)

The integral evaluates to [36, ch. 7.111]

∫
cosΔ

1
dϑ Pl u =

1 − cosΔ, l = 0,

sinΔ Pl
−1 cosΔ , else,

(76)

where Pl
−1 cosΔ  is the associated Legendre polynomial with order m = −1, not an inverse 

Legendre polynomial. Bringing everything together

Fl cone
m s′, Δ =

1/ 4π , l = 0,

0, l odd,

Y l
m ∗ s′ cot Δ

2 Pl
−1 cosΔ , l > 0 even .

(77)

References

1. Chandler T, Shroff H, Oldenbourg R, and La Rivière PJ, “Spatio-angular fluorescence microscopy I. 
basic theory,” https://arxiv.org/abs/1812.07093 (2018).

2. Gu M, Advanced Optical Imaging Theory, Springer Series in Optical Sciences (Springer, 2000).

3. Barrett H and Myers K, Foundations of Image Science (Wiley-Interscience, 2004).

4. Goodman J, Introduction to Fourier Optics (McGraw-Hill, 1996).

5. Axelrod D, “Fluorescence excitation and imaging of single molecules near dielectric-coated and 
bare surfaces: a theoretical study.” J. Microsc 247 2, 147–60 (2012). [PubMed: 22612666] 

6. Backer AS and Moerner WE, “Extending single-molecule microscopy using optical Fourier 
processing,” J. Phys. Chem. B 118, 8313–8329 (2014). [PubMed: 24745862] 

7. Sheppard CJR, Gu M, Kawata Y, and Kawata S, “Three-dimensional transfer functions for high-
aperture systems,” J. Opt. Soc. Am. A 11, 593–598 (1994).

8. Arnison MR and Sheppard CJ, “A 3D vectorial optical transfer function suitable for arbitrary pupil 
functions,” Opt. Commun 211, 53–63 (2002).

9. Foreman MR and Török P, “Computational methods in vectorial imaging,” J. Mod. Opt 58, 339–364 
(2011).

CHANDLER et al. Page 21

J Opt Soc Am A Opt Image Sci Vis. Author manuscript; available in PMC 2020 February 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://arxiv.org/abs/1812.07093


10. Bracewell R, Fourier Analysis and Imaging (Springer US, 2004).

11. Petrov PN, Shechtman Y, and Moerner WE, “Measurement-based estimation of global pupil 
functions in 3D localization microscopy,” Opt. Express 25, 7945–7959 (2017). [PubMed: 
28380911] 

12. Backlund MP, Shechtman Y, and Walsworth RL, “Fundamental precision bounds for three-
dimensional optical localization microscopy with Poisson statistics,” Phys. Rev. Lett 121, 023904 
(2018). [PubMed: 30085695] 

13. Böhmer M and Enderlein J, “Orientation imaging of single molecules by wide-field 
epifluorescence microscopy,” J. Opt. Soc. Am. B 20, 554–559 (2003).

14. Lieb MA, Zavislan JM, and Novotny L, “Single-molecule orientations determined by direct 
emission pattern imaging,” J. Opt. Soc. Am. B 21, 1210–1215 (2004).

15. Fourkas JT, “Rapid determination of the three-dimensional orientation of single molecules,” Opt. 
Lett 26, 211–213 (2001). [PubMed: 18033550] 

16. Novotny L and Hecht B, Principles of Nano-Optics (Cambridge University Press, 2006).

17. Curto AG, Taminiau TH, Volpe G, Kreuzer MP, Quidant R, and van Hulst NF, “Multipolar 
radiation of quantum emitters with nanowire optical antennas,” Nat. Commun 4, 1750 EP – 
(2013). [PubMed: 23612291] 

18. Dale R, Hopkins S, an der Heide U, Marszałek T, Irving M, and Goldman Y, “Model-independent 
analysis of the orientation of fluorescent probes with restricted mobility in muscle fibers,” 
Biophys. J 76, 1606–1618 (1999). [PubMed: 10049341] 

19. Zhanghao K, Chen X, Liu W, Li M, Shan C, Wang X, Zhao K, Lai A, Xie H, Dai Q, and Xi P, 
“Structured illumination in spatial-orientational hyperspace,” https://arxiv.org/abs/1712.05092.

20. Brasselet S, “Polarization-resolved nonlinear microscopy: application to structural molecular and 
biological imaging,” Adv. Opt. Photon 3, 205 (2011).

21. Gibson SF and Lanni F, “Diffraction by a circular aperture as a model for three-dimensional optical 
microscopy,” J. Opt. Soc. Am. A 6, 1357–1367 (1989). [PubMed: 2795290] 

22. Zhao C and Burge JH, “Orthonormal vector polynomials in a unit circle, part I: basis set derived 
from gradients of Zernike polynomials,” Opt. Express 15, 18014–18024 (2007). [PubMed: 
19551099] 

23. Xu X, Huang W, and Xu M, “Orthogonal polynomials describing polarization aberration for 
rotationally symmetric optical systems,” Opt. Express 23, 27911–27919 (2015). [PubMed: 
26480449] 

24. Chipman RA, “Polarization analysis of optical systems,” Opt. Eng 28, 28 – 28 – 10 (1989).

25. Lew MD, Backlund MP, and Moerner WE, “Rotational mobility of single molecules affects 
localization accuracy in super-resolution fluorescence microscopy,” Nano Lett 13, 3967–3972 
(2013). [PubMed: 23360306] 

26. Backlund MP, Arbabi A, Petrov PN, Arbabi E, Saurabh S, Faraon A, and Moerner WE, “Removing 
orientation-induced localization biases in single-molecule microscopy using a broadband 
metasurface mask,” Nat. Photonics 10, 459 EP – (2016). [PubMed: 27574529] 

27. Sick B, Hecht B, and Novotny L, “Orientational imaging of single molecules by annular 
illumination,” Phys. Rev. Lett 85, 4482–4485 (2000). [PubMed: 11082576] 

28. Patra D, Gregor I, and Enderlein J, “Image analysis of defocused single-molecule images for three-
dimensional molecule orientation studies,” The J. Phys. Chem. A 108, 6836–6841 (2004).

29. Toprak E, Enderlein J, Syed S, McKinney SA, Petschek RG, Ha T, Goldman YE, and Selvin PR, 
“Defocused orientation and position imaging (DOPI) of myosin V,” Proc. Natl. Acad. Sci. U.S.A 
103, 6495–6499 (2006). [PubMed: 16614073] 

30. Backer AS, Backlund MP, Lew MD, and Moerner WE, “Single-molecule orientation 
measurements with a quadrated pupil,” Opt. Lett 38, 1521–1523 (2013). [PubMed: 23632538] 

31. Karedla N, Stein SC, Hähnel D, Gregor I, Chizhik A, and Enderlein J, “Simultaneous measurement 
of the three-dimensional orientation of excitation and emission dipoles,” Phys. Rev. Lett 115, 
173002 (2015). [PubMed: 26551110] 

CHANDLER et al. Page 22

J Opt Soc Am A Opt Image Sci Vis. Author manuscript; available in PMC 2020 February 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://arxiv.org/abs/1712.05092


32. Agrawal A, Quirin S, Grover G, and Piestun R, “Limits of 3D dipole localization and orientation 
estimation for single-molecule imaging: towards Green’s tensor engineering,” Opt. Express 20, 
26667–26680 (2012). [PubMed: 23187520] 

33. Zhang O, Lu J, Ding T, and Lew MD, “Imaging the three-dimensional orientation and rotational 
mobility of fluorescent emitters using the tri-spot point spread function,” Appl. Phys. Lett 113, 
031103 (2018). [PubMed: 30057423] 

34. Zhang O and Lew MD, “Fundamental limits on measuring the rotational constraint of single 
molecules using fluorescence microscopy,” https://arxiv.org/abs/1811.09017.

35. Khadir S, Chaumet PC, Baffou G, and Sentenac A, “Quantitative model of the image of a radiating 
dipole through a microscope,” J. Opt. Soc. Am. A 36, 478–484 (2019).

36. Gradshteyn IS and Ryzhik IM, Table of Integrals, Series, and Products (Elsevier/Academic Press, 
Amsterdam, 2007).

37. Mertz J, Introduction to Optical Microscopy (W. H. Freeman, 2009).

38. Ramamoorthi R, “Modeling illumination variation with spherical harmonics,” in Face Processing: 
Advanced Modeling and Methods, (Academic Press, 2005).

CHANDLER et al. Page 23

J Opt Soc Am A Opt Image Sci Vis. Author manuscript; available in PMC 2020 February 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://arxiv.org/abs/1811.09017


Fig. 1. 
Schematic of an aplanatic imaging system in a 4 f geometry with a paraxial tube lens. We 

are considering an aplanatic optical system, so we only need to consider the image created 

by on-axis objects. The fluorescent object consists of ensembles of monopoles or dipoles 

embedded in a medium with index of refraction n0. An objective with focal length f0 and 

numerical aperture NA = no sin α is trained on the object. A paraxial tube lens with focal 

length f1 and a detector complete the 4 f geometry, and all components except the object are 

embedded in a medium with index of refraction n1. The object, pupil, and detector planes 

are parameterized by vectors ro⊥, rp, and rd with polar coordinates (ro, ϕo), (rb, ϕb), and (rd, 

ϕd), respectively. At each position ro⊥ in the object there is a sphere parameterized by a unit 

vector so with spherical coordinates (ϑ, φ).
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Fig. 2. 
Renormalized paraxial dipole point spread function as a function of the scaled radial 

coordinate νcr, the dipole inclination angle ϑ, and NA/no. For small numerical apertures 

(left) the irradiance pattern created by axial dipoles (red) is small compared to transverse 

dipoles (black), but the relative contribution of axial dipoles increases with the numerical 

aperture (see red lines from left to right). Additionally, we plot the monopole point spread 

function (green) and observe that the paraxial monopole and dipole models are identical for 

transverse dipoles (the green and black lines are coincident).
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Fig. 3. 
Comparison of paraxial models for monopole radiators a) and dipole radiators b)–d). a) 

Monopole radiators fill the pupil plane with a uniform scalar field which gives rise to an 

Airy disk on the detector. b) A transverse dipole radiator also creates an Airy disk, but the 

pupil plane is filled with a uniform vector field. c) An axial dipole radiator creates a radial 

electric field pattern in the back focal plane that creates a jinc1
2 r  pattern on the detector. d) 

Dipoles that are not transverse or axial still create radially symmetric irradiance patterns 

under the paraxial approximation. Fields from transverse dipoles are real and even while 

fields from axial dipoles are real and odd, which causes a relative π/2 phase shift for the 

fields on the detector. This phase shift means that the fields from transverse and axial 

components of the dipole do not interfere, which causes radially symmetric irradiance 

patterns.
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Fig. 4. 
Left: A spatially and angularly sparse phantom—uniformly spaced single dipoles with 

varying orientations (increasing ϑ from left to right and increasing φ from bottom to top). 

White crosses mark the positions of the dipoles. Center: Scaled irradiance for an imaging 

system with NA = 0.75, λ = 500 nm, and no = 1.33 sampled at 20× the Nyquist rate. Right: 
x profiles through the scaled irradiance. The response is independent of the azimuth angle 

and strongly dependent on the inclination angle.
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Fig. 5. 
Dipole spatial transfer function as a function of the scaled spatial frequency ν/νc, the dipole 

inclination angle ϑ, and NA/no. For small numerical apertures (left) the dipole spatial 

transfer function for axial dipoles (red) is small compared to transverse dipoles (black), but 

the relative contribution of axial dipoles increases with the numerical aperture (see red lines 

from left to right). The spatial dipole transfer function of axial dipoles is negative at high 

spatial frequencies because the central minimum of the axial dipole point spread function 

corresponds to the position of the dipole. Equivalently, a high-spatial-frequency pattern of 

axial dipoles will generate an irradiance pattern where the minimum irradiance corresponds 

to the peak of the axial dipole emission density. Additionally, we plot the monopole transfer 

function (green) and observe that the paraxial monopole and dipole models are identical for 

transverse dipoles (the green and black lines are coincident).
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Fig. 6. 
Left: A spatially dense and angularly sparse phantom—uniformly spaced disks with varying 

size (increasing D from bottom to top) and dipole orientation (increasing ϑ from left to 

right) Center: Scaled irradiance for an imaging system with NA = 0.75, λ = 500 nm, and no 

= 1.33 sampled at 20× the Nyquist rate. Right: x profiles through the scaled irradiance. 

Larger disks generate increasingly uniform irradiance patterns with fewer details that may 

indicate the orientation of fluorophores.
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Fig. 7. 
Paraxial dipole angular transfer function in terms of a scaled radial detection coordinate νcr, 
the spherical harmonic degree ℓ, and NA/no. Angularly uniform distributions of dipoles ℓ = 0 

generate a spatial pattern that is similar but not identical to the Airy disk created by a 

monopole (green), and this discrepancy increases with the numerical aperture. ℓ = 2 

distributions have a negative response because Y 2
0 s  is negative for transverse directions. As 

the numerical aperture increases, the relative contribution of positive axial dipoles in the ℓ = 

2 distribution increases.
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Fig. 8. 
Left: A spatially sparse and angularly dense phantom—uniformly spaced double cone 

distributions of fluorophores with varying central direction (increasing ϑ′ from left to right) 

and varying cone half-angle (increasing ∆ from bottom to top). Center: Scaled irradiance 

for an imaging system with NA = 0.75, λ = 500 nm, and no = 1.33 sampled at 20× the 

Nyquist rate. Right: x profiles through the scaled irradiance. Small cone angles have 

irradiance patterns that vary with the central direction, while larger cones angles have 

increasingly uniform irradiance patterns that hide angular information.
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Fig. 9. 
Spatio-angular dipole transfer function as a function of the scaled spatial frequency ν/νc, the 

spherical harmonic degree ℓ, and NA/no. When the numerical aperture is small the transverse 

dipoles contribute the most to the signal which gives rise to a positive ℓ = 0 component and a 

negative ℓ = 2 component. As the numerical aperture increases, the relative contribution of 

axial dipoles increases and the ℓ = 2 component becomes less negative. Additionally, we plot 

the monopole transfer function (green) and observe that the ℓ = 0 term is similar but not 

identical to the monopole transfer function, and this discrepancy increases with the 

numerical aperture.
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Fig. 10. 
Left: A spatially and angularly dense phantom—uniformly spaced disks with varying size 

(increasing D from bottom to top) and double cone half angle (increasing ∆ from left to 

right) Center: Scaled irradiance for an imaging system with NA = 0.75, λ = 500 nm, and no 

= 1.33 sampled at 20× the Nyquist rate. Right: x profiles through the scaled irradiance.
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Table 1.

Summary of relevant quantities for in-focus fluorescence microscopy under the monopole approximation—see 

[1] for derivations. ℱℝ2 denotes a two-dimensional Fourier transform.

Quantity Symbol Relationships

Monopole emission density f ro⊥ —

Monopole spectrum F(v) = ℱℝ2 f ro⊥

Monopole coherent spread function c rd − ro⊥ —

Monopole coherent transfer function C(τ) = ℱℝ2 c rd − ro⊥

Monopole point spread function ℎ rd − ro⊥ = c rd − ro⊥
2

Monopole transfer function H(v) = ℱℝ2 ℎ rd − ro⊥

= ∫ℝ2dτ C τ C∗ τ − ν

Scaled irradiance g(rd) = ∫ℝ2dro⊥ℎ rd − ro⊥ f ro⊥

Scaled irradiance spectrum G(v) = ℱℝ2 g rd = H ν F ν
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Table 2.

Summary of relevant quantities for in-focus spatio-angular dipole imaging—see [1] for derivations. ℱℝ2

denotes a two-dimensional Fourier transform, and ℱS2 denotes a spherical Fourier transform.

Quantity Symbol Relationships

Dipole emission density f ro⊥, so —

Dipole spatial spectrum F ν, so = ℱℝ2 f ro⊥, so
Dipole angular spectrum Fl

m ro⊥ = ℱS2 f ro⊥, so

Dipole spatio-angular spectrum Fl
m ν = ℱℝ2 Fl

m ro⊥ = ℱS2 F ν, so

Dipole coherent spread function c rd − ro⊥, so —

Dipole coherent transfer function C τ, so = ℱℝ2 c rd − ro⊥, so
Dipole point spread function ℎ rd − ro⊥, so = c rd − ro⊥, so

2

Dipole spatial transfer function H ν, so = ℱℝ2 ℎ rd − ro⊥, so
= ∫ℝ2dτ C τ, so C† τ − ν, so

Dipole angular transfer function Hl
m rd − ro⊥ = ℱS2 ℎ rd − ro⊥, so

Dipole spatio-angular transfer function Hl
m ν = ℱℝ2 Hl

m rd − ro⊥ = ℱS2 H ν, so

Scaled irradiance g(rd) = ∫S2dso∫ℝ2dro⊥ℎ rd − ro⊥, so f ro⊥, so
= ∑lm ∫ℝ2dro⊥Hl

m rd − ro⊥ Fl
m ro⊥

Scaled irradiance spectrum G(v) = ℱℝ2 g rd
= ∫S2dso H ν, so F ν, so
= ∑lmHl

m ν Fl
m ν
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