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Abstract

The development of chemotherapies against eukaryotic pathogens is especially challenging

because of both the evolutionary conservation of drug targets between host and parasite,

and the evolution of strain-dependent drug resistance. There is a strong need for new non-

toxic drugs with broad-spectrum activity against trypanosome parasites such as Leishmania

and Trypanosoma. A relatively untested approach is to target macromolecular interactions

in parasites rather than small molecular interactions, under the hypothesis that the features

specifying macromolecular interactions diverge more rapidly through coevolution. We com-

puted tRNA Class-Informative Features in humans and independently in eight distinct

clades of trypanosomes, identifying parasite-specific informative features, including base

pairs and base mis-pairs, that are broadly conserved over approximately 250 million years

of trypanosome evolution. Validating these observations, we demonstrated biochemically

that tRNA:aminoacyl-tRNA synthetase (aaRS) interactions are a promising target for anti-

trypanosomal drug discovery. From a marine natural products extract library, we identified

several fractions with inhibitory activity toward Leishmania major alanyl-tRNA synthetase

(AlaRS) but no activity against the human homolog. These marine natural products extracts

showed cross-reactivity towards Trypanosoma cruzi AlaRS indicating the broad-spectrum

potential of our network predictions. We also identified Leishmania major threonyl-tRNA

synthetase (ThrRS) inhibitors from the same library. We discuss why chemotherapies tar-

geting multiple aaRSs should be less prone to the evolution of resistance than monothera-

peutic or synergistic combination chemotherapies targeting only one aaRS.
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Author summary

Trypanosome parasites pose a significant health risk worldwide. Conventional drug devel-

opment strategies have proven challenging given the high conservation between humans

and pathogens, with off-target toxicity being a common problem. Protein synthesis inhib-

itors have historically been an attractive target for antimicrobial discovery against bacteria,

and more recently for eukaryotic pathogens. Here we propose that exploiting pathogen-

specific tRNA-synthetase interactions offers the potential for highly targeted drug discov-

ery. To this end, we improved tRNA gene annotations in trypanosome genomes, identi-

fied functionally informative trypanosome-specific tRNA features, and showed that these

features are highly conserved over approximately 250 million years of trypanosome evolu-

tion. Highlighting the species-specific and broad-spectrum potential of our approach, we

identified natural product inhibitors against the parasite translational machinery that

have no effect on the homologous human enzyme.

Introduction

Developing therapies against eukaryotic pathogens has proven challenging due to high conser-

vation between the infectious agent drug target and their host counterpart [1]. Of particular

concern is the trypanosome parasite Leishmania that infects upwards of 2 million individuals

every year and accounts for more than 50,000 deaths annually [2]. While current treatments of

amphotericin B and miltefosine are commonly prescribed to patients with leishmanial infec-

tions, they have undesired off-target cytotoxicity, leading to poor patient compliance and low-

dose administration [3], and ultimately contributing to the rise of strain-dependent drug resis-

tance [4,5]. There is a strong need for new nontoxic drugs with broad-spectrum activity

against different species of Leishmania and other trypanosomes [6,7].

Given their essential role in protein synthesis, aminoacyl-tRNA synthetases (aaRSs) have

been an attractive target for antimicrobial therapeutics [8]. AaRSs are essential enzymes found

in all domains of life that are responsible for the correct pairing of free amino acids in the cell

to their cognate tRNA [9]. AaRSs perform their activity in two steps: first, a free amino acid is

activated by the enzyme through the hydrolysis of ATP, forming an aminoacyl-adenylate. Sec-

ond, the amino acid is transferred to its corresponding tRNA before being released into the

aminoacyl-tRNA pool [9]. Given the complex pool of free amino acids and uncharged tRNAs

in the cell, aaRSs have co-evolved discrete mechanisms to ensure mutually exclusive amino

acid activation and cognate tRNA recognition [10]. The sequence/structural determinants (or

anti-determinants) that lead to accurate aaRS-tRNA recognition are also known as the tRNA

identity elements. The primary tRNA identity elements that aid in cognate aminoacylation

have been extensively studied for several decades [11,12]. For example, across all three

domains of life, all tRNAAla isoacceptors contain a conserved G:U base pair in the acceptor

stem that is recognized by alanyl-tRNA synthetase (AlaRS), leading to accurate Ala-tRNAAla

synthesis in the cell [13–15].

While some aaRS inhibitors have successfully made it to the clinic, including the IleRS-tar-

geting mupirocin [16], ProRS inhibitor halofuginone [17], and the LeuRS inhibitor tavaborole

[18,19], there are likely many potential aaRS drugs still to be identified. Target-based

approaches relying on structural data and sequence identity have previously been used to try

and predict novel trypanosome aaRS drug targets [20–22] with some recent success [23].

While structure-based approaches have their utility, exploiting tRNA-aaRS interactions has

been under-explored for its therapeutic potential. In particular, while interactions with small
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molecules are expected to be quite conserved across species, the evolutionary diversification of

tRNA identity element interactions through coevolution with aaRSs opens the possibility of

greater species-specific inhibition.

While major identity elements have been experimentally characterized for many aaRS-

tRNA pairs in various model systems, much less is known about how tRNA identity elements

evolve and diverge over the Tree of Life. Recent theoretical advances explain how tRNA iden-

tity elements can evolve and diverge in a phylogenetically informative way, even while under

strong selective constraints [24]. In earlier work, we developed a bioinformatic method to pre-

dict tRNA identity elements [25]. Our bioinformatic predictions are called Class-Informative

Features (CIFs), based on the statistic of structure-conditioned Shannon Information [26],

and visualized through graphs called Function Logos [25]. In later work, we applied two other

statistics, Information Difference and Kullback-Leibler Divergence, to facilitate pairwise com-

parisons of CIFs between two taxa, in two new visualizations called Information Difference

(ID) logos and Kullback-Leibler Divergence (KLD) logos, respectively [27]. ID logos visualize

gains and losses of CIFs, which in this work we call gains and losses of information, while KLD

logos visualize the functional conversion of CIFs from one functional type of tRNA to another,

which in this work we call change of functional information. In the present work, we integrate

together all three statistics (structure-conditioned information about function, ID, and KLD)

and apply it to the problem of identifying parasite-specific tRNA identity elements. Our

approach visualizes functionally informative features in parasite tRNAs that have either gained

or retained functional information relative to humans, altered functional associations, or both,

since divergence from their common ancestor with humans.

Our modeling approach integrates genomic tRNA sequence variation across multiple

tRNA gene families of different functions, revealing potentially useful information about the

specification of substrate identity for all aaRSs simultaneously. The multiplicity of aaRSs in

cells provides multiple potential targets for inhibition of essential parasite enzymes, opening

the door to improved combination chemotherapies. Advances in systems biology and chemo-

genomics have fueled interest in combination chemotherapies to benefit from synergistic drug

interactions [28–31] and combat the evolution of resistance [32]. Combination chemothera-

pies are naturally effective, for example, in the pathogenic defenses of arthropods [33] and

have yielded exciting antifungal [34] and antihelminthic [35] therapies. Additionally, artemisi-

nin-based combination therapies (ACTs) are the primary treatment plan for Plasmodium fal-
ciparum malaria infections [36,37].

Here, we report our improved annotation of TriTrypDB genomes and new methodologies

for predicting conserved identity elements across biological domains. As proof of principle, we

screened for identity element divergence between trypanosomes and humans to search for

new therapeutic targets for these eukaryotic pathogens. Validating our computational

approaches, we found several natural product fractions that inhibit Leishmania major AlaRS

activity but have no effect on the homologous human enzyme. The fractions we identified also

have inhibitory activity against Trypanosoma cruzi AlaRS, showing that our approach holds

promise towards identifying new broad-spectrum anti-trypanosomal therapies.

Methods

Annotation, clustering and filtering of tRNA genes in TriTrypDB genomes

We downloaded data for 46 genome assemblies from TriTrypDB version 41 released Decem-

ber 5th, 2018. We ran tRNAscan-SE v.2.0.0 installed via BioConda in February, 2019 [38] and

Aragorn v.1.2.38 [39] using option “-i116” (implying a maximum intron length in search tar-

gets of 116 base-pairs) on this data. We unified gene records from the two finders if they

Targeting tRNA-synthetase interactions in eukaryotic pathogens

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0007983 February 27, 2020 3 / 30

https://doi.org/10.1371/journal.pntd.0007983


overlapped by at least one base-pair, had consistent strand-orientations and end-displace-

ments less than or equal to 4 bp. To independently identify initiator tRNA genes, we computed

edit distances [40] of CAT-anticodon-containing genes implemented in the function stringdist

() from its R package v. 0.9.5.5 and clustered them agglomeratively using Ward’s minimum

variance method [41] implemented in the function hclust() with method ward.D2 from the

base R stats package, examining clusters for the initiator-distinguishing features described in

[42]. All statistical analyses and sequence processing for annotation and clustering were car-

ried out in R v.3.6 [43].

To further investigate these gene records, we examined their genetic clustering in Tri-

TrypDB genomes as defined by co-occurrence within a distance of 1000 bp on either strand.

We computed gene function content distances of tRNA gene-clusters as pairwise Jaccard dis-

tances considering gene clusters as sets of functions using stringdist() and clustered them with

Ward’s method using function hclust() with method ward.D2. We finalized our annotation

union gene-set by retaining 3616 genes that had an Aragorn score above 106 bits or a tRNAs-

can-SE2 score above 49 bits, and reannotating sequences as described in the Results.

Prediction of divergent tRNA Class-Informative Features (CIFs) in

humans and parasites

To compare CIFs between TriTrypDB genomes and humans and to have sufficient data to

estimate trypanosome CIFs, we defined eight phylogenetic clades for 39 of the 46 trypanosome

genomes as shown in Table 1. These clades were based on a composite of phylogenetic results

in the literature [44–47]. CIFs were subsequently estimated for each clade independently, by

pooling tRNA genes within clades. We removed two incomplete genomes from analysis, T.

rangeli SC58 and T. cruzi CL-Brenner that had fewer than half the number of tRNA genes

identified in any other genome and missed more than two functional classes. We filtered the

gene annotation union gene set of 3616 genes, removing selenocysteine genes, pseudogenes,

truncated genes, and genes of ambiguous function, leaving 3488 high-confidence functionally

annotated gene records from 44 genomes in TriTrypDB v.41 for alignment. To this set we

added 431 high-confidence human tRNA gene records downloaded from GtRNADB [48] on

May 15, 2019 (in the file “hg38-tRNAs.fas”), excluding two human selenocysteine tRNA genes,

to yield a grand total of 3919 tRNA genes from 45 genomes for structural alignment. We

aligned this alignment gene-set of 3919 genes using COVEA v.2.4.4 [49] to the eukaryotic

tRNA covariance model supplied with tRNAscan-SE v.1 [50]. The output alignment was man-

ually edited in SEAVIEW [51] to correct the misalignment of 595 human and trypanosome

tRNA genes (almost exclusively of type tRNALeu and tRNASer) at Sprinzl coordinates 45 and

47 and exclude majority-gap/insertion and variable-arm-containing sites (Sprinzl coordinates

are a standardized coordinate system that encodes both the consensus universal secondary

structure of tRNAs, and conserved, more functionally-specific structures like the long variable

arms of tRNALeu and tRNASer [52]). Sequences were further processed with the FAST toolkit

to partition genes into clades [53]. After excluding an additional 464 genes from five genomes

not included in our defined clades, 3455 aligned trypanosome and human genes remained.

More statistics on the CIF estimation gene sets by clade are shown in Table 1 and additional

notes and code to reproduce the data workflow are provided in Supplementary Online Materi-

als (Code and Data).

For each clade independently, we computed function logos [25], Information Difference

logos and Kullback-Leibler Divergence logos [27] with a newly written Python 3 program

tSFM (tRNA Structure-Function Mapper) v0.9.14 available on github (https://github.com/

tlawrence3/tsfm), which we describe briefly here, and more fully in a forthcoming publication.
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tSFM provides a command-line user interface for estimating function, ID, and KLD logos

using our published methods. tSFM additionally calculates tRNA CIFs for secondary-structure

feature pairs, in addition to single-site features. Class-Informative Feature Pairs are elements

of the Cartesian product set C = f × f × BP, where f = {A,C,G,U,−} is the set of single-site fea-

tures we consider and BP is the set of structurally-paired Sprinzl Coordinates involved in

potential base-pairing interactions along the four arms of the planar clover-leaf consensus sec-

ondary structure of tRNAs [52]. We ran tSFM with option “-x 1” corresponding to computing

exact expected entropies for samples of size one by the method of [54] or by the Bayesian

Nemenman–Shafee–Bialek (NSB) entropy estimator [55] otherwise.

Briefly, we computed the gain-of-information of a CIF in a particular functional class and

trypanosome clade as its information difference in bits, with that clade as foreground and

humans as background, multiplied by the normalized ratio of posterior-to-prior odds of the

Table 1. Clades and genomes analyzed, with statistics on CIF estimation gene sets.

Clade Genome Assemblies Total Genes Mean Genes/

Genome

(Std. Dev.)

Grand Mean

%G

Grand Mean %C Grand Mean %T

Humans Hg38 431 431 32.5 25.7 23.0

L. major
Clade (n = 8)

1. L. major Friedlin

2. L major LV39c5

3. L. major SD75

4. L. tropica L590

5. L. aethiopica L147

6. L. gerbilli LEM452

7. L. turanica LEM423

8. L. arabica LEM1108

664 83

(0.6)

31.9 26.1 23.4

L. infantum
Clade (n = 3)

1. L, donovani BHU1220,

2. L. donovani BPK282A1

3. L. infantum JPCM5

250 83.33 (0.2) 31.9 26.1 23.3

L. mexicana
Clade (n = 2)

1. L. amazonensis MHOMBR71973M2269

2. L. mexicana MHOMGT2001U1103

148 74

(4.7)

31.8 25.9 23.4

Viannia

Subclade (n = 4)

1. L. braziliensis MHOMBR75M2904

2. L. braziliensis MHOMBR75M2903

3. L. panamensis MHOMPA94PSC1

4. L. panamensis MHOMCOL81L13

327 81.75 (2.5) 31.8 26.1 23.4

L. enriettii
Clade (n = 2)

1. Leishmania sp MARLEM2494

2. Leishmania enriettii LEM3045

160 80

(0.5)

31.9 25.9 23.4

Leptomonas/
Crithidia Clade (n = 3)

1. Crithidia fasciculata CfCl

2. Leptomonas seymouri ATCC30220

3. Leptomonas pyrrhocoris H10

300 100

(2.4)

31.8 26.0 23.3

American Trypanosoma
(n = 11)

1. T. grayi ANR4

2. T. cruzi CL Brener Esmeraldo-like

3. T. cruzi CL Brener Non-Esmeraldo-like

4. T. cruzi cruzi Dm28c

5. T. cruzi Dm28c

6. T. cruzi Esmeraldo

7. T. cruzi JRcl4

8. T. cruzi marinkelleiB7

9. T. cruzi SylvioX10-1

10. T. cruzi SylvioX10-1-2012

11. T. cruzi Tulacl2

773 70.27

(5.7)

32.0 26.3 23.0

African Trypanosoma
(n = 6)

1.T. bruceigambiense DAL972

2.T. brucei Lister427

3.T. brucei TREU927

4.T. evansi STIB805

5.T. congolense IL3000,

6. T.vivax Y486

402 67

(2.1)

32.2 26.1 23.1

https://doi.org/10.1371/journal.pntd.0007983.t001
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CIF in that functional class in trypanosomes and humans, corresponding to letter heights in

ID logos, and measured in bits. We computed change-of-function of a CIF in a particular

functional class and trypanosome clade as its Kullback-Liebler Divergence in bits, with that

clade as foreground and humans as background, multiplied by the normalized ratio of poste-

rior-to-prior odds of the CIF in that functional class, corresponding to letter heights in KLD

logos and measured in bits. To avoid division by zero when calculating KLD, we added pseu-

docounts to either the background or the foreground posterior distributions when one or

more of the 21 functional classes was not observed. When calculating the normalized ratio of

posterior-to-prior odds for a specific functional class, we only added pseudocounts to the

background posterior distribution. Furthermore, to avoid inaccuracies, we defined the KLD of

a feature to be zero when its frequency in the background is less than or equal to five.

We wrote a custom script in R 3.6 to visualize CIFs within each cluster for each functional

class of tRNA in a structural context, and color the parasite CIFs according to whether those

CIFs have gained information or changed functional information relative to human since

divergence from their common ancestor. All data and scripts are provided as supplementary

data.

AaRS cloning and protein purification

Leishmania major (Lm) AlaRS and Lm ThrRS-encoding genes were codon optimized, synthe-

sized, and sub-cloned into pUC57 (GenScript). Engineered flanking NdeI and SmaI restriction

sites were used to clone the aaRS genes into pTYB2, creating in-frame C-terminal intein

fusions. The resulting expression vectors were transformed into the E. coli expression strain

BL21 (DE3). The gene encoding Trypanasoma cruzi (Tc) AlaRS was codon optimized, synthe-

sized, and directly cloned into NdeI and XhoI cut sites in the pET21b expression vector (Gen-

Script). The resulting plasmid expressed Tc AlaRS under T7 control and was in-frame with a

C-terminal 6x-His tag. The pET21b-Tc AlaRS vector was transformed into the E. coli expres-

sion strain XJb (DE3) (Zymo Research).

Both Lm AlaRS and ThrRS were purified by growing cells to an OD600 of ~0.5 and cooling

on ice for 30 minutes. Protein induction was initiated by the addition of IPTG to a final con-

centration of 500 μM and cells continued to grow at 16˚C for 16 hours. Cells were harvested

by centrifugation and lysed by sonication in Buffer A (25 mM HEPES pH 7.2, 500 mM NaCl, 3

mM DTT) with cOmplete mini protease inhibitor (Sigma) added. Clarified lysate was added to

a chitin resin column (NEB) and washed with Buffer A. The intein tag was cleaved by the incu-

bation of Buffer B (25 mM HEPES pH 7.2, 100 mM NaCl, and 100 mM DTT) on the resin bed

overnight at 4˚C. Protein was dialyzed in two stages in Buffer C (25 mM HEPES pH 7.2, 30

mM NaCl, 6 mM BME, and 10% - 50% glycerol).

Trypanasoma cruzi (Tc) AlaRS-expressing cells were grown to an OD600 ~0.3 and then

cooled to 18˚C and induced with 500 μM IPTG. Cells were grown for an additional 16 hours

at 18˚C before harvesting by centrifugation. Cell pellets were re-suspended in lysis buffer

[Buffer I (500 mM Tris-HCl pH 8.0, 300 mM NaCl, and 10 mM imidazole) with cOmplete

mini protease inhibitor (Sigma)], sonicated, clarified, and cell lysate passed over a TALON

metal affinity column (Takara). After washing the column with Buffer I, protein was eluted

with Buffer II (Buffer I with 250 mM imidazole). Protein was dialyzed in two stages to remove

imidazole and to store the enzyme in 50% glycerol.

Human AlaRS was expressed in E. coli Rosetta (DE3) (Novagen) from pET21a which

encodes the human AlaRS gene in-frame with a C-terminal 6x-His tag (expression plasmid

provided by Karin Musier-Forsyth, Ohio State University). Cells were grown to an OD600 of

~0.5 and cooled on ice for 30’ before inducing expression with 500 μM IPTG. Upon induction,
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cells grew for an additional 16 hours at 20˚C before harvesting. Human AlaRS was purified as

described above with the addition of 5 mM β-mercaptoethanol to both Buffer I and Buffer II.

All enzyme concentrations were determined by active site titration [56,57] using [14C]-alanine

(Perkin Elmer) and [14C]-threonine (American Radiochemicals).

Preparation of in vitro transcribed tRNA

Lm tRNAAla (chr11. trna1-AlaCGC), Lm tRNAThr (chr23. trna6-ThrTGT), and Tc tRNAAla

(TctRNA-Ala.03) DNA sequences were cloned into EcoRI and XbaI restriction sites in pUC18

by slow cooling complementary synthetic DNA oligos and ligation as previously described

[58]. PCR was used to amplify 50 μg DNA template from the pUC18-tRNA plasmids to be

used for T7 runoff transcription. In vitro transcription was performed with 40 mM Tris-HCl

pH 8, 2 mM spermidine, 22 mM MgCl2, 5 mM DTT, 50 μg/mL BSA, 4 mM NTPs, 20 mM

5’GMP, 20 U Protector RNase Inhibitor, 2 U pyrophosphatase, DNA template, and T7 RNAP

at 42˚C for 16 hours. Transcription products were purified on a Diethylaminoethyl (DEAE)

Sephacel (GE Healthcare) column in 20 mM Tris-HCl pH 8.0, 5 mM MgCl2, and 250 mM

NaCl. tRNA was eluted from the resin with 1 M NaCl. The RNA was precipitated overnight at

-20˚C in 1/10th volume sodium acetate and 3x volume ethanol and re-suspended in RNase-

free H2O.

Marine natural product library

The marine natural products screening library comprises 5,304 fractions from organic extracts

of marine-derived Actinobacterial fermentations (1 litre culture, following our standard proto-

col [59]). All fractions are stored as concentrated stock solutions in DMSO in standard 96-well

format. The library is comprised of extracts of marine sediment-derived bacterial strains, con-

taining a cross section of gram-positive genera and enriched in Actinobacterial strains, hand-

collected from over 70 discrete dive sites on the West coast of the United States from the Chan-

nel Islands of Southern California to the San Juan Islands in Northern Washington.

Crude extracts were fractionated in to six sub-fractions on Seppak C18 cartridges using a

stepwise elution profile (20, 40, 60, 80, 100% MeOH/ H2O, 100% EtOAc). The resulting frac-

tions were solubilized in DMSO (1 mL per fraction), 4 μL aliquots diluted 1:5 in DMSO, and

arrayed in 384 well format (17 x 384 well plates). The MNP library screened in this assay con-

sisted of a focused group of bacterial extract pre-fractions that had already demonstrated activ-

ity against Leishmania in a prior whole cell assay against L. donovani amastigotes. The MNP

library was also counter-screened in a mammalian system against HeLa cells [59]. Fractions

with acute cell cytotoxicity were removed from the screening library, resulting in a set of test

extracts with demonstrated activity against L. donovani and low/ no cytotoxicity against HeLa

cells. Following primary screening against L. donovani amastigotes, 120 active fractions were

arrayed as serial dilutions (8 x 2-fold dilutions; 50–0.4 μM) in 96 well format for aaRS

screening.

Screen for aminoacylation inhibitors

Serial dilutions from the marine natural product (MNP) library were screened using the fol-

lowing protocol. Aminoacylation reactions were performed at room temperature using 10

mM DTT, 8 mM ATP, 5 μM tRNA, 60–80 μM [14C]-Ala or [14C]-Thr, 100–500 nM aaRS, and

DMSO or MNP samples. After incubating the reaction for either 15 or 20 minutes, 1 μL of the

reaction was spotted on 5% pre-soaked TCA 3 MM Whatman filter paper. The precipitated

tRNA-bound filter paper was washed 3x with 5% TCA, washed once with ethanol, and dried.

The dried filter paper was exposed overnight on a phosphor imager screen and imaged the
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following day. Qualitatively, the phosphor image screen was examined for a change in signal

intensity relative to the DMSO control; a decrease in phosphor image intensity indicates par-

tial or full inhibition of the reaction in the presence of the inhibitor. While active concentra-

tions were unknown for each of the MNP mixes, the serial dilution helped prevent false-

positive identification. All lead candidates from the preliminary screen were confirmed using

similar reaction conditions; the reactions were monitored over a time course and placed at

37˚C. Samples were quantified using a scintillation counter.

Pyrophosphate exchange

Amino acid activation was monitored using ATP/PPi exchange as previously described [60].

Reactions were performed at 37˚C in 100 mM HEPES pH 7.2, 30 mM KCl, 10 mM MgCl2, 2

mM NaF, 2 mM ATP, 2 mM [32P]-PPi (Perkin Elmer), 90 μM alanine, 160 nM AlaRS, and

DMSO or aaRS inhibitor. At increasing time points, aliquots of the reaction mixture were

quenched in a charcoal solution containing 1% activated charcoal, 5.6% HClO4, and 75 mM

PPi. Quenched reactions were vacuum filtered on to 3MM Whatman filter discs, washed three

times with 5 mL of water and once with 5 mL of ethanol. After drying the filter discs, charcoal-

bound radiolabeled ATP was quantified on a scintillation counter. Relative endpoint amino

acid activation was determined by comparing the inhibitor-treated enzymes to their respective

DMSO control samples.

Results

Custom annotation of tRNA genes and gene clusters in TriTrypDB

genomes

We obtained 4381 unified gene records from the raw output of two tRNA gene-finders, Ara-

gorn and tRNAscan-SE v.2.0, to TriTrypDB v.41. Of these, 3597 were found by both gene-

finders, 750 were found by Aragorn only, and 34 were found by tRNAscan-SE 2.0.0 only. We

identified the same 76 genes as initiator tRNA genes, using either tRNAscan-SE 2.0.0’s profile-

based predictions or our own edit-distance-based clustering approach, by finding the unique

set of genes carrying conserved initiator tRNA features as described in [42].

To further refine the final annotated gene set, we identified tRNA gene clusters in Tri-

TrypDB genomes using a maximum intergenic distance criterion of 1000 bp on either strand.

Doubling this distance criterion did not substantially increase cluster number or size. After fil-

tering 4381 gene records by their gene-finder scores as described below, 3616 high-confidence

gene records remained, of which 77% occur in clusters of size two or greater (Fig 1). The larg-

est tRNA gene clusters were of size ten, accounting for 9% of total genes. We used Jaccard dis-

tance as a gene functional content distance to hierarchically cluster tRNA gene clusters with

similar gene functional contents, and found that distance cutoffs between 0.680 and 0.692

defined intuitively reasonable similar, distinct, and putatively homologous tRNA gene cluster

variant groups that we found to be conserved either within each of the Leishmania and Trypa-
nosoma genera, or across both genera, with substantial evidence of evolution in gene organiza-

tion and content of gene clusters within groups through gene duplication, divergence,

inversion and other changes (S1–S3 Tables). Some evidence for whole tRNA gene cluster

duplication and paralogy within our gene cluster variant groups (labeling variants by the con-

catenation of their tRNA gene function / aminoacylation identities in gene order, using

IUPAC one-letter-codes for amino acids to stand for identities) include one gene cluster vari-

ant DSA, with a frequency of three in the genome of T. cruzi DM28c and a frequency of two in

the genome of T. cruzi DM28c, and nine other cluster variants with frequencies of two in one
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or more genomes, including tRNA gene cluster variants ASD, FEV, NARK, and VYMEMSL

occurring twice in the genome of T. cruzi Tulacl2, variants PTN and VEF occurring twice in

the genome of T. cruzi DM28c, variant EVRH occurring twice in L. arabica LEM1108, variant

FEV occurring twice in T. cruzi SylvioX10-1, variant GAL in L. tropica L590, and variant HEF

in T. congolense IL3000. The conservation of tRNA gene cluster variants and groups spanning

TriTrypDB genome assemblies of different genera is indisputable, but further statistical and

phylogenetic characterization of them may best be undertaken via long-read genome rese-

quencing, as tRNA gene clusters can be difficult to assemble reliably from short-read sequenc-

ing data.

Using the similarities of tRNA gene clusters across genomes, we found putative homologs

for some of the 45 functionally ambiguous but high-scoring genes marked as pseudogenes or

truncated by tRNAscan-SE 2.0.0 as well as some genes detected only by Aragorn. With these

results in mind, we plotted the densities of gene-finder scores according to whether they were

found by both or only one gene-finder, showing clear evidence of a small fraction of Aragorn-

only genes with high scores, making up about 1% of our total finalized gene set (Fig 2 and S4

Table).

Fig 1. tRNA gene cluster size distribution for Trypanosoma, Leishmania, and other TriTrypDB version 41 genomes. Green labels at tops of stacks show

percentages of total tRNA genes in clusters of given length. Numbers within each bar show frequencies of gene clusters of that length.

https://doi.org/10.1371/journal.pntd.0007983.g001

Targeting tRNA-synthetase interactions in eukaryotic pathogens

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0007983 February 27, 2020 9 / 30

https://doi.org/10.1371/journal.pntd.0007983.g001
https://doi.org/10.1371/journal.pntd.0007983


Based on this evidence, we retained 3616 genes from 46 TriTrypDB genome assemblies that

had an Aragorn bit-score of at least 107 or a tRNAscan-SE 2.0 bit-score of at least 50, including

36 genes found by Aragorn only and 1 gene found by tRNAscan-SE 2.0 only. These score cut-

offs separated Aragorn-only genes within conserved gene clusters from singletons, which had

lower scores (S1 Fig). At time of publication, a more recent version of tRNAscan-SE, 2.0.5,

could find 24 of the 36 high-scoring ara-only genes in our union set. The 24 additionally found

genes were identical or had only 1 or 2 base differences in sequence to other high-scoring

genes in our defined intersection set. However, we observed them to lie either near the ends or

close to ambiguous segments (strings of Ns) in the genome assembly sequences.

The median number of genes per genome in our raw union annotation gene set was 82.

Among these were 45 functionally ambiguous but high scoring genes, including 2 with identity

unassigned by both gene-finders, 6 marked as pseudogenes or truncated by tRNAscan-SE

2.0.0, 4 containing sequence ambiguities, and 33 with conflicting structural and anticodon

annotations, including ten intron-containing genes predicted as tRNATyr genes by tRNAscan-

SE and tRNAAsn genes by Aragorn, all from genomes in the American Trypanosoma clade. We

annotated these ten as tRNATyr genes following tRNAscan-SE 2.0.0, which are known to con-

tain introns in that clade [61], as this helped complete the sets of functional types for 8

genomes in that clade (S2 Fig). After score filtering, three genome assemblies that were not

excluded from further analysis remained incompletely annotated (S2 Fig): T. Cruzi dm28c

(missing a gene for tRNAPhe), T. congolense IL3000 (missing genes for tRNAAsp and tRNASer)

and T. vivax Y486 (missing a gene for tRNATyr). Candidate genes were available in our raw

Fig 2. Density plots of gene-finder scores according to source of detection.

https://doi.org/10.1371/journal.pntd.0007983.g002
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union annotation gene-set to complement some but not all of the 46 genomic gene sets that

were missing classes (S2 Fig), including one Aragorn-only candidate gene of 100 bits for

tRNATyr in T. cruzi MarinkelleiB7, between 5–8 low- or marginal-scoring genes for tRNASer in

T. congolense IL3000 (3 from tRNAscan-SE2 with bit scores between 22 and 25 and 5 poten-

tially overlapping genes predicted from Aragorn with scores between 100 and 106), a tRNAs-

can-SE2-only candidate gene for tRNATyr scoring 36 bits in T. vivax Y486, and an Aragorn-

only candidate gene for tRNAAsp scoring 100 bits in P. confusum. S4 Table shows structural

and functional statistics on our score-filtered annotation gene sets. Our score-filtered union

annotation gene-set was further filtered and pooled into defined clade gene-sets as described

in the Methods section. Table 1 shows mean and standard deviations of tRNA gene number

and pooled composition statistics by clade. Every clade contained genes for all 21 functional

types excluding tRNASeC (Table 1 and S2 Fig). S5 Table gives gene numbers and compositions

of gene sets by individual genome. Table 1 and S5 Table show that the overall divergence in

gene compositions is not great, and follows phylogenetic expectations based on phylogeny.

The gene compositions of the Leishmania clades are quite similar, and different from those of

both humans and Trypanosoma. Human gene composition is most divergent, with African

Trypanosoma gene composition second most divergent from those of Leishmania. American

and African Trypanosoma compositions are less divergent from each other. However, Trypa-
nosoma and human tRNA gene compositions are different from those of Leishmania in differ-

ent ways. Human tRNA genes are richer in purines while Trypanosoma tRNA genes are richer

in G and C. American Trypanosoma are also GC-rich, but less so than African Trypanosoma.

S5 Table shows that there is little heterogeneity of gene set compositions by genome assembly

within clades, with the greatest variation appearing in Trypanosoma, particularly African

Trypanosoma.

Divergent class-informative features between humans and TriTrypDB

genomes

We developed a bioinformatic workflow that combines information from tRNA function

logos estimated from a parasite clade and Information Difference (ID) logos [25] and Kull-

back-Leibler Divergence (KLD) logos between the parasite clade and humans [27]. The work-

flow quantitates tRNA features that are functionally informative in the parasite clade and have

either gained or retained functional information or altered functional association since diver-

gence of the parasite clade and humans from their common ancestor. We found many exam-

ples of highly informative trypanosome CIFs that have been gained, retained or changed

functional information since divergence from their common ancestor with humans, and most

of these divergent CIFs have been strongly conserved in trypanosomes over 231–283 million

years of evolutionary divergence between Leishmania and Trypanosoma [62], for example

among alanine tRNAs (Fig 3) and threonine tRNAs (Fig 4). Structural bubble-plot visualiza-

tions at single-site resolution of these CIF divergence measures are provided for all functional

classes in supplementary materials, showing that some classes have diverged much more than

others. Even though they are calculated at single-site resolution, CIF divergences are correlated

across structurally paired sites. Inspection of singles-ite function logos across taxa confirms

the conservation of parasite-specific CIFs and reveals A- and U-containing features underlying

the signals shown in Figs 3 and 4, including some sharing of divergent features between

tRNAAla and tRNAThr functional classes, for example at Sprinzl coordinate 39 (Figs 5 and S24–

S27). Figs 6–8 show base-pair function logos for Humans, the L. major clade and the American

Trypanosoma respectively, showing that both Class Informative Base-Pairs and Class-Informa-

tive Mis-Pairs can be relatively conserved, and that recurring hot-spots of CIF evolution
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appear in the data, yielding insight to mechanisms of CIF evolution. Inspection of Class-Infor-

mative Base-Pairs and Mis-Pairs shows that a U:A informative base-pair diverged in tRNAThr

to an adjacent site-pair, from 31:39 to 30:40, and that a U–U informative mispair was gained

in tRNAAla at site-pair 6:66 in trypanosomes relative to humans (Figs 6–8). Full function logo

results for all clades are provided in S24–S40 Figs.

Our computational screen for tRNA CIF divergence as shown in S3–S23 Figs, show that

tRNAAla and tRNAThr, are among those tRNA functional types that have the greatest number

of sites and site-pairs with the largest CIF divergence relative to humans and would be good

Fig 3. Conserved divergence of parasite tRNAAla CIFs across eight phylogenetic clades of Leishmania and Trypanosoma. Evolutionary

divergence of trypanosomes relative to Leishmania major increases clockwise from Leishmania major.

https://doi.org/10.1371/journal.pntd.0007983.g003

Targeting tRNA-synthetase interactions in eukaryotic pathogens

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0007983 February 27, 2020 12 / 30

https://doi.org/10.1371/journal.pntd.0007983.g003
https://doi.org/10.1371/journal.pntd.0007983


potential candidates for therapeutic targeting. Contrast, for example, our results for Trypano-

some tRNATyr or tRNATrp, which show trypanosomal tRNA CIFs that are strongly conserved

with humans, as shown in S9 or S10 Figs. These observations led us to follow-up and investi-

gate tRNAAla and tRNAThr because both these tRNA types, and their accompanying cognate

synthetases, are readily reconstituted in vitro. Previous experience with in vitro reconstitution

of AlaRS and ThrRS enzymes in the Ibba lab aided us in troubleshooting problems and avoid-

ing false-positive identification of inhibitors, as artifactual changes in enzyme activity are com-

mon if technical care is not taken.

Fig 4. Conserved divergence of parasite tRNAThr CIFs across eight phylogenetic clades of Leishmania and Trypanosoma. Evolutionary

divergence of trypanosomes relative to Leishmania major increases clockwise from Leishmania major.

https://doi.org/10.1371/journal.pntd.0007983.g004
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Fig 5. Adenine function logos for humans and four clades of Leishmania. Complete single-site function logo results are shown in S24–S31 Figs. The total height of

a stack of letters at any site quantifies the information potentially gained about the functional type of a tRNA by a tRNA-binding protein if it recognizes the specific

feature corresponding to that site and logo, for example Adenine at Sprinzl coordinate 16 (or some modification that biosynthetically depends on A16) in the case of

the left-most boxed site. The letters within each stack symbolize functional types of tRNAs, wherein IUPAC one-letter amino acid codes represent elongator tRNA
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AaRS screen identified Leishmania major AlaRS inhibitors

Using the pre-validated MNP library, we developed a medium-throughput phosphorimaging-

based aminoacylation screen to identify aaRS inhibitors in vitro (Fig 9A and 9B). From the one

hundred and twenty complex inhibitory mixes tested in the MNP library, we qualitatively

identified four potential Lm AlaRS inhibitors as determined by a decrease in the overall tRNA-

aminoacylation identities and “X” symbolizes initiator tRNAs. The relative heights of letters within each stack quantifies the over-representation of tRNA functional

types carrying that feature relative to the background frequency determined by gene frequencies of functional types (as calculated through the normalized log-odds).

https://doi.org/10.1371/journal.pntd.0007983.g005

Fig 6. Function logos for tRNA Class-Informative Base-Pairs and Class-Informative Mis-Pairs in humans. The meanings of letters, stack heights and letter heights

are all the same as in Fig 5.

https://doi.org/10.1371/journal.pntd.0007983.g006
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aminoacylation signal. These four candidates were then re-screened using time-dependent

quantitative approaches and we concluded that three of the four mixes, 1881C, 2059D, and

2096B were altering aminoacylation, with inhibitory activities ranging between 80% and 99%

(Fig 9C). Using means and standard deviations of four replicate scintillation count-per-minute

endpoints under the DMSO control condition or without added enzyme, we calculated an

acceptable Z-factor of 0.67 for this follow-up aminoacylation time-course-based assay (S6

Table).

Fig 7. Function logos for tRNA Class-Informative Base-Pairs and Class-Informative Mis-Pairs in the L. major clade. The meanings of letters, stack heights and letter

heights are all the same as in Fig 5.

https://doi.org/10.1371/journal.pntd.0007983.g007
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Since the aminoacylation screen discerns total net changes to the aaRS activity, we

attempted to identify which step of the aaRS catalyzed reaction is being affected by the MNPs.

To observe any tRNA-independent effects on aaRS function, we used pyrophosphate exchange

to monitor ATP-dependent amino acid activation. From this experiment, we were able to con-

clude that our inhibitors were perturbing amino acid activation, with lead compounds ranging

in inhibitory activity between 45% and 95%. The differences in MNP activity between amino

acid activation and tRNA-dependent aminoacylation highlight the multiple aaRS activities

that can be targeted in our network predictions. To validate the predictive tool for identifying

anti-trypanosomal drugs, we counter-screened the newly identified Lm. AlaRS inhibitors

Fig 8. Function logos for tRNA Class-Informative Base-Pairs and Class-Informative Mis-Pairs in the American Trypanosoma clade. The meanings of letters, stack

heights and letter heights are all the same as in Fig 5.

https://doi.org/10.1371/journal.pntd.0007983.g008
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Fig 9. Identification of Leishmania major AlaRS inhibitors. A) Workflow to identify aminoacylation inhibitors (details described in Methods). B) Representative image

of the MNP chemical screen. The spot boxed in red is an example of a predicted inhibitor depicted by the decrease in signal intensity. DMSO positive control (+). C)

Three of the four identified inhibitors prevented the accumulation of Ala-tRNAAla formation, 1428B was a false-positive result from our preliminary screen. D) The three

identified inhibitors perturbed L. major AlaRS activation (black) but had no effect on human AlaRS (gray). The relative amino acid activation is plotted relative to the

DMSO control. Error bars indicate the standard deviation of three replicates.

https://doi.org/10.1371/journal.pntd.0007983.g009
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against the human AlaRS enzyme. Treatment of the human AlaRS enzyme with the MNP

inhibitors had no effect on amino acid activation (Fig 9D). Combined with our original

screening data, these results show the utility of our computational and biochemical workflow

to identify new novel therapeutics that have minimal cross-reactivity with the human homolog

of the parasite drug target.

Natural product library inhibitors of Leishmania major ThrRS

As our network predictions identified CIF divergence among many functional classes of

tRNAs (as shown in the Supplementary materials), we also wanted to determine if our MNP

library would find inhibitors against non-AlaRS aaRS. The most concentrated mixes from our

MNP library were re-screened against Lm Threonyl-tRNA synthetase (ThrRS) and tRNAThr

aminoacylation (Fig 10A). The preliminary screen led to the identification of eight extracts

with inhibitory activity. Those fractions were re-analyzed using quantitative aminoacylation

reactions and the results show that that two of the candidates did not inhibit aminoacylation,

two inhibited the reaction at ~50%, and four had greater than 75% inhibition (Fig 10B). In

Fig 10. Identification of Leishmania major ThrRS inhibitors. A) The MNP library was re-screened at the highest concentrations to qualitatively identify

Lm ThrRS aminoacylation inhibitors. Plate IDs reference the position within the original library and not library IDs. B) Eight inhibitors were qualitatively

identified from the preliminary screen. Two of the candidates did not inhibit aminoacylation (black), two inhibited at ~50% activity (gray), and four

inhibited at greater than 25% (white).C) All four active inhibitors continued to perturb aminoacylation over a time course experiment. Error bars indicate

the standard deviation of three replicates.

https://doi.org/10.1371/journal.pntd.0007983.g010
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addition, two of the four most active inhibitors (2059D and 2096B) also had activity against

Lm AlaRS (Fig 10C). The cross-reactivity of these inhibitors may be a consequence of the

extensively conserved aaRS architecture found between AlaRS and ThrRS [63,64].

Predictive network interactions identified broad-spectrum anti-

trypanosomal targets

The tRNA-aaRS network analyses suggested that parasite-specific tRNAAla identity elements

were highly conserved between the Leishmania and Trypanosoma genera (Figs 3,4,5 and 11A).

To test this hypothesis, we purified Tc AlaRS and screened our three active Lm AlaRS inhibi-

tors in an aminoacylation inhibition assay using Tc AlaRS and tRNAAla. Supporting our net-

work prediction, all three Lm inhibitors also had activity against the Tc enzyme, with activities

ranging between 40% and 95% total inhibition (Fig 11B). While these activities were slightly

reduced compared to their effect of the Lm AlaRS enzyme (Fig 9C), these results highlight the

additional potential utility of our computational methodologies as a means of identifying

broad-spectrum antimicrobials for closely-related clades.

Separation of active components from natural products extracts

From the initial set of 120 extracts with activity against L. donovani parasites, four extracts

showed corresponding activity in the initial aaRS assay. Of these, three (1881C, 2059D, and

2096B) were prioritized for chemical follow up, based on potent, dose-dependent biological

activity. Initially, each sample was separated into 10 sub-fractions using HPLC (Phenomenex

Synergy C18, 5μ, 4.6 x 250 mm). Screening of these fractions identified one fraction (2096B

F10) with potent activity. To generate additional material, the producing organism was cul-

tured on large scale (1 L, GNZ medium with 20 g XAD-7 resin), filtered, and the resin/cell

slurry extracted with organic solvents (2:1 CH2Cl2/ MeOH, 400 mL). The crude extract was

fractionated using an automated Combiflash chromatography system (C18 cartridge; 20, 40,

60, 80, 100% MeOH/ H2O, 100% EtOAc) and the resulting fractions subjected to biological

screening (S1 Text). Two fractions (C and D) showed strong activity and were subjected to

subsequent separation to give 10 sub-fractions each (S41–S44 Figs). Of these, fraction 2096D

F10 showed the strongest reproducible activity (S45 Fig). However, subsequent fractionation

steps yielded sub-fractions with very low quantities of material. Review of these sub-fractions

by UPLC-ESI-qTOF mass spectrometry did not identify any individual mass signatures con-

sistent with a candidate bioactive molecule. Similarly, lack of material precluded the identifica-

tion of diagnostic signals in the NMR spectra for these subfractions. Provisional information

from these analyses, including NMR and MS signatures from earlier fractions and the non-

polar nature of the active fractions, suggest that the active component is likely a bioactive lipid,

although the precise nature of the structure of this metabolite remains unknown. The isolate

producing the bioactive substance was collected on April 20th, 2012 from marine sediment off

the coast of Kellet Bluff, Henry Island, WA US under the permit issuing authority of the Wash-

ington Department of Fish and Wildlife (permit # 12–034).

Discussion

Systems-biology driven identification of trypanosome-specific drug targets

tRNA CIFs apply an information criterion using function logos, rather than a conservation crite-

rion using conventional sequence logos, to bioinformatically predict tRNA identity elements. Even

though we did not apply a conservation criterion in our predictions, when we applied our informa-

tion criterion independently over different trypanosome clades, we found that tRNA CIFs were
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Fig 11. Leishmania major and Trypanosoma cruzi AlaRS have conserved tRNA identity elements. A) CIF Divergence Models for tRNAAla in

Leishmania major and Trypanosoma cruzi B) The three identified Lm AlaRS inhibitors also have activity against the Tc AlaRS enzyme. Error bars

indicate the standard deviation of three replicates.

https://doi.org/10.1371/journal.pntd.0007983.g011
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highly conserved over 250 million years of trypanosome evolution. A biological interpretation of

this result of tRNA CIF conservation within trypanosomes (and also between trypanosomes and

humans) is that the information contained in tRNA CIFs is functional in specifying substrate iden-

tity to tRNA-binding proteins such as aaRSs. That is to say, tRNA-binding proteins themselves

exploit the information contained in tRNA CIFs to identify their tRNA substrates against the back-

ground of all possible tRNAs, with which they must interact to varying degrees. We present a sys-

tems biological theory for the function and divergence of tRNA CIFs in [24].

Maintaining efficient and accurate translation is predicated on catalytically productive inter-

actions between aaRSs and free tRNAs in the cell. While the major identity elements for a given

aaRS-tRNA pair are generally conserved, here we have identified divergent features within

tRNAs that apparently contribute to divergent RNA-protein interactions in trypanosomes.

Much of the focus in this work was on the phylogenetic divergence of identity elements among

alanine tRNAs. This class of tRNAs strongly support the utility of our computational analyses as

the tRNAAla identity elements have been one of the most well characterized to date [13,14].

Interestingly, it was recently shown that the conserved G3:U70 base pair is recognized by AlaRS

using three distinct mechanisms across all domains of life [15]. This observation highlights that

even highly conserved identity elements may be recognized and discriminated against by dis-

tinct biophysical aaRS interactions, which may therefore be stronger potentially specific drug

targets than previously anticipated. The dominant association of G3:U70 with tRNAAla is con-

served among all trypanosome clades and humans in our data (Figs 6–8 and S32–S40 Figs).

The primary objective of this research was to develop a computational workflow to quantify

divergence of functionally informative features of tRNAs across different evolutionary clades.

The practical application of this work is to use the information gained from our computational

analyses to identify novel therapeutic targets that may be of use in the clinic. As described

above, tRNAAla and tRNAThr were specifically chosen because of their amenability for in vitro
reconstitution, while the computational results shown in Supplementary Figures show that

other leishmanial tRNA/aaRS pairs could serve as additional therapeutic targets either using

our MNP library or other available libraries. While interesting, those discoveries are outside

the scope of the present work and left to future investigations.

Inhibition of aminoacyl-tRNA synthetases

A goal of this work was to identify divergent tRNA identity elements in trypanosome parasites. We

predicted that parasite-specific tRNA-aaRS interactions would be identified, sufficiently divergent

from homologous human machinery to be strong candidates for drug discovery. Interestingly, our

network divergence analysis led to the discovery of tRNA-independent, amino acid activation

inhibitors that were specific to trypanosomes. We interpret this as consistent with our goal, because

tRNAs and aaRSs must coevolve to accommodate changes to structure and mechanism that evolve

on either side of their interactions. Presumably, divergence in the structural mechanism of amino

acid activation in trypanosome AlaRSs has also changed how they interact with their tRNA sub-

strates. By integrating information from many tRNA functional classes, we gain leverage to inter-

pret divergence in structure and function of the much more structurally complex ensemble of

aaRSs as a system. Our tRNA-based network approach identifies potential aaRS targets that may

not have been initially predicted when analyzing aaRS functional sequences in isolation.

Chemotherapeutic inhibition of multiple aminoacyl-tRNA synthetases may

be relatively resistance-proof

Two of the fractions we described were effective inhibitors of both AlaRS and ThrRS in para-

sites. Although monotherapeutic inhibitors of aaRSs are highly effective [65], combination
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therapies involving multiple aaRSs have not been studied. Because aminoacylation pathways

are integrated in parallel at the ribosome, the slowest aminoacylation pathway can be rate-lim-

iting for protein synthesis and growth [24,66]. Thus, we expect the inhibition of multiple

aaRSs to be antagonistic relative to Loewe Additivity expectations, in keeping with the Highest

Single Agent (HSA) model [67,68]: single- or multiple-drug inhibition of multiple aaRSs

should mask the potentially growth-restorative effects of resistance mutations arising in any

one parasite aaRS gene. It is known that antagonistic combination chemotherapies are less

prone to the evolution of resistance than single-drug or synergistic combination chemothera-

pies [32,69,70,71]. Therefore, chemotherapeutic inhibition of multiple aaRSs should be rela-

tively less prone to the evolution of resistance than monotherapeutic or synergistic

combination chemotherapeutic inhibition of single aaRSs. Further work is needed to test this

hypothetical benefit.

Conclusion

Trypanosome parasites pose a significant health risk worldwide. While current therapies exist,

they are often also accompanied by off-target cytotoxicity and can lead to the rise of antimicro-

bial resistance. Here we have demonstrated that targeting tRNA-synthetase interactions have

been an underexplored avenue for drug discovery. Using a combination of predictive compu-

tational tRNA network analyses and biochemical validation, we showed that aminoacyl-tRNA

synthetases are a promising target for broad-spectrum anti-trypanosomal discovery with no

significant consequence to the human counterpart target.
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