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Abstract

Middle East Respiratory Syndrome Coronavirus (MERS-CoV) causes severe acute respira-

tory illness with a case fatality rate (CFR) of 35,5%. The highest number of MERS-CoV

cases are from Saudi-Arabia, the major worldwide hotspot for this disease. In the absence

of neither effective treatment nor a ready-to-use vaccine and with yet an incomplete under-

standing of its epidemiological cycle, prevention and containment measures can be derived

from mathematical models of disease epidemiology. We constructed 2-strain models to pre-

dict past outbreaks in the interval 2012–2016 and derive key epidemiological information for

Macca, Madina and Riyadh. We approached variability in infection through three different

disease incidence functions capturing social behavior in response to an epidemic (e.g. Bilin-

ear, BL; Non-monotone, NM; and Saturated, SAT models). The best model combination

successfully anticipated the total number of MERS-CoV clinical cases for the 2015–2016

season and accurately predicted both the number of cases at the peak of seasonal inci-

dence and the overall shape of the epidemic cycle. The evolution in the basic reproduction

number (R0) warns that MERS-CoV may easily take an epidemic form. The best model cor-

rectly captures this feature, indicating a high epidemic risk (1�R0�2,5) in Riyadh and

Macca and confirming the alleged co-circulation of more than one strain. Accurate predic-

tions of the future MERS-CoV peak week, as well as the number of cases at the peak are

now possible. These results indicate public health agencies should be aware that measures

for strict containment are urgently needed before new epidemics take off in the region.

Author summary

There is currently no way to anticipate MERS-CoV epidemic outbreaks and strategies for

disease prediction and containment are largely undermined by the limited knowledge of

its epidemiological cycle. Not an effective treatment nor a vaccine for MERS-CoV exist to

date. Instead, using three two-strain mathematical models that incorporate human social

behavior as different disease incidence functions (e.g. bilinear, non-monotone and
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saturated), the best model combinations successfully anticipate the occurrence of the peak

week in the season and the incidence at the peak. Our results confirm there are currently

2 strains co-circulating in the most populated regions in Saudi Arabia and highlight the

high risk for large epidemic outbreaks, while the role of super-spreaders appears irrelevant

for disease spread.

Introduction

The first case of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) infection was

identified in Saudi Arabia in 2012[1–5]. Since then the country suffers from repeated out-

breaks of MERS-CoV in different provinces (Fig 1A and 1B)[2]. There are two main routes of

MERS-CoV transmission: animal-to-human and human-to-human[4–6]. It is suspected that

dromedary camels are the source of human infections[1] but the transmission route of

MERS-CoV to humans is yet not well understood (Fig 1C). However, transmission from cam-

els to humans is confirmed from the isolation of near-identical strains of MERS-CoV from epi-

demiologically coexisting camels and humans[7]. The patients might be exposed to

MERS-CoV by consumption of raw camel products[8] (e.g. milk and dairy products, raw

meat, etc.). Meanwhile, human-to-human transmission has been reported in society and hos-

pital settings[9–36] with the virus being transmitted between humans during close human-to-

human contact through droplets of respiratory secretions. Potential propagation to nearby and

more distant regions is also a high-risk possibility as an outbreak of MERS-CoV is likely to

emerge in areas such as nearby countries in the Middle East and eastern Africa where the

camel trade connects the different regions (Fig 1). Unfortunately, as for now, MERS-CoV vac-

cines are only at the preclinical phase[10], increasing our understanding of its epidemic poten-

tial and knowledge on the drivers of MERS-CoV variability might help to achieve better

preparedness ahead of forthcoming epidemics.

The ability to predict disease outbreaks will provide a mechanism for policymakers and

health-care services to respond to epidemics in a timely manner, reducing the impact and

maximizing the limited resources available to be deployed[11]. The timing and severity of

infectious disease outbreaks, two matters of considerable public-health relevance, are the main

challenges when attempting to predict disease outbreaks[11–14]. Attempts to set up prediction

frameworks for anticipating epidemics for other diseases such as dengue and influenza were

pursued in the recent past with different degree of success, but clear added value[11–16].

These systems proved effective to better anticipate future outbreaks and increase our under-

standing on mechanisms driving disease variability. To this end, a threshold quantity that is

most important to anticipate the risk of future outbreaks is the basic reproduction number

(R0). There are quite a few studies that estimated R0 for the current MERS-CoV outbreak.

Majumdar et al.[28] for instance, estimated R0 for Jeddah and Riyadh using a function called

Incidence Decay with Exponential Adjustments (IDEA). They found that the estimate of R0 in

Jeddah and Riyadh are in the ranges (3.5–6.7) and (2.0–2.8), respectively. A stochastic epide-

miological model of MERS-CoV with zoonotic and human-to-human transmission was con-

sidered by Poletto et al.[29] to quantify the rates of generation of cases from those two

transmission routes. They found that spring 2014 cases led to the increase in transmission

rates, which brings R0 to values above unity. Heishet al.[32] used a simple mathematical model

to trace the temporal course of South Korea MERS-CoV outbreak. They estimated R0 to be in

the range of 7.0 to 19.3. Instead, Nishiura et al.[30] estimated the expected number of second-

ary cases following the importation of an index case (countries other than KSA, Qatar and
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UAE), using a branching process type modelling approach. They also suggested that even if R0

is below unity, a large cluster of cases with multiple generations might occur. The aforemen-

tioned studies indicated that the basic reproduction number is above unity, although there are

few studies that suggest R0 is less than one[4,17,18]. However, at the same time, intriguing dif-

ferences in observed and predicted scenarios clearly suggested other important factors might

be missing in previous models built for these MERS-CoV case studies. For instance, in a recent

survey for Mers-CoV in over 1300 Saudi Arabian camels, Sabiret al.[1] found that camels

share three coronaviruses (CoV) species with humans. Among them, one has been dominant

in the region since December 2014 and led to the human MERS-CoV outbreaks occurring in

2015. The wide species range of CoVs and their propensity to cross species boundaries suggest

that more MERS-CoV uncontained outbreaks may likely occur in the future. Zumlaet al.[19]

also suggested that MERS-CoV species can mutate to have increased inter-human transmissi-

bility. Cottenet al.[37] used MERS data from the period May to September 2013. They found

Fig 1. Distribution of MERS-CoV weekly cases in Riyadh, Macca and Madina provinces during July, 2013—June, 2016. (a) The geographic distribution of

MERS-CoV cases reported in 2017 in the Middle East. (b) Time series of weekly incidence data of MERS-CoV in three major provinces, Riyadh, Maccaand

Madina, respectively. (c) Two strain Models flow diagram considering asymptomatic, symptomatic, hospitalized, and Zoonotic transmission. Open source

KML map for the Middle East was kindly obtained and redrawn by Josep-BoyardMicheau from https://community.qlik.com/t5/Qlik-Sense-Enterprise-

Documents/GCC-Middle-East-country-boundary-KML-maps-KML-Shapefile/ta-p/1478595.

https://doi.org/10.1371/journal.pntd.0008065.g001
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four Saudi Arabia MERS-CoV phylogenetic clades, with 3 clades apparently no longer contrib-

uting to current cases, therefore not appearing in the saliva of camels. They also show that the

ancestors of most of the viral clades originated in Riyadh (See Cotten et al.[37]). Recently,

strain variability in MERS-CoV infection was confirmed in 51 respiratory samples from 32

patients, confirming that more than one strain of human MERS-CoVis present[20]. The fact

that more than one MERS-CoV strain is currently circulating in Saudi Arabia should be prop-

erly accounted for as this presence may have substantially contributed to amplify the transmis-

sion intensity producing repeated MERS-CoV changes in incidence through their periodic

reintroduction into human populations[19]. Furthermore, Chan et al.[34] characterized

MERS-CoV viruses from dromedaries in Saudi Arabia and Egypt and compared them with a

human MERS-CoV reference strain. They isolated three dromedary strains, two from Saudi

Arabia and one from Egypt. The human and dromedary MERS-CoV strains had similar viral

replication competence in Vero-E6 cells and respiratory tropism in ex-vivo cultures of the

human respiratory tract. They also suggested that dromedary viruses from Saudi Arabia and

Egypt are probably infectious to human beings[34].

Methods

a) Disease incidence functions

We constructed three different 2-strain models for MERS-CoV that consider community

human-human, hospital human-human, and passive zoonotic transmission (Fig 1C and see

also S1–S18 Tables). Models derived also incorporate the effect of strain variability with strain-

1 as the dominant strain (Fig 1C and S1–S18 Tables). Variability among models is based upon

three different disease incidence functions (e.g. BL, NM and SAT models [21–23] and see for-

mulation in Table 1A and Fig 2).

The top panel in Fig 2 represents the BL force of infection. Here, as the number of infected

individuals increases the disease transmission also increases linearly. The bottom-left panel

represents the NM incidence function. Biologically this incidence function can account for

“psychological effects” [38–39]. In the presence of psychological effects, initially the disease

transmission rate increases rapidly when the number of infected individuals is small. However,

this rate falls also rapidly in the presence of a large number of infected persons in the commu-

nity. As in the case of MERS-CoV infections the CFR is about 40%, psychological effects for

this infection represents the effect in the community of fear of becoming infected. This fear

effect reduces the transmission rate rapidly in the presence of a high number of infections in

the community. The bottom-right panel of Fig 2 represents the SAT incidence function. Bio-

logically this incidence function represents the crowding effect in disease transmission. This

crowding effect explains how the number of new infections becomes constant as the number

of infected individual increases. This effect is known to reproduce the awareness effect of the

disease during the course of an epidemic.

b) Super-spreaders and 1-strain vs 2-strain models

Furthermore, we investigated the potential effects of super-spreading events by incorporating

an additional compartment for super-spreaders to our 2-strain model. We also consider the

effect of variable zoonotic transmission by incorporating dynamics of the camel population

into our 2-strain model. Information about the calculation of the epidemiological parameter

values for the newly proposed 2-strain models is provided in Table 1B. Data used corresponds

to weekly cases of MERS-CoV for the three provinces in Saudi Arabia where most clinical

cases for MERS-CoV occurred for the time intervals July, 6th 2013 till June, 28th 2016 (Riyadh),

April, 7th2014 till June, 26th2016 (Macca), and April, 20th2014 till June, 26th2016 (Madina),

Seasonal forecasting of MERS-CoV epidemics
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Table 1. (A)Description of the incidence functions for the three models considered. (B)Main parameters of the

three 2-strain models.

A

Incidence functions Description Source

f Ið Þ ¼ b1SI
N

Bilinear incidence function 23

f Ið Þ ¼ b1SI
Nð1þaI2Þ

Non-monotone incidence

function

21, 22

f Ið Þ ¼ b1SI
Nð1þaIÞ

Saturated incidence function 21

B

Symbol Description Range/Fixed Sources

μ Natural birth/death rate of

human

2.5924×10−4Week-1 24

β1 Transmission coefficients of

symptomatic and

asymptomatic cases

[0, 100] Week-1 Estimated

θ Measure of variability of two

strains

[0,1] Estimated

ρ Reduction in transmission due

to less infectiousness of

asymptomatic infected

individuals

[0,1] Estimated

β2 Transmission rate from

hospitalized to susceptible

individuals

[0, 100] Week-1 Estimated

β3 Import rate of external

zoonotic infection

[0, 10] Week-1 Estimated

p1 Proportion of susceptible that

get infected from hospitalized

individuals with strain-1

[0,1] Estimated

p2 Proportion of susceptible that

get infected from zoonotic

infection with strain-1

[0,1] Estimated

p3 Proportion of exposed

individuals that become

symptomatic infected

0.553 4

c1 Undetected entry rate of

strain-1 asymptomatic class to

hospitalized class

[0,5] Estimated

c2 Undetected entry rate of

strain-2 asymptomatic class to

hospitalized class

[0,5] Estimated

1

s
Incubation period 0.7429 Week 19,25,26

K Recovery rate of

asymptomatic individuals

1.4 Week-1 27

λ Hospitalization rate of

symptomatic individuals

4.4824 Week-1 4

γ Recovery rate of hospitalized

individuals

1 Week-1 4

δ2 Disease induced death rate of

hospitalized individuals

Data 2

α1 Measure of inhibitory effect of

strain-1 (only for non-

monotone and saturated

incidence models)

[0,500] Estimated

α2 Measure of inhibitory effect of

strain-2 (only for non-

monotone and saturated

incidence models)

[0,500] Estimated

https://doi.org/10.1371/journal.pntd.0008065.t001
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respectively (Fig 1A). Main parameters of the different models are provided in Table 1B.

Parameters estimates are obtained by fitting the models to new MERS-CoV hospitalized

weekly data[40]. We also estimated from data itself some unknown initial conditions for the

model. Delayed Rejection Adaptive Metropolis algorithm is used here to sample the 95% confi-

dence.The goodness of fitsto compare among 2-strain and single strain models were tested by

determining the respective AIC and BIC values (See S19 Table). To further compare among

predictive capabilities of these models with regard to those of their single-strain versions, pre-

dictions of raw clinical cases were attempted. Albeit some discrepancies exist, fairly accurate

results were obtained despite the low numbers and highly stochastic nature of the three data-

sets and the nearly operational capacity of these models (Fig 3). In fact, near-operational sys-

tems usually require a much longer training period than the scarce three years employed here.

Differences arising from the comparison of simulated and observed cases may also be due to

the fact that we are fitting the 2-strain and single strain models to cumulative MERS-CoV

cases, rather than to new cases..The procedure for model adjustment is as follows: for ap-

proaching near-operational predictions in each province, we followed former initiatives (e.g.

on influenza[14] and dengue[16]) and partitioned the whole clinical cases datasets into two

parts. First part was used for calibrating the models and the remaining part (52 weeks) were

left aside for out-of-fit prediction. For Riyadh, Macca and Madina prediction periods were,

respectively, from weeks 105–156 (7th June, 2015 - 11th June, 2016), weeks 65–116 (11th July,

2015 - 2nd July, 2016), and weeks 63–114 (11th July, 2015 - 2nd July, 2016)(Fig 3). We generated

predictions for three major characteristics of the epidemiological cycle similar to previous

attempts made for cholera, dengue and influenza[15,41–43] namely: (a) peak week: the week

during which the maximum number of clinical cases occurred in a season (comprising 52

weeks); (b) peak maximum: the number of cases occurring at the peak week, and (c) season

totals: the total number of cases in the entire season. Prediction for each target variable was

made every 4 weeks (i.e. week 0, 4, 8, . . ., 48), with week 0 corresponding to the first week of

the prediction interval. In the case of predictions for week N, data up to week N was used to fit

the model and the trajectory predicted for out-of-fit future weeks N+1 through week 52

Fig 2. Representation of the three incidence functions, g(I). Top: g(I) = βI, bilinear incidence function. Bottom-left: g(I) = bI
Nð1þaI2Þ, non-

monotone incidence function and; bottom-right: g(I) = bI
Nð1þaIÞ, saturated incidence function. Here, N = 1000, α = 1 and β = 1.

https://doi.org/10.1371/journal.pntd.0008065.g002
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(Fig 3). Indeed, the best models at predicting MERS-CoV incidence differed among regions

(Fig 4), highlighting the complexity of the epidemiological situation, particularly in Riyadh.

There, where at least there were two strains co-circulating, M2 stands up clearly as the best

model function (see bottom panel in Fig 4), in comparison with Macca and Madina, with only

one strain (Fig 4 top panels).

c) Estimation of R0, RC, and RH and prediction framework

We estimated the basic reproduction number (R0), the community reproduction number

(RC), and the hospital reproduction number (RH) for the whole period of data for Riyadh,

Macca and Madina (S1–S18 Tables; 44–45). We also estimated weekly values of R0, RC, and RH

for each prediction interval in the three provinces (i.e. weeks 105–156 in Riyadh, weeks 65–

116 in Macca and weeks 63–114 in Madina, respectively). The predictions of R0, RC, and RH

are made for each 4-week time interval in the prediction period. The estimate of R0, RC, and

RH during 0th week is obtained using the estimated parameter values for the training period of

MERS-CoV data (i.e., in Riyadh week 1–104, in Macca week 1–64 and in Madina week 1–62).

Afterwards, we keep on adding 4 data points to the previous data and re-estimate the parame-

ters. These estimated parameters were then plugged into obtain values of R0, RC, and RH in 4th

week to 48th week of the prediction period. Thus in intervals of 4 weeks, we obtain an estimate

of R0, RC, and RH. Temporal evolution of R0, RC, and RH for the three provinces is depicted in

S1–S4 Figs, respectively.

Using the model that provides the best prediction for the season total cases in the three

provinces (i.e., a 2-strain model with BL incidence for Macca and the 2-strain model with SAT

incidence for both Madina and Riyadh), we predicted the total number of cases in the follow-

ing year. Using the parameter estimates in the last prediction point (i.e. 48th week) of the

Fig 3. Model simulations fitted to accumulated MERS-CoV clinical cases in Macca, Madina and Riyadh. Observed data points are shown in blue and the

solid line depicts the model solutions. The three two-strain models fitted to cumulative MERS-CoV cases are: M1: 2-strain model with bilinear incidence,

M2: 2-strain model with non-monotone incidence, and M3: 2-strain model with saturated incidence.

https://doi.org/10.1371/journal.pntd.0008065.g003
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current season, we draw 1000 samples. Based on these parameter samples, we determined

1000 estimates of the season total cases in the next year[43]. We then defined a large outbreak

in the forthcoming season in a particular region, as those events when cases exceeded the total

number of cases in the previous season by more than one standard deviation (see Fig 5). Thus,

the probability of a large outbreak (Pl) in those provinces isdetermined as the ratio of samples

that exceed the total number of cases in a season divided by the total number of samples. We

also considered the case when two strains of MERS-CoV may be co-circulating in the human

population in Saudi Arabia. We also simulated the situation when one strain is assumed to be

more active with a higher transmission rate, whilst the other is much less transmissible among

individuals in the different provinces of Saudi-Arabia[37].Although we have considered two

strains circulating in the community setting, we do not distinguish among strains in hospital

premises. This is due to the lack of strain specific data in hospital settings. However, we are

able to distinguish the contribution of infection from Community and Hospital setting by esti-

mating the Community reproduction number (RC) and the Hospital reproduction number

(RH). However, to account for this effect, we propose three different forces of infection (BL,

NM and SAT) to model the MERS transmission in the three provinces. Saturated (SAT) func-

tions describe “Crowding effects” in disease transmission, whereas Non-monotone (NM)

functions are used to incorporate”psychological effects”. As the CFR in MERS-CoV is about

Fig 4. Same as for Fig 3 but predictions showing the best model for MERS-CoV incidence in each of the three regions. Notice that whereas

M1 provides the best prediction for both Macca and Madina (top), M2 instead does it for the two-strain situation occurring in Riyadh. Blue line is

MERS-CoV cases, solid black line predictions and yellow area denotes 95% confidence interval for predictions.

https://doi.org/10.1371/journal.pntd.0008065.g004
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40%, it is easily expected that awareness in front of a MERS-CoV situation may play an impor-

tant role during an epidemic[44–46]. Thus a model with such a crowding effect might seem a

priori more realistic in comparison to the bilinear (BL) transmission (see also Fig 2). The

crowding effect in disease transmission[38,39] can also be interpreted as the behavioral change

of susceptible individuals when the number of infected individuals increases (Fig 2). This fact

causes a lower number of new infections when a large number of infected individuals are

already present in the community. This behavioral change in the susceptible population may

occur due to, for instance, public health awareness campaigns and alerts raised by local or

international authorities. The psychological effect is somewhat similar to the crowding effect,

but with the effect of fear being added to the awareness. The psychological effect is stronger as

the transmission rate decreases more rapidly with an increasing number of infected individu-

als (Fig 2) [40–42]. Recently, Kucharski et al.[35] suggested that MERS-CoV transmission is

over dispersed and hence outbreaks can include super-spreading events. In a similar study,

Nishiura et al.[33] concluded that super-spreaders who visited multiple healthcare facilities

drove up the epidemic by generating larger number of secondary cases. Therefore, we also

consider the role of potential super-spreaders in the context of a 2-strain model with BL inci-

dence function.

Results and discussion

Estimates of the transmission rates for the 2-strain model with BL incidence suggest that

MERS-CoV transmission in the three locations is dominated by community and hospital

transmission (S1 Table to S9 Table). The former statement is in good agreement with a previ-

ous study that suggested that MERS-CoV infections are essentially produced through both

hospital and community based human-human transmission[2]. This fact is well reflected in

Fig 5. Best fit obtained from a combination of 2-strain models. Each model was aimed at predicting MERS-CoV epidemiological targets

(top-peak week (No.), bottom-peak incidence (No.)) in Riyadh. Panels showing peak week and peak incidences are displayed up to the time of

occurrence (11th week). Representations of the 2-strain models M1, M2, and M3 are the same as in Fig 2A. Dashed lines are observed values.

https://doi.org/10.1371/journal.pntd.0008065.g005
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the estimates of transmission rates obtained from the other two 2-strain models (e.g. NM and

SAT incidence functions) for the three locations (S1–S9 Tables). Estimates of the parameter θ
(a measure of variability within the two strains) in Riyadh and Macca (see S1–S3 Tables) sug-

gest that both strains are currently active in these provinces (albeit strain 2 contributes with

only 3% - 50% to community human-human transmission). In Madina instead, a majority of

the models (BL and NM) point to only one active strain,with strain 2 contributing less than 1%

to community human-human transmission, see S1–S9 Tables.

For each particular region in this study, two strain models are compared among themselves

and also with regard to their single-strain counterparts in order to determine the best model

(i.e. single, two-strain or a combination of other two-strain models). Results show that in the

three locations, 2-strain models provide a better fitting to cumulative cases in comparison to

their single strain counterparts (Fig 2). AIC and BIC values for the 2-strain models suggest

that the best model is region specific (best model for Riyadh is a 2-strain model with BL inci-

dence, whereas in Macca and Madina the best models are both the model with a NM incidence

function and the one incorporating super-spreaders, respectively; see S19 Table). We also

compare our 2-strain models with a 2-strain model with variable Zoonotic transmission (SI

Eq. A2). Comparing AIC and BIC values, we found that the models with variable Zoonotic

transmission (SI Eq. A2) did not improve all the previous results (see S19 Table). Therefore,

the best model among all 2-strain models cannot be determined solely from their goodness-of-

fit comparison. For this reason, we additionally compared all the two-strain models on the

basis of their respective prediction skills. Forecasts for the three models in Riyadh suggest that,

a majority of the times, the 2-strain model with SAT incidence can better predict the three tar-

gets in comparison to the other two competing 2-strain models (e.g. note that for SAT the

average of the mean absolute error, MAE, for peak week is 11.6, whereas for peak maximum is

24.83 and for season totals 55.62) (Table 2A). For comparison, we also provide predictions in

the province of Riyadh of the three targets using the model with super-spreaders. However,

prediction with super-spreaders did not improve at all the former results obtained for Riyadh

(see Table 2A). For Madina, both the peak week and season totals are better predicted by the

same SAT 2-strain model (i.e. MAE average for peak week being 14.5 and 9.33 for season

totals; see also S22 Table). However, when predicting the peak maximum in Madina, clearly

the best model is the 2-strain model with the NM incidence function (i.e. MAE average for

peak maximum being 2.62; see also S22 Table). For Macca, except for the peak week, the other

two targets, namely peak maximum and season totals are better predicted with the 2-strain

model with BL incidence (i.e. MAE average of 7.08 for peak maximum and of 63.42 for season

totals, respectively; see S22 Table). For peak week in Macca, again a better prediction is

achieved by the 2-strain model with SAT incidence (i.e. MAE average for peak week being

23.9, see S22 Table).

When comparing the three two strain models to their single-strain counterparts, compos-

ites of the mean absolute error (MAE) in Riyadh (Table 2A, and S23 Table) suggest that

2-strain models always outperform the single strain versions in predicting the three targets (i.e.

peak week, peak maximum, and season totals). Averages of MAE for peak week, peak maxi-

mum and for season totals are 11.6, 24.83 and 55.62, respectively. This fact reinforces our ear-

lier inference, confirming that there is more than one strain currently active in Riyadh.

Among the single-strain models in Riyadh, the model with SAT incidence is found to have a

better predictive capacity for the three targets in comparison to the other two single-strain

models (S23 Table). In Macca instead, the single-strain model with SAT incidence provides

better predictions of the peak week, the peak maximum and seasontotals in comparison to all

the other models (see for instance MAE values in S22 Table; and values obtained for 1-strain

and 2-strain models in S22 Table). Conversely, in Madina, both 1-strain and 2-strain models

Seasonal forecasting of MERS-CoV epidemics
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with SAT incidence provide a similar performance in predicting the three targets (e.g. MAE

for peak week 16.7 in comparison to 14.5, for peak maximum of 3.33 compared to 3.6 and for

season totals of 5.87 against 9.33; see S22 and S23 Tables). The latter may likely represent the

best choice of models to form the basis of a future early-warning system for MERS-CoV pre-

diction in the region.

The best model, selected on the basis of its capacity to derive skillful predictions, is the

model with the SAT incidence function. We used this model to estimate the basic reproduc-

tion number, R0, the community reproduction number, RC, and the hospital reproduction

number, RH, for the whole period of data available in those three provinces (Table 2B and S20

Table). In all three provinces, R0 is estimated to be always greater than unity. In all three prov-

inces, RH is found out to be larger than RC. This implies, MERS-CoV transmission triggered

from the hospital setting (see Table 2B). These estimates agree with some previous values

reported in the literature[4,17–18], while being a result well supported by other R0 estimates

[29–31, 33]. However, previous modeling attempts to model Saudi Arabia MERS-CoV clinical

incidence used only a 1-strain model with BL transmission[4]. In our case, versions of R0 were

also estimated from our BL 1-strain model in those same three provinces (see S21 Table) and

they are in good agreement with the previous values provided by Chowell et al.[4]. At the same

time, though, 1-strain model show less predictive capacity than their similar two-strain coun-

terparts. To further verify the robustness of these estimates, the temporal evolution of R0, RC,

and RH are displayed for different time intervals in the three provinces (S1–S4 Figs). Consider-

ing the best model configurations, we additionally computed the temporal evolution of R0, RC,

and RH in the three provinces. Temporal changes in R0 (S1 Fig) indicate that in most of the

predicted weeks, R0 stays well above the epidemic threshold (R0 = 1). This fact is well estab-

lished from the temporal evolution of RC, and RH in those three provinces (S1 and S2 Figs).

Table 2. (A)Average predictions [Simple average of Mean Absolute Errors (MAE)] over all forecasts of the three 2-strain models and their different combinations

for the Riyadh province. (B)Estimated values of the Basic reproduction number (R0), the Hospital reproduction number (RH), and the Community reproduction number

(RC)for the three provinces of Saudi Arabia using best model (two strain). The best two strain MERS model is with saturated incidence. The data are given as Mean (95%

CI). �The MAE for the three models and their combinations during point prediction of peak week and peak incidence were calculated up-to the peak of the prediction sea-

son (11th Week) of the Riyadh province.

A

Observed values (Data)

Peak week� (weeks) Peak maximum� (cases) Season totals (cases)

11 45 230

Individual model forecasts

M1 22.8 [19.5] 18.4 [32.94] 478.80 [69.33]

M2 28.7 [19.7] 16.5 [26.25] 216.60 [75.87]

M3 22.1 [11.6] 19.2 [24.83] 222.12 [55.62]

M1 with Superspreaders 44.1 [34.7] 68.9 [32.4] 533.71 [194.5]

Average model forecasts

M1-M2 7.3 [12.1] 42.67 [18.06] 299.73 [69.92]

M1-M3 3.4 [9.5] 37.63 [22.19] 296.18 [68.31]

M2-M3 2.6 [9.4] 53.37 [21.74] 270.47 [42.79]

M1-M2-M3 7.7 [9.6] 39.37 [17.21] 306.90 [77.41]

B

Provinces

R0

[Mean (95% CI)]

RH

[Mean (95% CI)]

RC

[Mean (95% CI)]

Riyadh 2.0706

[2.0629–2.0763]

2.0508

[2.0442–2.0543]

0.5657

[0.5587–0.5709]

Macca 4.5716

[2.8781–6.5899]

2.7239

[0.4281–4.9401]

2.0977

[0.1256–5.7307]

Madina 5.0661

[2.5264–9.3814]

4.7808

[0.7408–9.3132]

1.6506

[0.2116–2.9661]

https://doi.org/10.1371/journal.pntd.0008065.t002
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As the basis for an operational EWS for the region, we predicted the total number of cases

in the out-of-fit interval covering July 2016 to July 2017. We used the best individual model for

the three provinces among all 2-strain and single strain models developed. Figs 6 and 7 and

Table 3 clearly indicate the 2016–2017 season might be ripe for a larger outbreak in Macca and

Riyadh. Instead, in Madina the likelihood of suffering a larger outbreak is very low (Fig 6 and

Table 3). Fig 7 displays the single-strain model fitting to new MERS-CoV cases. Here M1 refers

to the single strain model with BL force of infection, M2 to the single strain model with non-

monotone incidence, and M3 to the single strain model with saturated incidence. Solid black

curve represents model solution and yellow region denotes 95% confidence interval for predic-

tions. Simulations for both Macca and Riyadh reflect quite appropriately the dynamics dis-

played in observations (Fig 7). Fig 8 shows All-season’s predictions for the three consecutive

years from July 6, 2013 to June 28, 2016, with each interval of 52 weeks fitted shown in panels

S1-S3.

According to WHO reports, 249 MERS-CoV cases including 75 deaths (CFR 30%) were

reported from Saudi Arabia between July 2016 and July 2017[44]. In the aforementioned

period, at least 108 new cases[44] were reported from Riyadh province and at least 5 cases

were reported from Madina. These values indicate that a larger epidemic did not occur in the

last season (2016–2017), the risk for a larger one in the coming seasons still remains high.

Conclusions

Up to July 2018, 2237 new cases were reported, with 1861 only in KSA and 793 deaths[45]

(CFR 35.5%). This is an alarming situation as previous predictions on MERS-CoV had instead

suggested that MERS-CoV might not sustain as an epidemic in the Arabian Peninsula. The

WHO report[44] suggests that MERS-CoV is still a relatively rare disease about which the

medical personnel in health-care facilities have low awareness. Globally, MERS-CoV

Fig 6. Out-of-fit prediction of large outbreaks in Macca, Madina and Riyadh in July 2016 to July 2017. Large outbreak size (red circles)

are defined as those samples which exceeds previous year (July 2015 to July 2016) total season cases. Blue circles denote those samples that

fall below previous year total cases. The black line denotes total cases during July 2015 to July 2016 of the data. M1: two strain model with

bilinear incidence, M3: two strain model with saturated incidence.

https://doi.org/10.1371/journal.pntd.0008065.g006
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awareness is limited and because symptoms of MERS-CoV infection are non-specific, initial

cases can be sometimes easily missed. With improved compliance in infection prevention and

control, namely by stricter adherence to the standard precautions at all times, human-to-

human transmission in health-care facilities can be reduced and even possibly eliminated with

additional use of transmission-based precautions. In that regard, predictive mathematical

models can help strengthen our understanding of both MERS-CoV transmission and control.

In this study, we addressed the capacity of predictive mathematical models based on two-

strain MERS-CoV configurations having different transmission functions. The models differed

from each other in their force of infection and in how they cope with heterogeneity in trans-

mission. Estimates of transmission rates suggest that community and hospital transmission

are dominant in the case of 2-strain models in Riyadh, Macca and Madina. The majority of the

2-strain models suggest that MERS-CoV transmission is dominated by community and hospi-

tal human-human transmissions, a fact that reflects the actual transmission scenario in Saudi

Arabia [2–4]. Estimates of the parameter that measures transmission diversity between the two

strains in the three provinces suggest that two strains are only active in Riyadh. This opposite

trend in Riyadh in comparison to the other two provinces may be due to the fact that Riyadh is

Fig 7. Single-strain model fitting to new MERS-CoV cases. Here M1: single strain model with BL force of infection, M2: single strain model with non-

monotone incidence, and M3: single strain model with saturated incidence. Solid black curve represents model solution and yellow region denotes 95%

confidence interval for predictions.

https://doi.org/10.1371/journal.pntd.0008065.g007

Table 3. Hindcast prediction of season total MERS-CoV cases for July 2016 to July 2017 and probability of large outbreak. Prediction based upon the best two-strain

model (in terms of season totals forecast) for the three provinces of the Saudi-Arabia.

Two strain

models

MERS-CoV cases for July

2015 –July 2016

Predicted cases of MERS-CoV for the period July 2016

–July 2017 (Mean (95% CI))

Probability of larger outbreak ((No. of samples above

2015/2016 cases)/(total samples))

Riyadh (M3) 230 248.1724 (213.7383–268.26) 0.7150

Macca (M1) 20 69.0813(59.7604–78.9765) 1

Madina (M3) 10 7.5268 (7.5087–7.5598) 0

https://doi.org/10.1371/journal.pntd.0008065.t003
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the capital city with good large health care facilities and a majority of the MERS-CoV patients

in Saudi Arabia come to Riyadh for treatment[2]. These patients may therefore carry different

MERS strains, ultimately leading to multiple strains being presently co-circulating in Riyadh.

Similarly, Cotten et al.[37] found that ancestors of most of the viral clades originated from

Riyadh.

We compared among the 2-strain models according to their predictive performance with

regard to three targets (i.e. peak week, peak maximum and season totals). Our results suggest

that among the three 2-strain models, the model with SAT incidence provides consistently

skillful predictions and may be used to date as the best predictive model for MERS-CoV in

Riyadh. Riyadh iswhere most of the MERS-CoV cases occur, while for the provinces of Macca

and Madina, with lower reported MERS cases, it is difficult to determine the best model

among the three 2-strain models. This fact justifies our earlier finding that in Riyadh two dif-

ferent strains are currently active and therefore the performance of the 2-strain models is bet-

ter there. As per our results for Macca and Madina, only one dominant strain is active in those

provinces. Therefore, predictions based on single strain models are there more appropriate.

Our results also suggest that among the single strain models, those with SAT incidence always

accurately predict the three targets for these two provinces. Thus, a dynamical MERS model

considering this crowding effect is the most appropriate configuration to cope with the nature

of MERS-CoV transmission.

We estimated R0 using the best 2-strain model in Riyadh and estimates are in good agree-

ment with the findings of Majumdar et al. [28].The finding that R0 is most of the time above 1

Fig 8. Season-wise model fitting to cumulative cases of Riyadh from July 6, 2013 to June 28, 2016. (Model fitted is a 2-strain model with

saturated incidence. One year appears in each panel S1 to S3(S1 = S2 = S3 = 52 weeks). Line and circle line refers to observations and 95%

confidence interval for cumulative predictions denoted by the yellow region.

https://doi.org/10.1371/journal.pntd.0008065.g008
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(S1 Fig) is well supported by some previous estimates in literature[28–30,32]. Lower contribu-

tion of community transmission in R0 (See Table 2B) in Riyadh and Macca suggests that

MERS-CoV transmission is triggered from hospital settings in those provinces. Most interest-

ingly, in some forecasted periods, R0 attains large values, a fact that denotes that a rapid propa-

gation among the susceptible population is indeed possible. More worrisome is the range of

values into which R0 moves, most of the time above 1 and below 2,5, a fact that makes it a dan-

gerous infection in terms of silent and constant potential population spread. Community repro-

duction number RC well above unity (see S4 Fig) in most of the predictive weeks indicate that in

a near future a large outbreak may be possible in those provinces. Out-of-fit predictions for the

next season totals suggest that there is a high possibility of larger outbreaks in Macca and

Riyadh. However, our results instead indicate that there is a very low possibility of larger out-

breaks in Madina. The fact that this outbreak did not happen in 2017–2018 does not preclude

what may occur in the forthcoming seasons. Under such a scenario, authorities and interna-

tional health agencies should prepare and actively work towards the prompt implementation of

cheap albeit efficient computational platforms ready to assist in the simulation of how a poten-

tial outbreak might evolve in the region. More so, given the high probability that another large

MERS-CoV outbreak occurs in the Arabian Peninsula or nearby countries. Migration may also

play a major role for increased transmission in the provinces of Saudi Arabia and this feature

should be properly accounted for in future model configurations. In summary, our findings

suggest that in a majority of provinces a single MERS-CoV strain is currently active, conversely

to the situation in Riyadh. However, in the near future, it is also possible that more general

MERS-CoV transmission occurs from multiple strains in other provinces of Saudi Arabia.
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