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The striatum is critical for controlling motor output. However, it remains unclear how striatal output neurons encode and facilitate
movement. A prominent theory suggests that striatal units encode movements in bursts of activity near specific events, such as the start
or end of actions. These bursts are theorized to gate or permit specific motor actions, thereby encoding and facilitating complex sequences
of actions. An alternative theory has suggested that striatal neurons encode continuous changes in sensory or motor information with
graded changes in firing rate. Supporting this theory, many striatal neurons exhibit such graded changes without bursting near specific
actions. Here, we evaluated these two theories in the same recordings of mice (both male and female). We recorded single-unit and
multiunit activity from the dorsomedial striatum of mice as they spontaneously explored an arena. We observed both types of encoding,
although continuous encoding was more prevalent than bursting near movement initiation or termination. The majority of recorded
units did not exhibit positive linear relationships with speed but instead exhibited nonlinear relationships that peaked at a range of
locomotor speeds. Bulk calcium recordings of identified direct and indirect pathway neurons revealed similar speed tuning profiles,
indicating that the heterogeneity in response profiles was not due to this genetic distinction. We conclude that continuous encoding of
speed is a central component of movement encoding in the striatum.
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Introduction
The striatum is implicated in controlling motor output and the
speed or vigor of movements (Kravitz et al., 2010; Isomura et al.,

2013; Barbera et al., 2016; Lemos et al., 2016; Yttri and Dudman,
2016; Sales-Carbonell et al., 2018). Although multiple correlates
of motion have been reported in striatal spike trains, it remains
unclear how the striatum selects actions and/or controls the
speed of actions. Two theoretical models have emerged. Accord-
ing to one, ensembles of striatal neurons encode and promote
specific components of movement, such that distinct popula-
tions of neurons fire bursts of activity at discrete points in motor
sequences, for example, the initiation or termination of the se-
quence (Jog et al., 1999; Schultz et al., 2003; Costa et al., 2004;
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Significance Statement

The striatum is a structure that is linked to volitional movements and is a primary site of pathology in movement disorders. It
remains unclear how striatal neurons encode motor parameters and use them to facilitate movement. Here, we evaluated two
models for this: a “discrete encoding model” in which striatal neurons facilitate movements with brief burst of activity near the
start and end of movements, and a “continuous encoding model,” in which striatal neurons encode the sensory or motor state of
the animal with continuous changes in firing. We found evidence primarily in support of the continuous encoding model. This may
have implications for understanding the striatal control of movement, as well as informing therapeutic approaches for treating
movement disorders.
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Barnes et al., 2005; Jin and Costa, 2010; Cui et al., 2013; Geddes et
al., 2018; Martiros et al., 2018). These bursts of activity are thought
to gate or permit specific actions and thereby facilitate chains of
motor sequences, possibly through disinhibition of downstream
structures (Mink, 1996).

Although consistent with recordings performed during goal-
directed tasks, deficiencies in this model have been noted (Robbe,
2018; Sales-Carbonell et al., 2018). First, striatal neurons respond
to stimuli unrelated to purposive actions, including passive move-
ments of limbs (Carelli and West, 1991; Coffey et al., 2016; Kulik et
al., 2017). Second, many striatal neurons contain information
about continuous movement variables, such as speed or acceler-
ation, without bursting at transition points (Kim et al., 2014;
Panigrahi et al., 2015; Rueda-Orozco and Robbe, 2015; Barbera et
al., 2016; Klaus et al., 2017; Markowitz et al., 2018; Sales-
Carbonell et al., 2018). Finally, burst firing is often weak or un-
detectable early in task learning when behavioral stereotypy is
low, even though animals perform similar actions during these
phases (Barnes et al., 2005; Jin and Costa, 2010). A second model
proposes that striatal neurons represent continuous motor vari-
ables and can appear to burst near specific actions due to rapid
changes in these variables around those actions (Rueda-Orozco
and Robbe, 2015; Markowitz et al., 2018; Sales-Carbonell et al.,
2018). This “continuous encoding model” suggests that ensem-
bles select actions and govern their speeds in an ongoing fashion,
through graded changes in firing. Continuous encoding of speed
has also been described in the midbrain (Puryear et al., 2010) and
cortex (Moran and Schwartz, 1999), which both project to the
striatum.

Here, we evaluated these two models by determining the rel-
ative contributions of discrete and continuous encoding of loco-
motion in the dorsomedial striatum (DMS) of mice. We
recorded single and multiunits from the DMS of freely moving
mice as they spontaneously explored an arena. We observed both
types of encoding, but a larger percentage of striatal neurons
participated in a continuous representation than in discrete sig-
naling near the start or end of locomotion. Although a large
literature links striatal firing to increased locomotion (Costa et
al., 2004; Shi et al., 2004; Yamin et al., 2013; Kim et al., 2014;
Rueda-Orozco and Robbe, 2015; Barbera et al., 2016; Parker et
al., 2018), most DMS units did not exhibit positive linear rela-
tionships between firing and locomotor speed but instead exhib-
ited nonlinear relationships that peaked across a range of speeds.
Based on opposing actions of the two populations of output pro-
jection neurons (Kravitz et al., 2010; Yttri and Dudman, 2016),
we tested whether direct and indirect pathway medium spiny
neurons (dMSNs and iMSNs) might be tuned to different loco-
motor speeds. To quantify this, we recorded population calcium
activity from dMSNs and iMSNs and found that the variability in
speed tuning was not explained by these populations. Finally, we
assessed whether nonlinear speed tuning was also present during
head-fixed constrained locomotion, and observed speed tuning
curves during this condition as well. Our results support the
“continuous encoding model” (Robbe, 2018), whereby DMS
neurons represent information about the ongoing sensory and
motor state of the animal with continuous changes in firing rate.

Materials and Methods
Experimental model and subject details
Male and female mice (C57BL/6 background, p40-p180) were main-
tained under standard conditions (12 h light/dark cycle, 23°C–25°C)
with mouse chow and water provided ad libitum. WT mice were used for
the in vivo electrophysiology experiments (n � 13). A2A-cre (n � 5),

D1-cre (n � 6), and WT (n � 3) mice were used in the photometry
experiment (Gong et al., 2007). Animal care and procedures were ap-
proved by the Animal Care and Use Committee of National Institute on
Diabetes and Digestive and Kidney Diseases and Washington University
in St Louis.

Method details
Array and fiber implantations. Mice were anesthetized with isoflurane
(2%–3% v/v for induction and 1% for maintenance) and placed in a
stereotaxic frame (Stoelting). Once anesthetized, the skull was exposed
by making a small incision, and holes were drilled for electrode implan-
tation. An array with 32 Teflon-coated tungsten microwires (35 �m
diameter; Innovative Neurophysiology) was implanted into the right
DMS (AP, 0.5 mm; ML, 1.5 mm; DV, �2.6 mm). For photometry mice,
500 nl of Cre-dependent GCaMP6s (AAVDJ-Ef1a-DIO-GCaMPs, 3.1 �
10 12 vg/ml) was infused and optic fiber cannulas (fiber: 200 �m core,
0.48 NA; Doric Lenses) were implanted in the right DMS (AP, 0.5 mm;
ML, 1.5 mm; DV, �2.6 mm). Virus was purchased from the UNC Vector
Core. After infusion, injector tips were left in place for an additional
5 min to encourage spread before injector withdrawal. Optic fibers and
electrode arrays were secured to skull with a thin layer of adhesive dental
cement (C&B Metabond, Parkell) followed by a layer of cranioplastic
cement (Stoelting). Stainless-steel head-bars for mice in Figure 6 were
attached to the canioplastic cement with UV-curable epoxy. Following
surgeries, mice were returned to home cages for at least 1 week for recov-
ery before any experiments progressed.

In vivo electrophysiology. Neurophysiological signals were transmitted
to an Omniplex neurophysiology system (Plexon) via a multiplexing
headstage (Triangle Biosystems M32 for the experiments in Figs. 1, 2, 3,
4, 5; Plexon digital headstage for the head-fixed experiments in Fig. 6).
Spike channels were acquired at 40 kHz with 16-bit resolution, and band-
pass filtered at 150 Hz to 3 kHz before spike sorting. Local field potential
signals were simultaneously digitized at 1 kHz. Single and multiple units
were discriminated using principal component analysis (Offline Sorter;
Plexon), using MANCOVA to determine whether single-unit clusters
were statistically distinct from multiunit clusters. Single units were fur-
ther classified into MSNs and interneurons based on spike waveform
shape, in that, if the trough-peak duration was �350 �s, the unit was
considered a putative interneuron, and otherwise a putative MSN. Mice
were recorded four times, and the recording with the largest number of
channels with unit activity was chosen for analysis.

Fiber photometry. A single optic fiber (200 �m core, 0.48 NA, Doric
Lenses) was used to transmit excitation and emission light. Mice were
plugged in with a zirconia mating sleeve. Blue light was generated by a
light-emitting diode (Plexon Plexbright 465 nm, 15–30 �W continuous
light). A dichroic mirror and 505–535 nm filter (FMC4 port minicube,
Doric Lenses) were used to parse emitted green fluorescent light, which
was measured with a photodetector (model 2151, Newport). Output
signals were captured, amplified, and recorded with a digital acquisition
system (Omniplex, Plexon). Fluorescence data were normalized and
converted to both Z scores and normalized change in fluorescence (df/F)
using a custom scripts run in NeuroExplorer.

Open field and head-fixed behavior
For open-field recordings, mice were plugged in and allowed to freely
explore a 30 cm � 30 cm open-field arena. Mice were all plugged in for at
least 3 times before the recording session, to habituate them to the weight
of the headstage and recording cable. Mice were videotaped overhead
with a camera recording video at 30 Hz, videos were processed in Noldus
Ethovision, and speed data were synchronized and aligned with the elec-
trophysiology data. For head-fixed recordings, mice were gradually ha-
bituated to being head-fixed over a period of 2–3 weeks. This started with
brief (1–2 min) sessions of head fixation, expanding to 30 – 60 min with
daily sessions over 2–3 weeks. The head fixation wheel was a custom
wheel (8 inches in diameter) mounted in an aluminum frame with bilat-
eral steel head fixation bars (National Institutes of Health Section on
Instrumentation). It was equipped with an infrared sensor mechanism
that exported a digital TTL pulse every 5 degrees of wheel rotation (0.6
cm of wheel distance). These TTL pulses were captured by the Omniplex
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electrophysiology system in real-time and processed offline to generate a
smoothed curve of wheel speed across the session. On the recording day,
mice were head-fixed and allowed to freely locomote for 30 – 60 min,
after which they were removed from the head fixation wheel and imme-
diately placed in an open field for an additional 60 min recording.

In vivo electrophysiology data analysis
Locomotion bout start and end responses. Start and end of locomotion
bouts were identified in a two-stage process. First, peaks in the speed
signal that broke 5 cm/s were identified to verify that the bout contained
locomotion. Next, we scanned backwards in time from this peak in 0.1 s
bins to identify the first time point �2 cm/s, which was used as the start
of the locomotion bout, and scanned forward in time to identify the last
time point �2 cm/s, which was considered the end of the locomotion
bout (for graphical representations, see Fig. 2A). To identify neurons that
increased firing near the start or end of locomotion, we exported the
average peristimulus time histogram of spiking of each unit around each
event from �10 to 30 s, in 0.1 s bins. We defined the period from �5 to
�2 s as “baseline” and �1 to 2 s as “signal.” We extracted the distribution
of firing rates in baseline period and scanned a moving window of 0.1 s
across the signal period, identifying units that had at least 3 consecutive
bins (i.e., 300 ms in a row) above the 95th percentile of the baseline
distribution. Permutation analyses were run identically, with the peris-
timulus time histogram data shuffled before each permutation. Python
analysis code and data are available at https://osf.io/dfxkp/.

Speed tuning of spiking units. Speed and spike rates for each unit were
binned into 0.1 s bins in Neuroexplorer and saved as CSV files for import
into Python 3.7. In Python 3.7, speeds were classified into 50 equally
spaced bins ranging from 5 to 15 cm/s, with a 0.2 cm/s bin width, using
the pandas.cut funtion. Data at speeds �5 cm/s were excluded from this
analysis. The firing rate within each speed bin was calculated for each
unit, and scatterplots were generated between speed and neural firing.
Both linear and quadratic regressions were performed on the resulting
data using numpy.polyfit, and regression statistics were saved for later
analysis. Significant fits were determined based on p � 0.01. Thirteen
units were excluded from analyses due to firing rates �0.001 Hz, as these
were overfit by the quadratic regression. Permutation analyses were run
1000 times with speed data shuffled before each permutation.

Speed predictions from spiking data. Both speed and spiking data were
binned into 0.1 s bins in Neuroexplorer and saved as CSV files for import
into Python 3.7. In Python 3.7, the data were rebinned into 10 s bins and
split into “training” and “testing” sets of 30 min each (additional analyses
were completed with different bin widths and training set sizes, which are
presented in Fig. 5 D, E). For average “per-mouse” spiking and photom-
etry predictions, quadratic regressions were run between speed and neu-
ral activity in the training set, and the resulting quadratic coefficients
were used to calculate the predicted speed from neural activity in the
testing set. For multiunit population predictions, firing rates of all single
and multiunits in the training data were regressed on velocity with a
multilinear regression (from the Python sklearn library). The resulting
regression coefficients were used to calculate predicted speed in the test-
ing data from firing rates of these same units. One constraint was applied
to the predicted speeds in all cases, in that negative predictions for speed
were set to 0 cm/s. The performance of the predictive modeling was
evaluated with linear regressions between predicted speeds and actual
speeds in the testing data to generate R 2 values and root mean square
error.

Histology. Following all experiments, mice were killed. Mice with elec-
trode arrays received electrolytic lesions (100 �A for 5 s, Ugo Basile
Lesion Making Device) to assist in identification of array placements.
Brains were removed and fixed in 10% formalin for 16 –24 h. Brains were
transferred to 30% sucrose in PBS for 2–3 d and sectioned at 40 �m on a
freezing microtome (Leica Microsystems). Sections were counterstained
with DAPI and mounted on slides for imaging with a slide-scanning
microscope (Olympus VS120) at 10�. Fluorescence areas from slide
scans were outlined in ImageJ (https://imagej.nih.gov/ij/) and positioned
over a corresponding atlas section in Illustrator (Adobe). Microwire
array positions were identified by damage to the striatum around the
lesion.

Quantification and statistical analysis
Statistical analysis was performed using Python 3.7 or GraphPad
Prism (version 8.1, GraphPad Software). Fisher’s exact test, two-
tailed paired t tests, one-way repeated-measures ANOVAs, or two-way
repeated-measures ANOVAs were used when appropriate and as stated
in the Results and figure legends. ANOVAs were performed with Tukey’s
multiple post hoc comparisons. Results were considered significant at an
� of p � 0.05.

Data and software availability
Python analysis code and data are available at https://osf.io/dfxkp/.

Results
Striatal firing reflects both discrete and continuous changes
in locomotion
To understand the behavior of mice while exploring the open
field, we video recorded 4 WT mice (C57BL6 background) for 1 h
in a 30 cm square open-field and used a machine learning-based
behavioral classifier (Noldus Information Technologies) to clas-
sify behavior into five categories: digging, grooming, rearing, resting,
and walking (Fig. 1A–C). We compared the speed distribution of
each behavior, determining that speeds �5 cm/s contain a mix of
all five behaviors, whereas speeds �5 cm/s are �92% locomotion
(Fig. 1C). We defined all data at speed �5 cm/s as locomotion for
further analyses. We recorded neural activity from 9 additional
mice who were implanted with 32 electrode microwire arrays in
the dorsal medial striatum (Fig. 1D) and recorded while they
explored the open field for 1 h. A total of 50 single units and 168
multiunits were recorded (1 recording per mouse; Fig. 1E). Based
on waveform shape (Berke et al., 2004), single units were classi-
fied into 7 putative interneurons and 43 putative MSNs (Fig. 1F;
see Materials and Methods).

We asked two questions regarding the relationships of spiking
activity and locomotion: (1) Do striatal units exhibit discrete
changes in firing near the start and end of locomotion in the open
field, as observed previously in operant tasks? (2) Does firing of
striatal units correlate with speed, independently of discrete start
or end responses? To evaluate the first question, we identified
bouts of locomotion (�5 cm/s), as well as the start and end of
each bout (defined as when the speed broke 2 cm/s; Fig. 2A). We
tested each recorded single and multiunit for a phasic increase in
firing near this event (n � 211), using a procedure based on that
used by Jin and Costa (2010). Thirty-eight of 211 (18%) recorded
units increased firing near the start of locomotion (Fig. 2B,C). To
evaluate the stringency of our detection criteria, we performed a
permutation analysis in which we shuffled the speed data 1000
times, detecting an average of 2.9% responsive neurons. In sim-
ilar analyses near locomotion end, 31 of 211 (15%) units in-
creased firing near this event (Fig. 2E,F). Again, a permutation
analysis detected 2.4% of units as responsive. From these analy-
ses, we conclude that: (1) striatal units exhibit discrete increases
in firing near the start and end of locomotion in the open field;
and (2) changes in firing of these neurons closely resemble the
rapid changes in speed near the start and end of locomotion (Fig.
2C). This supports the possibility that discrete changes in firing
may reflect continuous representations of motor parameters
such as speed, a view that has been previously advanced (Rueda-
Orozco and Robbe, 2015; Sales-Carbonell et al., 2018).

To evaluate this possibility, we quantified relationships be-
tween striatal firing rates and locomotor speed in the open field in
a continuous manner. Based on literature reports of linear rela-
tionships between striatal activity and movement speed (Costa et
al., 2004; Shi et al., 2004; Kim et al., 2014; Panigrahi et al., 2015;
Rueda-Orozco and Robbe, 2015; Bartholomew et al., 2016;
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Figure 1. In vivo recordings of neural activity during free behavior in the open field. A, Example track plot of open-field behavior. B, Histogram analysis quantifying amount of distinct behaviors
occurring at different speeds. C, Proportion of 1 h open-field time spent engaging in different behaviors. D, Electrode array placements. �, Histological estimate of center of array. Image adapted
from Franklin and Paxinos (2019). E, Number of recorded striatal units, including multiunits, putative MSNs, and putative interneurons. F, Classification of single units into putative MSNs and
interneurons by waveform shape and firing rate.

Figure 2. Striatal units exhibit phasic responses near starts and ends of locomotion. A, Example speed trace with lines indicating periods of locomotor behavior and start and end criteria (see
Materials and Methods). B, Example striatal unit firing and speed near locomotion start. C, Average firing rate and speed for striatal units which do and do not exhibit significant modulation near
locomotion start. Shaded regions represent �95% CI. D, Permutation analysis showing the number of units with significant phasic responses near locomotion start after shuffling speed data
1000�. Black dashed line indicates the shuffled mean. Red dashed line indicates the unshuffled number (Fisher’s exact test for locomotion starts, shuffled average of 6.1 of 211 vs 38 of 211, p �
0.0001, locomotion ends, 5.1 of 211 vs 31 of 211, p � 0.0001). E–G, Same analysis and graphical representation as in B–D, but for locomotion end.
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Sales-Carbonell et al., 2018), we first modeled these relationships
with linear correlations. Sixty-two (29%) of the recorded units
exhibited a significant linear correlation with movement speed,
with a slightly larger number of units firing more to low speeds of
locomotion (negative slope) than to high speeds (Fisher’s exact
test for direction of linear relationship, 38 of 62 negative vs 24 of
62 positive, p � 0.07; Fig. 3F). Therefore, the relationship be-
tween striatal spiking and speed was not monotonically positive,
although this distinction was not quite significant.

Individual striatal units are tuned to a range of
locomotor speeds
We also observed many neurons with nonlinear relationships
that fired most strongly to intermediate locomotor speeds (Fig.
3A,B). We tested whether striatal units would exhibit “speed
tuning,” similar to patterns detected in brain areas that project to

the striatum (Moran and Schwartz, 1999; Puryear et al., 2010). To
test this, we fit these relationships with quadratic regressions,
which revealed 104 (52.5%) units with significant quadratic rela-
tionships between spiking and speed (Fig. 3B). The peak firing of
individual units tiled the entire range of speeds, with the largest
proportion peaking at low-speed locomotion (5–7 cm/s; Fig. 3B).
We validated this quadratic regression approach with a permu-
tation analysis in which we shuffled the speed data and recalcu-
lated the curves 1000 times. This captured a significantly lower
number of quadratic relationships (mean from shuffled data �
3.8%; Fig. 3C). These analyses argue against a monotonically
increasing firing rate with increased speed of locomotion and
highlight the range of locomotor speeds to which individual units
are tuned. To evaluate this property with an orthogonal analysis,
we compared average firing rates of all recorded units across the
entire range of open field speeds (0 –15 cm/s; Fig. 3D). By

Figure 3. Striatal firing correlates with locomotion speed. A, Example striatal units with significant quadratic relationships between firing rate and speed (speed tuning curves). Shaded regions
represent �95% CI. B, Significant speed tuning curves (n � 104) for MSNs overlaid with bar graphs reflecting the number of units whose tuning curves peak in given speed range. C, Permutation
analysis showing the number of striatal units with significant nonlinear regressions after shuffling speed data. Black dashed line indicates the shuffled mean. Red dashed line indicates the unshuffled
number (Fisher’s exact test, 7.52 of 198 vs 104 of 198, p � 0.0001). D, Average firing rates of all striatal units from 0 to 15 cm/s. Data are mean �95% CI. Shaded region represents locomotion speed
range. E, Average firing rates of striatal units during five different locomotion speed ranges. One-way repeated mixed-model ANOVA, main effect of speed (n � 211, F(4,773) � 11.94, p � 0.0001).
F, Venn diagram showing number of striatal units with significant phasic responses near start and ends of locomotion bouts and number of striatal units with significant nonlinear speed correlations.
Dashed red line indicates number of striatal units with significant linear correlations. Fisher’s exact test, 104 of 211 speed correlated versus 61 of 211 start/end-modulated, p � 0.001. Box plots:
box represents 25–75 percentiles; line indicates median. *p � 0.05 (significant post hoc comparison). ns, Not significant at p � 0.5.
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repeated-measures ANOVA, there was a
significant effect of speed across all units
(n � 211, F(4,773) � 11.94, p � 0.0001). In
post hoc testing (Tukey’s multiple-com-
parison test), there was a significant in-
crease in spiking between 0 –1 and 1–2
cm/s (p � 0.01), but not between 1–2 and
2–5 cm/s, 2–5 and 5–10 cm/s, and 5–10
and 10 –15 cm/s (all p � 0.48; Fig. 3D,E).

Finally, we counted the number of re-
corded units that exhibited each type of
encoding. A large proportion of MSNs ex-
hibited at least one form of locomotion
encoding (127 units, 60%), with more neu-
rons participating in continuous (qua-
dratic) than discrete (Movement Start/
Movement End responses) encoding
(Fisher’s exact test, 104 of 211 vs 61 of 211,
p � 0.0001; Fig. 3F). In addition, a large
group of neurons (n � 66) exhibited cor-
relations with speed without any detect-
able increase near the locomotion start or
end (Fig. 3F). Finally, more than half of
the neurons that exhibited discrete signal-
ing near the locomotion start or end also
exhibited correlations with speed (38 of
61). Thus, our data suggest that striatal activity contains a con-
tinuous representation of speed, and that some neurons that ap-
pear to exhibit phasic responses to locomotion start or end may
indeed be reflecting this continuous representation.

Population calcium activity of dMSNs and iMSNs similarly
encode speed
Based on the opposing actions of dMSNs and iMSNs in govern-
ing motor output (Kravitz et al., 2010; Meng et al., 2018; Bariselli
et al., 2019), we asked whether the diversity in speed tuning might
be explained by opposing activity in these two populations.
Specifically, we asked whether dMSNs would be tuned to higher-
speed locomotion and iMSNs tuned to rest or lower-speed loco-
motion. To evaluate this prediction, we used fiber photometry to
record bulk calcium activity from each population as mice ex-
plored an open field (Fig. 4A–C). The average relationship be-
tween activity and speed varied positively in both populations
(Fig. 4D), with both resembling that of the total spiking popula-
tion (Fig. 3D,E). By two-way repeated-measures ANOVA, we
detected a significant effect of speed across the two GCaMP6s-
expressing groups (F(1.177,10.60) � 6.771, p � 0.022), but no sig-
nificant effect of genotype or genotype � speed interaction (both
p � 0.44). With post hoc tests (Tukey’s multiple-comparisons
tests), the increase in speed was driven by an increase in fluores-
cence between 0 –1 cm/s and 1–2 cm/s in both groups (p � 0.05
for both), without further increases in fluorescence across the
other speeds (p � 0.55 for all). In conclusion, the diversity in
speed tuning is not explained by differential tuning in dMSNs
versus iMSNs, at least at the population level.

Population codes, not average activity, predict speed
As the average striatal population activity did not differentiate
between different speeds of locomotion (Fig. 3D,E), we hypoth-
esized that the speed tuning of individual units may contain more
reliable information on speed. To evaluate this, we performed a
speed decoding analysis (see Materials and Methods). Here, we
calculated the coefficients of quadratic regression between spik-

ing and speed in the first 30 min of data (training set) and tested
how accurately those coefficients predicted the animal’s speed in
the second 30 min of data (testing set). We first performed this
analysis on the average of all unit activity for each session which
weakly predicted speed (average R 2 � 0.25, r � 0.41; Fig. 5A–C).
Next, to evaluate our hypothesis that a population code would
better predict speed than the simple population average in each
session, we performed a multilinear regression that included the
spiking activity of all units as regressors, and speed as the depen-
dent variable. This model performed significantly better than the
average population firing rate (average R 2 � 0.52, r � 0.70, both
p � 0.01 vs predictions from average Hz; Fig. 5A–C). Two exam-
ples comparing this model to the prediction obtained from aver-
age spiking are presented in Figure 5C.

To better understand variables that might influence speed pre-
dictions, we varied (1) the bin size and (2) the size of the held-out
testing set. Larger bin sizes performed better, suggesting that stri-
atal population codes are better at predicting longer-lasting states
of locomotion than second-by-second changes in speed (Fig.
5D). Not surprisingly, the predictive model also performed better
with larger periods of training data, although it performed sur-
prisingly well when trained on as little as 10 min of data (Fig. 5E).
Finally, we ran the quadratic regression prediction on the popu-
lation calcium fluorescence of dMSNs and iMSNs. The predictive
ability of these traces was also weak (all average R 2 � 0.10; Fig.
5F), similar to that of average spiking. We conclude that popula-
tion codes are more reliable for decoding speed information than
average firing rates in the striatum, or average activity of either
population of projection neurons.

Nonlinear speed tuning is also present during head-
fixed locomotion
To examine continuous coding in a more constrained behavioral
context, we performed an additional set of recordings in animals
that were first head-fixed on a wheel and then detached and al-
lowed to explore an open field (Fig. 6A). Our primary question
was whether a range of speed tuning is also present during head-

Figure 4. Direct and indirect pathway activity has similar relationships with locomotion speed. A, Example histology of
GCaMP6s expression in the dorsomedial striatum. B, Schematic of the fiber photometry recordings. C, Example calcium traces of
A2A-GCaMP6s, D1-GCaMP6s, and eYFP photometry signals. D, Average fluorescence across range of speeds for all genotypes. Data
are mean �95% CI. Shaded region represents locomotion speed range. E, Average fluorescence of each genotype during five
different locomotion speed ranges. Box plots: box represents 25–75 percentiles; line indicates median; black triangles represent
means. *p � 0.05 (significant post hoc comparison). ns, Not significant at p � 0.5.
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fixed locomotion. We recorded 34 single and multiunits from 4
mice in this experiment. As expected from prior work (Kim et al.,
2014; Sales-Carbonell et al., 2018), we observed discrete changes
in firing near the start and end of locomotion on the head-fixed
wheel (Fig. 6B), with the average spiking closely resembling the
speed profile of the wheel near both events. We performed a
quadratic regression between striatal firing rate and wheel run-
ning speed and noted that 13 of 34 units (38%) exhibited signif-
icant speed correlations that peaked at a range of speeds (Fig. 6C),
similar to the diverse tuning curves observed previously in the
open field (Fig. 3A). Next, we analyzed these same units in the
open-field period of the recording, and identified 16 units (47%)
that exhibited speed tuning, with 7 (21%) exhibiting speed tun-
ing in both settings. As the majority of speed correlated units (15
of 22, 68%) exhibited speed correlations in one but not both
locomotor contexts (Fig. 6D), our data lend additional support to
the idea that striatal units likely do not represent speed in an
absolute sense, but rather represent speed in a multiplexed,
context-dependent manner that may include sensory and kine-
matic information relevant to the ongoing context (Turner and
Desmurget, 2010; Rueda-Orozco and Robbe, 2015). Supporting
the concept of context-dependent signaling in these units, aver-
age firing rates of striatal units were significantly higher in the
open-field period relative to the head-fixed period (Fig. 6E,F).

Discussion
In the current study, we evaluated two hypotheses for striatal
motor encoding in mice exploring an open field, a condition that
does not produce highly stereotyped sequences of actions nor
expose animals to predictable stimuli that can entrain neuronal

firing. While there were DMS units that showed discrete changes
in firing near the start and end of locomotion, most of the units
exhibited graded changes in firing that correlated with locomotor
speed. The relationship between the continuous firing patterns
and speed were nonlinear and predominately tuned to low-speed
walking; and the population activity, but not average multiunit
firing, was predictive of locomotor speed. Additionally, when DMS
units were analyzed in mice that were head-fixed to a wheel, which
limited the sequences of actions they could undertake, before
exploring an open field, similar speed tuning was observed. Thus,
our results support a role for the DMS in representing ongoing
motor and sensory information in a continuous manner and
highlight limitations in some previous approaches to assessing
motor encoding in the striatum.

To evaluate both hypotheses in mice during unconstrained
behavior, mice were recorded during an open field task. The task
was chosen because it lacks experimenter-imposed structure or
cues, which means the mice were free to perform movements that
were unpredictable and heterogeneous. To reduce the variabil-
ity of movements whose speeds were assessed, we only ana-
lyzed periods when the animals were walking (defined as
“locomotion”; Fig. 1 D, E). While other methods categorized
movements into behavioral syllables or distinct subactions
(Klaus et al., 2017; Markowitz et al., 2018; Meng et al., 2018),
we focused on speed of locomotion in this study. This permit-
ted us to survey the continuous encoding of speed across a
single behavioral category (e.g., locomotion) versus specific
types of movements which may not occur at multiple speeds
(e.g., darting, digging).

Figure 5. Population codes, not average activity, predict speed. A, Prediction fits (R 2) for measured speeds using the average firing rate of all striatal units from each mouse or a multilinear
regression of the same units per mouse. Paired two-tailed t test, p � 0.0007. B, Root mean square error (RMSE) for predicted speeds using average firing rate or a multilinear regression of all units
from each mouse. Paired two-tailed t test, p � 0.0055. C, Example speed predictions from 2 mice, comparing speed predicted by the average firing rate versus the multilinear regression. Orange
dashed lines in A and B indicate these examples in the larger dataset. D, E, Average multilinear regression prediction fits (n � 9 mice, 9 sessions) generated by varying the bin width of the training
data (D), or duration of training dataset (E). D–E, Dashed blue lines indicate semilog fits. Dashed red lines indicate parameters used to generate fits. F, Linear regression predictions of speed from
photometry data, one-way ANOVA (F(2,11) � 1.023, p � 0.39). Box plots: box represents 25–75 percentiles; line indicates median; black triangles represent means. ns, Not significant at p � 0.5.
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Fitting our data with linear and quadratic regressions uncov-
ered surprising relationships between individual spiking and lo-
comotion: although several previous recordings in rodent dorsal
striatum have reported correlations between firing rates of indi-
vidual striatal units and speed (Costa et al., 2004; Kim et al., 2014;
Panigrahi et al., 2015; Rueda-Orozco and Robbe, 2015; Barbera et
al., 2016; Sales-Carbonell et al., 2018), or population activity and
speed (Barbera et al., 2016; Bartholomew et al., 2016; Parker et al.,
2018), only one reported negative linear correlations (Sales-
Carbonell et al., 2018) and one preprint examined both linear and
nonlinear relationships between movement speed and dorsolat-
eral striatal firing (Taouali et al., 2017). The fact that we observe
many units that fire maximally during low-speed locomotion may
be attributable to methodological differences between studies. We
were able to sample volitional activity continuously and in an unbi-
ased manner by using open-field behavior, whereas prior reports
either focused only on active periods triggered by motivation or
sensory cues (Costa et al., 2004; Kim et al., 2014; Panigrahi et al.,
2015; Rueda-Orozco and Robbe, 2015; Sales-Carbonell et al.,
2018); restricted correlations to peak locomotor speeds (Kim et

al., 2014; Panigrahi et al., 2015); or recorded over a smaller range
of locomotor speeds (Barbera et al., 2016; Parker et al., 2018).
Therefore, these studies may have been biased toward specific
ranges of movement speed, as determined by the task. Finally, the
presence of the nonlinear speed tuning was not attributable to
our specific behavioral task, as striatal units recorded from mice
constrained on a wheel also exhibited speed tuning (Fig. 6C,D).

While the continuous encoding was present in a larger pro-
portion of units, we also observed evidence of discrete encoding.
Twenty-nine percent (61 of 211) of units displayed average firing
rates that were modulated near starts and ends of locomotion,
but most of those units (63%, 38 of 61) had firing that also cor-
related with continuous speed. Thus, perhaps previous reports
that only focused on discrete encoding overrepresented or misiden-
tified some striatal neurons as signaling discrete motor change rather
than continuous motor parameters. However, given that we also see
a smaller percentage (10%, 23 of 61) that only display the phasic
modulation without speed tuning, it also likely true that some
neurons signal changes in motor state and/or are tuned to other
kinematic parameters. This is a similar argument to that which

Figure 6. Comparison of speed tuning during head-fixed and free-moving locomotion. A, Schematic of experimental setup. A total of 34 units were recorded in 4 mice while they were head-fixed
on a wheel for 30 – 60 min followed by 60 min of free movement in an open field. B, Average firing rates and speed for striatal units which do and do not exhibit significant modulation near
locomotion starts and stops on the wheel. Shaded regions represent �95% CI. C, Five example striatal units with significant quadratic relationships between firing rate and speed (speed tuning
curves) recorded while mice were on the wheel. Shaded regions represent �95% CI. D, Venn diagram showing the overlap between the number of striatal units exhibiting speed tuning during the
head-fixed and free-moving portions of the session. E, Heatmap of firing rate of all recorded units for 30 min on head-fixed wheel followed by 30 min of open-field exploration (top), and median
firing rate across these conditions (bottom). F, Average firing rates of all recorded striatal units during the head-fixed and free-moving portions of the session.
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Robbe and colleagues have previously asserted in their character-
ization of continuous variables during a complex behavior
(Rueda-Orozco and Robbe, 2015; Sales-Carbonell et al., 2018).
Finally, there also may be regional differences in speed correla-
tions, as our recordings were performed in the dorsomedial stria-
tum, whereas other studies were done in dorsolateral or ventral
striatum.

Consistent with previous reports, we observed higher average
population firing during locomotion compared with rest (Shi et
al., 2004; Yamin et al., 2013; Barbera et al., 2016; Parker et al.,
2018). However, the average population firing rate did not in-
crease monotonically with increasing speed (Fig. 3D,E). Average
firing rates, and population calcium activity of iMSNs or dMSNs,
increased between 0 –1 cm/s and 1–2 cm/s but largely plateaued
�2 cm/s (Figs. 3D,E, 4D,E). Similar plateaus are apparent in
other reports (Barbera et al., 2016; Parker et al., 2018), but their
significance was not explored. Here, we show that this plateau is
caused by the summation of diverse tuning curves in individual
striatal units, many of which were tuned to low and moderate
speed locomotion (Fig. 3A,B). The distinct tuning profiles reveal
diverse continuous encoding at the single-neuron level and sug-
gest that there may be ensembles that support motor behavior in
a speed-dependent manner, which may provide contextual guid-
ance for specific actions or behavioral syllables (Kravitz and Peo-
ples, 2008; Klaus et al., 2017; Markowitz et al., 2018).

To explore whether such a population code could be used by
downstream structures to infer locomotor speed, we assessed the
decoding accuracy of multiple readouts of striatal activity. We
found that the decoding accuracy of a multilinear regression analysis
performed similarly to machine learning approaches used by oth-
ers in the literature (Barbera et al., 2016; Parker et al., 2018; Grit-
ton et al., 2019). Our approach differed from previous
approaches in several ways. First, we did not predict speed within
interleaved periods of held-out data but instead predicted speed
from testing data that were recorded after the training data. For
certain applications, this approach is beneficial, as it can predict
speed on novel data in real time. Second, the relatively simple
multilinear regression approach lends itself to rapid decoding with-
out requiring large computational overhead, which can again be
useful for real-time analyses. Finally, we explored a range of de-
coding bin sizes and found that striatal population codes were
generally not accurate for predicting speed with single-second
resolution but did better at predicting speed across longer time-
scales (10s of seconds). This may have an important implication
for applications that attempt to decode speed from striatal spike
trains. Our multiple regression analyses reinforce the idea that
downstream structures likely rely on a population code, com-
posed of both subpopulations, that retains spike timing and rate
information (Markowitz et al., 2018; Meng et al., 2018).

Despite its involvement in motor control, it remains unclear
how the striatum selects actions and governs the speed of these
actions. Here, we evaluated two prominent models for motor
encoding in the striatum and observed evidence in support of a
population code which represents context and speed of locomo-
tion with continuous changes in firing rate.
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