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1  | INTRODUC TION

Bone metabolism including osteoclasts-mediated bone resorption 
and osteoblasts-mediated bone formation is a lifelong process oc-
curring within cancellous as well as cortical bones. Bone resorption 

starts with recruitment of osteoclasts to mineralized bone tissues and 
leads to acidification of extracellular microenvironment. Osteoclasts 
dissolve hydroxyapatite mineral crystals by producing hydrogen 
ions and digesting organic bone matrix via synthesis of hydrolytic 
enzymes, both resulting in calcium transfer from bone tissue into 
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Abstract
Bone metabolism is a lifelong process that includes bone formation and resorption. 
Osteoblasts and osteoclasts are the predominant cell types associated with bone 
metabolism, which is facilitated by other cells such as bone marrow mesenchymal 
stem cells (BMMSCs), osteocytes and chondrocytes. As an important component in 
our daily diet, fatty acids are mainly categorized as long-chain fatty acids including 
polyunsaturated fatty acids (LCPUFAs), monounsaturated fatty acids (LCMUFAs), 
saturated fatty acids (LCSFAs), medium-/short-chain fatty acids (MCFAs/SCFAs) as 
well as their metabolites. Fatty acids are closely associated with bone metabolism 
and associated bone disorders. In this review, we summarized the important roles 
and potential therapeutic implications of fatty acids in multiple bone disorders, re-
viewed the diverse range of critical effects displayed by fatty acids on bone me-
tabolism, and elucidated their modulatory roles and mechanisms on specific bone cell 
types. The evidence supporting close implications of fatty acids in bone metabolism 
and disorders suggests fatty acids as potential therapeutic and nutritional agents for 
the treatment and prevention of metabolic bone diseases.
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blood.1,2 Bone formation is initiated by bone marrow mesenchymal 
stem cells (BMMSCs) migrating from vascular channels circulation to 
bone surface. Osteoblasts deposit organic bone matrix and regulate 
its mineralization and eventually differentiate into osteocytes that 
are embedded in the cavities of mineralized matrix.2,3 In addition to 
osteoclasts, BMMSCs and osteoblasts, other bone cell types partici-
pating in bone metabolism include macrophages, surface bone-lining 
cells, chondrocytes as well as osteocytes (Figure 1).4-10

Accumulating evidence has established essential roles of fatty 
acids in bone metabolism 11 (Table 1). Categorization of fatty acids 
involved in bone metabolism has been reviewed by Natalia S. 
Harasymowicz et al12 In general, ω-3 long-chain polyunsaturated 
fatty acids (LCPUFAs) are a group of well-known fatty acids obtained 
from diet and supplemented via in vivo synthesis,13 and eicosapen-
taenoic acid (EPA), alpha-linolenic acid (ALA) and docosahexaenoic 
acid (DHA) are the three major representatives of ω-3 LCPUFAs. 
ω-3 LCPUFAs could mediate bone metabolism via processes includ-
ing lipid oxidation, calcium absorption and prostaglandin synthe-
sis,14 and they can exert beneficial effects on bone remodelling by 
inhibiting osteoclast activity and enhancing osteoblast activity.15 
Several studies have investigated the therapeutic properties of ω-3 
LCPUFAs. By promoting bone formation, ω-3 LCPUFAs significantly 
affect peak bone mass,16 increase bone calcium levels as well as bone 
mineral content (BMC) and density.17-20 Therefore, they represent a 
non-pharmacological strategy for preventing bone loss and acceler-
ating fracture healing 21 and thus to reduce risks of osteoporosis and 
rheumatoid arthritis.16,22,23 In addition, ingestion of ω-3 LCPUFAs 
eliminates adriamycin- or cyclophosphamide-induced toxicity in bone 
marrow and bone tissues, suggesting potential roles of ω-3 LCPUFAs 
in combating side effects of specific bone-targeted drugs.24

Long-chain monounsaturated fatty acids (LCMUFAs) such as ω-5, 
ω-7 and ω-9 categories are commonly recognized as potential agents 

against osteoporosis and other osteolytic diseases. They promote 
bone formation and inhibit bone degeneration and thereby facili-
tate bone metabolism. By contrast, long-chain saturated fatty acids 
(LCSFAs) might negatively affect bone metabolism. Intake of com-
mon dietary SFAs such as lauric acid (LA, C12:0), myristic acid (MA, 
C14:0), palmitic acid (PA, C16:0) or stearic acid (SA, C18:0) might 
initiate inflammatory osteoarthritis and obesity.25-27 Moreover, 
medium-chain fatty acids (MCFAs) such as capric acid (CA) have 
been reported to suppress osteoclastogenesis and thereby allevi-
ate bone resorption. Short-chain fatty acids (SCFAs)28-30 including 
acetate, butyrate and propionate have been suggested to inhibit 
bone resorption and combat inflammation. As a result, SCFAs are 
promising in the prevention of inflammatory bone loss and arthri-
tis. Furthermore, fatty acid derivatives such as lipoxin A4 (LXA4) and 
resolvin E1 (RvE1) have also been involved in bone resorption atten-
uation. Therefore, considering large quantities of fatty acids in our 
daily diets, it is worthwhile to understand influences of fatty acids 
on bone metabolism and the underlying mechanisms, for further ex-
ploring their beneficial therapeutic applications in a wide variety of 
metabolic bone disorders.

2  | IMPLIC ATIONS OF FAT T Y ACIDS IN 
BONE DISE A SES

2.1 | Periodontitis

Periodontitis is a chronic bacterial infection disease characterized 
by primary gingival and extended alveolar bone inflammation, ac-
companied by periodontal tissue damage 31,32 with connective tis-
sue degradation and even tooth loss.33 Consistent links between 
fatty acids and periodontitis have been established by evidence 

F I G U R E  1   The microenvironment within bone. This figure displays the composition of bone microenvironment at cellular level. BMMSCs 
are multipotent cells capable of differentiating into multiple cell types such as osteoblasts. Osteoblasts are mononuclear cells responsible 
for bone formation. Bone lining cells are flat-shaped cells located along the bony surfaces, maintaining their proliferative ability into other 
osteogenic cells. Macrophages are common precursors of osteoclasts and bone marrow-resident macrophages in bone tissue. Osteoclasts 
are multinucleated giant cells with bone resorptive activity. Osteocytes are cells reside in bone lacunae and support bone structure, 
also with capacity to regulate the activities of both osteoclasts and osteoblasts. Chondrocytes are the main cartilage cell type existing 
in cartilaginous interstitium and cartilage lacuna. All these cell types existing in microenvironment within bone are implicated in bone 
homeostasis and thereby bone diseases
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derived from animal and human subjects. Investigations in animal 
models from different groups such as Bendyk et al34 and Azuma 
et al35,36 come to conclusions that tissue levels of ω-3 LCPUFAs 
is inversely associated with periodontic alveolar bone loss,34 and 
ω-3 LCPUFAs EPA metabolite RvE1 is also established to enhance 
bone formation and reduce bone resorption in rabbit periodonti-
tis models.37 As for the anti-inflammatory effects, LCMUFAs oleic 
acid (OA) exhibits anti-inflammatory potentials to decrease alveolar 
bone loss, while LCSFAs PA shows contrary effects with elevated 
tumour necrosis factor α (TNF-α) levels in obesity mice models,38 
suggesting that the anti-inflammatory potentials of fatty acids in 
periodontitis might be varied based on specific fatty acids types. In 
human subjects, increased concentrations of specific SCFAs (lactic 
acid, propionic acid, butyric acid, isovaleric acid) have been found 
in the gingival fluid of periodontitis patients, demonstrating a pos-
sible association between SCFAs and inflammatory alveolar bone 
loss.39,40 Moreover, a preliminary clinical study by El-Sharkawy et 
al suggests that dietary supplementation of ω-3 LCPUFAs might 
have therapeutic values against periodontitis.41-45 However, there 
are also clinical investigations report that benefits of dietary ω-3 
LCPUFAs might not be applied to periodontitis prevention and 
treatment.44,46

In mechanism, fatty acids might exert effects on periodontitis 
pathogenesis and intervention via direct and indirect mechanisms. 
Fatty acids could directly affect periodontitis-associated bone de-
struction. LCSFAs such as PA could trigger P gingivalis-induced alveo-
lar bone loss directly.31 In benefit, EPA metabolite RvE1 could target 
BLT1 receptors in osteoclasts to inhibit osteoclast fusion and matu-
ration, and RvE1 can induce the release of osteoprotegerin (OPG) to 
antagonize the proresorptive role of osteoclast-stimulating receptor 
activator of nuclear kappa-β ligand (RANKL), and thus facilitates the 
prevention of alveolar bone loss and enhances periodontal bone re-
generation in periodontitis patients.47 The indirect effects of fatty 
acids in periodontitis are mainly through inflammatory response. 
Studies have shown that LCSFAs (such as PA) at high levels in plasma 
may facilitate P gingivalis-induced chemokine production in human 
gingival fibroblasts and further promote inflammatory response in 
periodontium.31 PA-induced chemokine secretion in human gingival 
fibroblasts could be inhibited by LCPUFAs (such as DHA), and such 
effects presumably involving the suppression of toll-like receptor 
(TLR) dimerization as well as nuclear factor-kappa B (NF-κB) activa-
tion.48 In addition to exert effects on chemokine, fatty acids such as 
RvE1 could also act on inflammatory cells by enhancing the migra-
tion of monocytes and neutrophils and promoting the clearance of 
apoptotic neutrophils to enhance pro-inflammatory response.31 Last 
but not the least, ω-3 fatty acids such as DHA and EPA exhibit ex-
tensive antibacterial effects against putative periodontal pathogens 
including F nucleatum and P gingivalis, and SCFA butyrate derived 
from anaerobic bacterial metabolism could inhibit the differentiation 
of gingival fibroblasts to promote chronic periodontitis.49 Given that 
refractory periodontitis significantly decreases the life quality of pa-
tients, studies investigating the interaction between fatty acids and 
periodontitis are required to develop novel intervention strategies.Fa
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2.2 | Osteoporosis

Osteoporosis, marked by low bone mineral density (BMD) and de-
teriorated bone tissue microarchitecture, contributes to a high inci-
dence of bone fracture on average up to 50% of women > 50 years.50 
Osteoporosis is mainly caused by excessive bone resorption result-
ing from imbalance between overactive osteoclasts and inactive os-
teoblasts.51,52 Hence, inhibiting bone resorption or promoting bone 
formation are promising strategies for osteoporosis prevention and 
treatment.53 It has been well acknowledged that osteoporosis is as-
sociated with levels of fatty acid in bone microenvironment.54 As 
reviewed earlier by Salari et al,55 investigations conducted in humans 
have shown inconsistent correlations between fatty acids and oste-
oporosis, while studies in animal models have confirmed that supple-
mentation of ω-3 LCPUFAs alleviates osteoporosis by suppressing 
bone breakdown, promoting calcium absorption from diet, reducing 
prostaglandin E2 (PGE2) production and increasing skeletal cal-
cium.56 In mechanism, ω-6 LCPUFAs intake results in a high ratio of 
ω-6 versus ω-3 LCPUFAs, and thus facilitating osteoporosis by pro-
moting low-grade chronic inflammation and regulating MSC lineage 
commitment.57 ω-3 LCPUFAs inhibit osteoclastogenesis, decrease 
PGE2 content, and thus increasing BMD to benefit osteoporosis pre-
vention and alleviation.51,58 In addition, fatty acids such as palmitate 
could enhance energy generation for osteoblast differentiation, thus 
accelerating bone formation.52 Moreover, since LCPUFAs are highly 
prone to reactive oxygen species (ROS)-induced oxidative damage, 
adoption of antioxidant CoQ as adjuvant could eliminate the disad-
vantages of LCPUFAs during osteoporosis therapeutics.59,60

Estrogen deficiency-induced postmenopausal osteoporosis is the 
most common type of osteoporosis. Along with decrease in estrogen 
levels, reduction in OPG delays osteoblast maturation and attenuates 
bone formation61; also, drop in OPG/RANKL ratio enhances osteo-
clast differentiation and promotes bone resorption and eventually 
results in bone loss.47 Moreover, endogenous fatty acids could serve 
as energy sources of skeletal and bone marrow cells to contribute 
to postmenopausal women bone health,62 while exogenous supply 
of fatty acids might favour or harm postmenopausal women bone 
condition. As illustrated by animal models, supplementation of fatty 
acids such as and SCFAs63 and ω-3 LCPUFAs56 substantially reduces 
bone loss and restores bone mass and thus ameliorates postmeno-
pausal bone loss in ovariectomized mice, and the protective roles 
of SCFAs on bone loss were mainly attributed to the suppression of 
osteoclast differentiation and function.64 According to data derived 
from human subjects, although earlier investigations indicate that 
ω-3 LCPUFAs intake plays positive roles in enhancing bone mass and 
limiting postmenopausal osteoporosis risks,65 effects of PUFAs on 
bone are shown to be contradictory in general. For example, there 
is one study demonstrated that PUFA supplementation significantly 
enhanced lumbar spine and femoral neck BMD in a population of 
65 postmenopausal women; however, another trial reported no sig-
nificant therapeutic effects in 42 postmenopausal women receiv-
ing similar PUFA supplements.56 Taken together, understanding the 
functions and mechanisms of fatty acids in osteoporosis might help 

to develop novel preventive or therapeutic strategies to benefit 
bone health maintenance in osteoporotic patients.60,66

2.3 | Bone fracture

The high risk of bone fractures may result from osteoporosis with 
low BMD, or more specifically, deterioration of bone structure and 
loss of bone mass.67-69 Studies in mice models have suggested that 
endogenously produced ω-3 LCPUFAs could facilitate fracture heal-
ing process, and supplementation of ω-3 LCPUFAs exert positive 
effects on fracture healing.21 Consistently, investigations in human 
subjects by Sadeghi et al68 and Harris et al 67 have indicated that 
increased intake of total PUFAs is positively correlated with higher 
BMD and reduced bone fracture risk in populations including elder 
men. However, epidemiological investigation by Virtanen et al 
demonstrates that low total PUFA, ω-6 PUFA or LA intakes might 
promote the risk of hip fractures in women.70 Apart from hetero-
geneity in study design, sample inclusion and data process among 
different studies, diversity in fatty acid types might be an important 
factor contributing to the conflicting involvement of fatty acids in 
bone fractures. Correspondingly, specific mechanisms of fatty acid 
modulation on bone fractures vary a lot. For example, ω-6 LCPUFAs 
such as arachidonic acid (AA) could stimulate PGE2 production to 
regulate bone metabolism and fracture healing, while ω-3 PUFAs 
increase BMD by increasing calcium resorption and bone collagen 
synthesis, decreasing urinary calcium excretion, and thus inhibiting 
bone resorption.67,68 Overall, fatty acids of different types might 
exert differential effects on bone fractures pathophysiology, and 
much more work needs to be done on exploiting them for bone frac-
tures prevention and therapeutics.

2.4 | Rheumatoid arthritis

Rheumatoid arthritis, with manifestations of arthralgia, redness and 
swelling, and limited range of motion,71 is a chronic and autoimmune 
inflammatory disease affecting 0.5%−1% of the world population.72-74 
If left untreated or ineffectively treated, rheumatoid arthritis typi-
cally leads to primary joints destruction caused by erosion of car-
tilage and bone, as well as subsequent systemic complications and 
even death.72-75 Several studies have investigated the individual and 
combinational protective effects of LCPUFAs in rheumatoid arthri-
tis. For example, ω-3 LCPUFAs could lower the risk of cardiovascular 
disease in rheumatoid arthritis patients,23 and combinational utili-
zation of ω-3 LCPUFAs with low-dose vitamin E could substantially 
reduce the side effects of disease-modifying anti-rheumatic drugs 
(DMARDs).75 The attenuation effects of ω-3 LCPUFAs on rheuma-
toid arthritis-induced bone and cartilage destruction are mainly me-
diated by reduced synthesis of cartilage-degrading enzymes as well 
as the inflammatory response cytokines. ω-3 LCPUFAs, especially 
EPA and DHA,23,76 could alleviate morning stiffness and decrease 
number of swollen and tender joints in patients with rheumatoid 
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arthritis and thus show anti-inflammatory and restorative effects 
against rheumatoid arthritis. Importantly, since LCPUFAs AA could 
drive the synthesis of pro-inflammatory cytokines, restriction of AA 
enhances ω-3 LCPUFAs-mediated anti-inflammatory responses by 
decreasing the production of metalloproteinases and pro-inflamma-
tory cytokines as well as the migration of leucocytes in vivo, and thus 
strengthens the action of ω-3 LCPUFAs in combating rheumatoid ar-
thritis.75,76 Another kind of LCPUFAs, ω-6 LCPUFAs are eventually 
metabolized into AA and inflammatory eicosanoids and function as 
pro-inflammatory agents,75,77 ω-3 LCPUFAs could reduce the syn-
thesis of ω-6 LCPUFAs by competing with the rate-limiting delta-6 
desaturation enzyme and thus exert a therapeutic effect on rheuma-
toid arthritis.75,78,79 Moreover, SCFAs also play crucial roles in bone 
metabolism and immune responses in pathological bone loss and 
thus regulate systemic bone mass and protect from rheumatoid ar-
thritis.64 Investigations are needed to further elucidate mechanisms 
underlying the pharmacological roles and therapeutic potentials of 
multiple types of fatty acids in arthritis such as temporomandibular 
joint arthritis.66

2.5 | Tumour-associated bone destruction

Multiple myeloma is a destructive cancer that mainly occurs in bone 
marrow.80 Studies have shown that fatty acids of different types 
play either pro-death or pro-survival roles in multiple myeloma. For 
example, PA could activate apoptosis in multiple myeloma cells and 
thereby serves as a potentially direct anti-myeloma strategy.81 EPA 
and DHA could also initiate apoptosis and promote drug sensitiv-
ity in multiple myeloma cells, with a mechanism involving NF-κB 
inhibition concomitant with activation of mitochondrial defects 
leading to caspase-3 activation and apoptosis.82 In addition, EPA 
and DHA modulate p53/miR-34a/Bcl-2 axis to enhance dexametha-
sone (Dex)-sensitivity in multiple myeloma cells where they trigger 
p53 expression and subsequent increase of miR-34a levels in U266 
cells, and finally activate Bcl-2 to induce apoptosis of multiple my-
eloma cells.83-85 By contrast, SFAs and ω-6 LCPUFAs represent en-
ergy sources for multiple myeloma cells, and ratio of ω-3/ω-6 fatty 
acid intake is critical for the maintenance of multiple myeloma cell 
survival.86,87

Bone metastasis is a pernicious complication88 occurring in vir-
tually 60% of patients with osteolytic breast or osteogenic prostate 
cancers and at a smaller rate in patients with other cancer types.89,90 
Patients with bone metastasis suffer from severe pain, bone fracture 
and osteolytic lesions, which symptoms are primarily attributed to 
aberrant bone resorption mediated by osteoclasts.91,92 In osteolytic 
metastasis mice model originating from MDA-MB-231 human breast 
cancer, researchers found that supplementation with DHA and EPA-
enriched fish oil prevented breast cancer metastasis-induced bone 
osteolysis,93 suggesting potential therapeutic effects of fatty acids 
for osteolytic bone metastasis. In mechanism, both DHA and EPA re-
duce the mRNA and protein levels of CD44 in breast cancer cells to 

inhibit cancer invasion; moreover, compared to EPA, DHA has pro-
found anti-inflammatory effects via inhibiting TNF-α secretion and 
NF-κB activation in macrophages and thus exhibits stronger sup-
pression of osteoclast activity to attenuate the related osteolysis.94 
However, in osteogenic metastasis derived from prostate cancer, 
fatty acids such as AA could facilitate metastatic cancer cell implan-
tation and propagation via preparation of bone microenvironment 
“soil” for cancer cells by activating bone marrow adipocyte forma-
tion,95 demonstrating promotional roles of fatty acids in favour of 
osteogenic bone metastasis. This might be explained by the fact that 
fatty acids synthesized by bone marrow adipocytes could serve as 
energy source for certain types of tumour cells engaged in metasta-
sis. During bone metastasis of prostate cancer, free fatty acid influx 
into cells induces the expression of lipid transport mediator fatty 
acid-binding protein (FABP4), and expression of FABP4 between 
tumour cells and adipocytes could mediate adipocyte-induced met-
abolic switch in prostate microenvironment and thus promotes os-
teogenic prostate cancer metastasis.96 Such roles of fatty acids in 
facilitating bone metastasis have also been confirmed in melanoma 
cancer,89 where bone marrow adipocytes play a pivotal role in bone 
metastasis by releasing free fatty acids to meet the energy demands 
of metastatic cancer cells for survival and growth. Therefore, fatty 
acids of different types behave significantly differently in cancer 
bone metastasis, and osteolytic or osteogenic or mixed bone lesion 
conditions derived from specific cancer types should be definitely 
taken into account when employing fatty acids for cancer bone me-
tastasis therapeutics.

2.6 | Other bone disorders

Fatty acids are also involved in non-typical skeletal diseases such as 
osteomyelitis, a bone inflammatory process initiated by infection of 
pyogenic organisms 97 that predominantly occurs in long bones of 
children, and in hips, feet, jaws and spine of adults.98-100 This dis-
ease is characterized by severe damage to bone tissue and bone 
marrow, and probably accompanied by high morbidity and mortal-
ity.100 Accumulating evidence has shown that ω-3 LCPUFAs could 
effectively combat microbial pathogenesis in osteomyelitis.101-103 
Furthermore, combination of vancomycin and ω-3 LCPUFAs has 
been suggested to be a reliable therapeutic strategy against S au-
reus-induced osteomyelitis, with a mechanism involving inflamma-
tion alleviation by reducing TNF-α and interleukin 6 (IL-6) levels as 
well as antioxidant activity by decreasing SOD activity.97

Taken together, according to currently available pre-clinical ex-
periments (Table 2) and clinical studies (Table 3), various factors 
contribute to implications of different fatty acids types in multiple 
bone disorders. With most associations between fatty acids and 
bone disorders remain obscure (Figure 2), much more work needs 
to be done by collaboration of biological and clinical researchers to 
maximize the therapeutic potentials and minimize the side effects of 
fatty acids against bone diseases.
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3  | SIGNALLING PATHY WAYS INVOLVED 
IN FAT T Y ACIDS-MODUL ATED BONE 
METABOLISM

Fatty acids and their metabolites could modulate bone metabolism 
via mechanisms such as inflammation,104 apoptosis,105 autophagy 106 
and oxidative stress.104 Normally, fatty acids bind to specific cellu-
lar membrane-bound or nucleus-located targets, induce subsequent 
transduction of transmembrane/nucleus-specific signals, further re-
sult in modulation of target gene transcription and protein synthesis 
and finally contribute to the regulation of cell growth, behaviour and 
function. Given that a multitude of factors are involved in these pro-
cesses, understanding the underlying mechanisms will substantially 
facilitate the nutritional and therapeutic applications of fatty acids in 
bone homeostasis and disorders.

3.1 | Receptors involved in fatty acids-modulated 
bone metabolism

Cellular membrane-bound and nuclear receptors, such as G pro-
tein-coupled receptors (GPRs), peroxisome proliferator-activated 
receptors (PPARs), TLRs and receptors for metabolites such as 

chemokine-like receptor (ChemR), play essential roles in mediating 
the effects of fatty acids on bone metabolism.

GPRs are a superfamily of more than 1000 distinct membrane 
receptors; several GRPs among these have been reported to be 
modulated by fatty acids. GPR18, GPR41, GPR43 and GPR109A 
are receptors for SCFAs (C2-C5) found in both osteoclasts and 
osteoblasts, where GPR41 could regulate leptin production, while 
GPR43 is the main receptor in mediating effects of SCFAs on osteo-
clasts.30,107,108 GPR40, which is expressed on osteoclasts and could 
be activated by medium/long-chain fatty acids with a chain length 
of C8-C22,109-111 positively affects bone metabolism by downregu-
lating osteoclastogenesis, combating bone loss and protecting carti-
lage.112-114 GPR84, whose expression in macrophages and adipocytes 
could be enhanced under inflammatory conditions, is a receptor for 
MCFAs (C9-C14).115-117 GPR120, which is expressed on osteoblasts 
and osteoclasts and could be stimulated by long-chain saturated 
(C14-C18) and long-chain unsaturated fatty acids (C16-C22),109-111 
has been shown to mediate the anti-inflammatory effects of DHA in 
macrophages.118 And GRP120 could enhance ω-3 LCPUFAs-induced 
osteoblastic bone formation by inducing β-catenin activation and 
reduce osteoclastic bone resorption by suppressing NF-κB signal-
ling,14 and GPR120 could also modulate the bi-potential differenti-
ation of BMMSC in a dose-dependent manner.119 In addition to the 

F I G U R E  2   Implications of fatty acids in bone diseases. Fatty acids exert dual effects on bone either by alleviating or initiating bone 
diseases. ω-6 LCPUFAs, SFAs and PA predominantly promote pathological bone remodelling by facilitating pro-inflammatory processes and 
lead to osteoporosis, rheumatoid arthritis, periodontitis, etc Other fatty acids like ω-3 LCPUFAs have therapeutic value in blocking bone 
disorders. Their targets include bone tissue components such as osteoblasts, osteoclasts, macrophages, chondrocytes and aberrant multiple 
myeloma cells, metastatic cancer cells, suppressing skeletal inflammation, carcinoma and bone fracture through complicated mechanisms. 
LCPUFAs, long-chain polyunsaturated fatty acids; SFAs, saturated fatty acids; PA, palmitic acid
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acknowledged roles of GPR40 and GPR120 in preventing bone dis-
orders such as osteoporosis and osteoarthritis,120 GPR2 family mem-
ber parathyroid hormone type 1 receptor (PTH1R) also plays a role 
in bone metabolism. PTH1R could mediate ω-3 LCPUFAs-induced 
activation of extracellular signal-regulated kinases (ERK) to enhance 
osteoblasts proliferation and differentiation121,122; moreover, EPA 
and DHA could act as agonists of PTH1R to attenuate osteoblast 
apoptosis and promote bone formation.123

PPARs, with known ligands including LCPUFAs and metabolites 
such as PGE2, are nuclear receptors that regulate lipid metabolism 
by acting as transcription factors in BMMSCs, osteoblasts and os-
teoclasts.124-128 When BMMSCs are exposed to a mixture of pal-
mitic, oleic and linoleic acids, upregulation of PPARs and reduction 
of Runx2 facilitate differentiation of towards adipocyte-like cells.129 
Influences of PPARs on osteoblasts and osteoclasts depend on spe-
cific receptor isoform. Specifically, PPARα/β promotes bone resorp-
tion,130 whereas PPARγ is known inhibitors of osteoclastogenesis.131 
Roles of PPARγ in osteoblasts are still disputed; it has been shown 
that conditional deletion of PPARγ in osteoblasts enhances bone 
mass and increased bone formation by activating mTOR signalling,132 
while studies from other groups reported conflicting results.133-135 
Moreover, recent findings have indicated that treatment of multiple 
myeloma cells with PPARs resulted in apoptotic effects,136 suggest-
ing PPARs might serve as promising therapeutic targets for bone 
diseases.

TLRs mainly mediate the inflammatory action of fatty acids in 
bone cells. PA particularly activates TLR2 and induces IL-1β expres-
sion and secretion to promote inflammatory response.137-139 Binding 
of SFAs to TLR4 on osteoclasts induces chronic inflammation 140-

142 by enhancing the expression of macrophage inflammatory pro-
tein-1a, which leads to hyperactivation of NF-κB and subsequent 
enhancement of osteoclastic activities 143 as well as further decrease 
in bone size, BMC and BMD.144 Moreover, studies have shown that 
DHA treatment could block the pro-inflammatory effects of lauric 
acid-induced TLR2/4 activation in Raw264.7 cells,145 suggesting 
TLRs might be involved in the crosstalk among multiple downstream 
signalling pathways of different fatty acids types.

ChemR23 can act as chemerin receptor 146,147 as well as RvE1 
receptor in bone tissue cells such as monocytes.148 Binding of 
RvE1with ChemR23 could prevent inflammation by inhibiting NF-κB 
activation,149 enhancing bone formation150 and reducing bone loss 
via RANKL/OPG ratio modulation,151,152 while the detailed mech-
anisms involved in the downstream of Chem23 have yet to be fully 
elucidated.

3.2 | RANK/RANKL/OPG signalling in fatty acids-
modulated bone metabolism

To our knowledge, various signalling pathways including RANKL,153 
NF-κB,154 mitogen-activated protein kinase (MAPK),155 Wnt,156 
Notch,157 Hedgehog,158 transforming growth factor-β (TGF-β),155 
mTOR 159 and bone morphogenetic protein (BMP)155 are involved in 

bone metabolism. Among these, RANK/RANKL/OPG signalling is 
most frequently implicated in bone remodelling via modulation by a 
wide variety of fatty acids160,161 (Figure 3). Upon activation, RANK/
RANKL/OPG signalling substantially inhibits osteoclastogenesis 
but enhances osteogenesis via downstream signalling cascades 
such as MAPK, NF-κB and phosphatidylinositol 3-kinase (PI3K)/
mTOR.160 Specifically, MAPK signalling162-165 could be activated by 
ω-7 LCMUFAs,166 PA and MCFAs167 and activation of MAPK signal-
ling normally leads to enhanced proliferation of both osteoblasts 
and chondrocytes.155,163,165 By contrast, ALA,168 ω-7 LCMUFAs166 
and MCFAs167 could inhibit NF-κB cascade, and repression of 
NF-κB cascade attenuates osteoclastogenesis by enhancing both 
cell death and differentiation.154,165,169,170 Moreover, PI3K/mTOR 
pathway could be downregulated by EPA or LXA4 but upregulated 
by PA159 and thus involved in BMMSC differentiation, osteoblast 
function and osteocyte formation during bone metabolism.171-177

4  | MODUL ATION OF FAT T Y ACIDS ON 
SPECIFIC BONE CELL T YPES

4.1 | Fatty acids and osteoblasts

Osteoblasts are mononuclear cells predominantly involved in bone 
formation 4, 5. A growing body of evidence supports the promo-
tional or inhibitory action of fatty acids on osteoblasts. In general, 
fatty acids such as PA suppress osteoblast function, whereas EPA, 
DHA and RvE1 predominantly promote osteoblastic function. 
Exploring the modulation effects of fatty acids on osteoblasts might 
provide new insights into therapeutic intervention targeting skeletal 
disorders associated with dysregulated bone formation.

4.1.1 | Fatty acids as negative regulators of 
osteoblasts

Palmitate, a kind of LCSFAs, impedes osteoblast differentiation 
and induces cell death via lipotoxicity.105 Palmitate could induce 
autophagy in osteoblasts dependent on Beclin and PI3K,178 and 
autophagy serves as a protection mechanism in preserving osteo-
blasts from lipotoxicity.179 Palmitate also promotes apoptosis of 
osteoblasts through both extrinsic and intrinsic pathways, and PA-
induced high expression of cytosolic cytochrome C could be dis-
rupted by inhibition of c-Jun N-terminal kinase (JNK).105 In foetal 
rat calvarial cell cultures, palmitate affects neither proliferation 
nor apoptosis of calvarial cells but represses BMP-7-induced os-
teoblastic differentiation by reducing the activity of transcription 
factor SMAD, and thus further abrogating expression of osteo-
genic markers Runx2, osteocalcin, alkaline phosphatase and bone 
sialoprotein.180 Interestingly, enhancing fatty acid oxidation could 
block all lipotoxic effects of palmitate suggested above, indicat-
ing that fatty acid oxidation might relieve the negative effects of 
palmitate on osteoblasts.105
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4.1.2 | Fatty acids as positive regulators of 
osteoblasts

LCPUFAs and SCFAs
ω-3 LCPUFAs such as EPA and DHA could stimulate osteoblasts 
survival by activating pro-survival Akt signal and suppressing 
glucocorticoid-induced pro-death pathway.123 They also promote 
osteoblastogenesis and prevent bone resorption by altering mem-
brane function, regulating calcium balance and enhancing osteo-
blast activity.57 Involvement of EPA and DHA in preosteoblasts 

differentiation and maturation is largely associated with their 
anti-inflammatory effects, which function by reducing the syn-
thesis of inflammatory ARA-derived PGE2,181 modulating PPAR-γ 
signalling and thus lower levels of inflammatory cytokines such as 
IL-1, IL-6 and TNF-α,182 and suppressing AA-derived synthesis of 
eicosanoids183 as well as activity of cyclooxygenase and 5-lipoxy-
genase.184 Therefore, as illustrated above, intake of EPA and DHA 
might have potent therapeutic implications in inflammatory bone 
disorders such as osteoporosis.24

ω-6 LCPUFAs are activators of PPARγ, and lower dietary ratio 
of ω-6/ω-3 LCPUFAs blocks PPAR-γ activation and thus enhancing 

F I G U R E  3  RANK/RANKL/OPG pathway in fatty acids-modulated bone metabolism. The well-documented RANKL signalling pathway 
exerts essential role in osteoclastogenesis. RANKL binds to RANK on the surface of osteoclast precursor cells and activates three distinct 
downstream signalling pathways. The MAPK pathways characterized by downstream factors ERK, p38 and JNK play pivotal role in cell death 
and survival. The NF-κB signalling pathway is activated following IκBα phosphorylation and degradation. The p50 and p65 subunits of NF-κB 
are released and translocated into the nucleus to activate the transcription of target genes. The PI3K/mTOR pathway is also activated upon 
binding of RANKL to RANK, which triggers the activation of PDK1s and Akt leading to the inhibition of the TSC complex and subsequent 
mTORC1 formation. The mTORC1 phosphorylates S6K1 as well as 4E-BP1, which further regulate protein synthesis, cell proliferation, 
angiogenesis and autophagy. However, mTORC2 acts as an essential modulator of actin cytoskeleton, cell survival and lipid metabolism. 
RANKL, receptor activator of nuclear kappa-β ligand; TGF-β, transforming growth factor β; JNK, c-jun NH2-terminal kinase; Akt, protein 
kinase B; S6Ks, S6 kinases; 4E-BP1, 4E-binding protein 1
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osteoblastogenesis.56 Besides, SCFAs such as butyrate promote os-
teoblast formation and differentiation by enhancing production of 
bone sialoprotein and osteopontin; moreover, it stimulates osteo-
blasts to secret OPG and thus facilitating the blocking of osteoclast 
differentiation.185

Fatty acids derivatives
RvE1 is an EPA metabolite that is closely associated with inflam-
mation-induced bone disorders. In IL-6-stimulated osteoblasts, 
supplement of RvE1 leads to significant disruption of PI3K-Akt 
pathway, which interacts with NF-κB, MAPK and p53 signalling 
to modulate protein synthesis, cell differentiation and apoptosis. 
In inflammatory bone disorders, changes in production of pro-in-
flammatory cytokines such as TNF-α, IL-6, IL-1 and Gas6 186 mod-
ulate RANKL/OPG ratio and downstream events151,152 and thus 
enhance osteoclasts-mediated pathological inflammation-induced 
bone resorption.

As a metabolite of AA, PGE2 exerts its effects on BMMSCs, os-
teoblasts and osteoclasts in dose-dependent manner. In BMMSCs, 
PGE2 binds with EP4 receptor, which activates sphingosine kinase 
and inhibits caspases activities and thus prevents apoptosis of 
BMMSCs.187 In osteoblasts, intermittent administration,188 short-
term exposure to high doses or prolonged treatment with lower 
doses of PGE2189 could enhance proliferation and activity of os-
teoblasts and lead to remarkably enhanced bone formation; such 
influences of PGE2 on osteoblasts are mediated by EP2/EP4-MAPK 
signalling pathways.190 In addition, effects of PGE2 on osteoblasts 
are accompanied by osteoclast stimulation, which might reverse the 
overall influence of PGE2 on bone system.191

4.2 | Fatty acids and osteoclasts

Osteoclasts are multinucleated giant cells with bone resorptive ac-
tivity. Two essential factors secreted by osteoblasts, macrophage 
colony-stimulating factor (M-CSF) and RANKL, are responsible 
for osteoclast precursors proliferation and osteoclastogenesis. 
Importantly, RANKL could prevent apoptosis of osteoclasts3,4 and 
induce expression of osteoclast-specific markers and transcription 
factors such as nuclear factor of activated T cells c1(NFATc1).4,6 
As bone-resorbing cells,192-195 osteoclasts highly express bone re-
sorption-associated proteins including osteoclast-specific markers 
cathepsin K (CTSK), tartrate resistant acid phosphatase (TRAP) and 
matrix metalloproteinase 9 (MMP-9).4,196 Specifically, CTSK breaks 
down organic components in bone,197,198 TRAP is implicated in cell 
adhesion upon activation by CTSK,199,200 and high levels of MMP-9 
commonly occur in resorption lacunae.201 Multiple fatty acids have 
been found to promote or suppress osteoclast activity, in most cases 
via regulation of RANKL signalling. Effects of fatty acids on osteo-
clast functions demonstrate their potential applications as thera-
peutic reagents against resorption-associated bone disorders such 
as osteoporosis and rheumatoid arthritis.

4.2.1 | Fatty acids as positive regulators of 
osteoclasts

Accumulating evidence has shown that PA enhances RANKL-
mediated differentiation of osteoclasts by upregulating expres-
sion levels of RANK; importantly, PA has been reported to be 
sufficient for osteoclast differentiation in conditions even without 
RANKL.202

4.2.2 | Fatty acids as negative regulators of 
osteoclasts

LCPUFAs
LCPUFAs such as DHA and AA could exert inhibitory effects on os-
teoclast proliferation, differentiation and maturation. In mechanism, 
DHA intervention could inhibit osteoclast precursors proliferation 
by inhibiting M-CSF-induced activation of AKT and expression of 
cyclin D1/D2, and DHA triggers apoptosis of mature osteoclasts 
by inducing Bim expression and thus leads to defective osteoclast 
formation.203 In addition, DHA and AA could regulate migration and 
adhesion of osteoclasts in bone by downregulating expression of 
RANK and VNR.204 As for osteoclastogenesis process, LCPUFAs in-
cluding DHA and AA suppress the expression of osteoclast-specific 
genes such as CTSK, TRAP, MMP-9, NFATc1, c-Fos and DC-STAMP 
in differentiating osteoclasts, thus decreasing osteoclast numbers 
and bone resorption.110,205-207 In detail, DHA and AA bind to TLR4 
on cell membrane to suppress TLR4 signalling, MAPK pathways 
and NF-κB signalling.208 This further leads to downregulation of 
c-Fos205 and NFATc1,209 which is the master regulator for osteo-
clast proliferation and differentiation. Also, levels of key cell-to-cell 
fusion mediator DC-STAMP179,210 are decreased, followed by sub-
stantial reduction in osteoclast formation and osteoclast number. 
Of note, there are certain differences between DHA and AA in 
combating bone resorption. Specifically, AA displays a more pro-
found effect than DHA in inhibiting osteoclast function at equal 
concentrations,206,207 which probably results from a more signifi-
cant inhibition of CA2 expression205 and further prevention of re-
sorption lacunae acidification with facilitation of CTSK and MMP-9 
enzymatic activities.205 These findings provide molecular mecha-
nisms underlying the benefits of DHA supplement, and intake of 
high doses of EPA and DHA supplements has been suggested to 
attenuate bone loss associated with breast cancer.211

And, ALA intervention leads to apoptosis reactivation and RANKL 
signalling repression in osteoclasts. In mechanism, ALA reduces 
RANKL-stimulated phosphorylation of JNK, ERK and AKT together 
with NF-κB and BCL-2 proteins to exert pro-apoptotic action,212 
reduces inflammatory bone loss via downregulating NF-kB-iNOS-
COX-2 signalling axis and further inhibits RANKL-induced osteoclast 
differentiation. Moreover, ALA can be converted into downstream 
fatty acids and several eicosanoids such as DHA and EPA and further 
exerts more complicated effects on osteoclastogenesis.181
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LCMUFAs
Studies have shown that MA could suppress N-myristoyl-
transferase, a critical enzyme involved in Src myristicylation26 
to endoplasmic membrane and further phosphorylation.25 MA-
induced Src inhibition then affects a large number of cytoskel-
etal changes in osteoclasts, reduces latter stages of osteoclast 
differentiation and prevents RANKL-induced bone loss in vivo.25 
Such inhibitory effects against osteoclast formation and function 
suggest MA might serve as a new therapeutic agent against os-
teolytic bone disorders. In addition, investigations by Heerden et 
al have suggested that PLA could inhibit RANKL-induced osteo-
clast formation and promote apoptosis of mature osteoclasts.166 
In mechanism, PLA downregulates the activity of NF-κB, MAPKs, 
JNK and ERK, inhibits expression of genes involved in osteoclast 
activity such as DC-STAMP and resorption markers CTSK, MMP9 
and TRAP and reduces number of TRAP-positive osteoclasts by 
repressing actin ring formation and blocking their osteolytic capa-
bility,166 suggesting PLA as a potential therapeutic option for bone 
disorders related to excessive osteoclast formation. Moreover, as 
stated previously, PA enhances RANKL-mediated osteoclastogen-
esis by facilitating expression of TNF-α and RANK; conversely, 
OA could increase expression of DGAT1 and intracellular accu-
mulation of triglycerides in osteoclasts to attenuate PA-induced 
osteoclastogenesis.202 In addition, OA might facilitate osteogenic 
differentiation of adipose tissue-derived stromal cells168 and thus 
serve as potential bone induction agent.

SCFAs
SCFAs represent useful supplements to inhibit bone resorption 
and restore bone metabolism balance.64 Among SCFAs, although 
concentrations of these molecules in vivo are too low to affect 
bone metabolism, in vitro investigations suggest that butyrate 
and propionate alone or mixed could inhibit osteoclast differen-
tiation.28 In mechanism, SCFAs exert effects on bone metabolism 
(mainly inhibit bone resorption) via direct30or indirect64 mecha-
nisms. Directly, SCFAs bind to receptors (GPR18, GPR41, GPR43, 
GPR109A)30 present on osteoclast precursors; in specific, acetate 
and propionate show higher affinity for GPR41, while butyrate 
exerts effects mostly via GPR43 activation.30 Indirectly,64 SCFAs 
regulate bone mineral absorption by influencing signalling path-
ways and gene expression. Butyrate and propionate induce meta-
bolic reprogramming of osteoclasts to enhance glycolysis and thus 
downregulating critical genes in osteoclasts such as TRAF6 and 
NFATc1.29 In addition, production of SCFAs increases serum IGF-1 
and peripheral serotonin levels, which affects bone metabolism 
and decreases PTH levels to inhibit bone resorption.28,63,213 And, 
SCFAs might play a role in immunoregulation by modulating inflam-
matory events to prevent inflammatory bone loss such as arthritis.

MCFAs
CA inhibits RANKL-modulated osteoclastogenesis in bone marrow-
derived macrophages by preventing M-CSF and RANKL-induced 
cytoskeletal reorganization, suppresses RANKL-stimulated IκBα 

phosphorylation and enhanced NF-κB transcription and diminishes 
RANKL-induced NFATc1 activation.214 Moreover, CA could pro-
mote apoptosis of mature osteoclasts by initiating Bim expression 
and inhibiting M-CSF-induced ERK activation,214 demonstrating CA 
treatment represents a potential strategy for amelioration of bone 
resorption-associated diseases.214

Fatty acids derivatives
As a metabolite of AA generated by lipoxidase, LXA4 could dose-
dependently reduce levels of ROS, the expression of osteoclast-
specific genes and osteoclast-related transcription factors and thus 
attenuate osteoclasts-mediated bone loss.215 And exposure to EPA-
derived RvE1 could downregulate STAT1 and subsequently attenu-
ate MAPK and NF-κB signalling,152 which further restore favourable 
receptor inducer for RANKL/OPG ratio and rescue OPG production, 
thus regulating osteoclast differentiation.151 Moreover, PGE2 could 
induce activation of osteoclasts in a dose-dependent manner. In vivo 
studies have revealed that continuous treatment of rats with PGE2 
results in bone loss owing to increased osteoclasts stimulation, and 
higher rates of bone resorption compared with bone formation due 
to longer bone resorption period.188 In vitro, PGE2 has been shown 
to increase osteoclast size, enhance resorptive pit formation and 
reduce osteoclast apoptosis.216 In mechanism, PGE2 could trigger 
osteoclastogenesis in murine bone marrow cultures treated with 
RANKL and M-CSF, possibly caused by EP2 and EP4 receptor-mod-
ulated induction of adenylate cyclase,191,217 and by suppression of 
OPG and osteoblast-induced RANKL secretion and enhanced RANK 
expression in osteoclasts.218,219

4.3 | Fatty acids and BMMSCs

BMMSCs are multipotent cells characterized by surface markers of 
CD105, CD73, CD90, CD44, CD29 and CD1469 with differential 
potentials into osteoblasts, chondroblasts and bone marrow adipo-
cytes.7 BMMSCs are critical in maintaining the dynamic homeostasis 
of bone tissue, and deficiencies of BMMSCs proliferation are cor-
related with reduced bone mass.220,221 Various signalling pathways 
including Wnt, Notch, Hedgehog, TGF-β and BMP are involved in 
BMMSCs osteogenesis. Notably, Runx2 plays the most pivotal 
role in this process by promoting expression of osteogenesis-re-
lated genes, regulating cell cycle progression and improving bone 
microenvironments.8

4.3.1 | Fatty acids as positive activators of BMMSCs

DHA, a special lipid component of osteoblast membrane, has been 
reported to fuel wide lipidomic remodelling of BMMSCs. DHA sup-
plementation enhances Akt activation at plasma membrane and 
thereby potentiates osteogenic differentiation.222 Long-term and 
high-dose treatment of inflammatory diseases with Dex facilitates 
apoptosis of BMMSCs, leading to bone loss and associated metabolic 
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bone diseases.223,224 These effects can be eliminated by EPA via acti-
vating autophagy and suppressing apoptosis of BMMSCs. More spe-
cifically in the case of Dex-induced apoptosis, activation of GPR120 
by EPA triggers Ras-Erk1/2 cascade, leading to suppression of Dex-
induced apoptosis, accompanied by activation of AMPK/mTOR to 
initiate autophagy.223,224 Interestingly, EPA treatment in the absence 
of Dex has limited effects on autophagy induction,223,224 demon-
strating potential therapeutic role of EPA in managing long-term side 
effects of Dex abuse.225

Oleate inhibits palmitate (palm)-induced apoptosis and increases 
BMMSCs proliferation.27 Palm has been shown to induce lipotox-
icity, whereas oleate fully neutralizes palm-induced lipotoxicity 
and pro-inflammatory response. Oleate exhibits cytoprotective 
effects by deactivating palm-induced pathways and fostering es-
terification of Palm into triglycerides.226 More specifically, Ole in-
hibits palm-induced activation of ERK and NF-κB signalling, which 
results in pro-apoptotic effects in BMMSCs.226,227 Also, decline in 
IL-6 and IL-8 expression and secretion levels by Ole treatment was 
also observed.228 Furthermore, Ole maintains the oxidative levels of 
palmitate.27 Hence, OA represents a potential therapeutic agent in 
combating PA-induced lipotoxicity in the bone.

4.3.2 | Fatty acids as negative 
regulators of BMMSCs

As mentioned above, palmitate triggers BMMSCs apoptosis and re-
duces their proliferation.27 Gillet et al have reported that palmitate 
exerts cytotoxic effects by inducing endoplasmic reticulum stress 
and activating NF-κB and ERK signalling pathways, thus further 
regulating secretion of cytokines and chemokines in BMMSCs and 
inducing binding of exogenous ligands to TLRs. Moreover, palmitate 
triggers pro-inflammatory responses via upregulating TLR4 expres-
sion accompanied with enhanced expression and secretion of IL-6 
and IL-8, whose overproduction facilitates differentiation of osteo-
clast precursor cells into mature osteoclasts and results in impaired 
bone formation and enhanced bone resorption.229-232 And undiffer-
entiated BMMSCs have been found to be less sensitive to lipotoxic-
ity than BMMSC-derived osteoblastic cells.226

4.4 | Fatty acids and osteocytes

Osteocytes are osteoblast-derived cells located in lacunae surrounded 
by mineralized bone matrix, with the ability to support bone structure 
and receive machine sensation. Importantly, osteocytes can serve as 
endocrine cells to synthesize and express important regulatory mol-
ecules including RANKL, Dickkopf-1 (DKK1) and sclerostin (SOST)233-

235 and thus participating in bone resorption and formation regulation 
by coupling osteoclast and osteoblast activities.6 Studies have shown 
that fatty acids such as PA and PGE2 have noteworthy influences on 
osteocyte metabolism, which might provide novel therapeutic strate-
gies for bone diseases like osteoporosis.

4.4.1 | Fatty acids in osteocytes-mediated 
bone metabolism

PGE2 released by osteocytes are important regulators of bone forma-
tion. For example, PGE2 produced by low-intensity pulsed ultrasound-
stimulated osteocytes could enhance osteoblasts differentiation but 
inhibit their proliferation in vitro.236 In addition, mechanical loading or 
fluid flow shear stress on osteocytes can release PGE2 to regulate os-
teoblast proliferation and differentiation.237 In mechanism, loading-in-
duced PGE2 can activate EP2/EP4 receptors to stimulate downstream 
PI3K/Akt pathway,238 which further facilitates gap junction commu-
nication by transcriptional regulation of Cx43 to promote osteocytes 
survival.239 And PGE2 can activate MAPK and subsequently induce 
phosphorylation of Cx43 at S279/282 and closure of Cx43 hemichan-
nels, which thus modulating bone anabolism and protecting osteocytes 
from harmful effects caused by sustained hemichannels opening.239 
Moreover, PGE2 could promote production of 8-nitro-cGMP in osteo-
cytes to enhance osteoclasts differentiation.240

4.4.2 | Fatty acids in osteocytes-associated 
bone disorders

Investigations have suggested that PA can cause lipotoxicity in os-
teocytes. PA results in apoptosis and inhibits survival in osteocytes 
by induction of autophagy failure, which is indicated by conspicuous 
increase in LC3-II and reduction of autophagosomes/lysosomes in 
cytoplasm.234 In addition, PA exerts effects on bone turnover by de-
creasing expression of DKK1, RANKL and sclerostin in osteocytes.234 
Given osteocytes apoptosis and dysfunction are two common changes 
in osteoporotic bone, PA might play a part in the pathogenesis as well 
as potential therapeutic applications in osteoporosis. In addition, fatty 
acids oxidation can serve as energy source for osteocytes.241 In vivo 
evidence has shown that fatty acid oxidation could compensate dys-
function of energy metabolism and osteocytes formation caused by 
glucose transporter-4 deficiency in osteoblasts and osteocytes of 
mice.242 Importantly, activation of β-catenin regulated by Wnt-Lrp5 
signalling affects oxidative potential and fatty acids utilization in os-
teocytes and thus is responsible for expression of key enzymes during 
fatty acid oxidation.241 Therefore, fatty acid oxidation in osteocytes 
exerts regulatory effects on bone fat and body mass, which might have 
regulatory roles and therapeutic applications in metabolic disease-as-
sociated bone disorders.

4.5 | Fatty acids and chondrocytes

Chondrocytes is the main cartilage cell type existing in cartilaginous 
interstitium and cartilage lacuna, and they can produce cartilage extra 
cellular matrix that composed mainly of proteoglycans and collagen.243 
Fatty acids are integrated into chondrocytes mainly in the form of 
phosphatidylcholine and triacylglycerols and then mediate down-
stream signalling pathways via receptors expressed on chondrocytes 



18 of 28  |     BAO et al.

TA
B

LE
 4

 
M

od
ul

at
or

y 
ro

le
s 

an
d 

th
er

ap
eu

tic
 p

ot
en

tia
ls

 o
f f

at
ty

 a
ci

ds
 fo

r b
on

e 
di

se
as

es

D
is

ea
se

Pa
th

ol
og

ic
 m

ec
ha

ni
sm

Fa
tt

y 
ac

id
D

et
rim

en
ta

l m
ec

ha
ni

sm
Po

te
nt

ia
l d

ru
g 

fo
rm

ul
a

Th
er

ap
eu

tic
 m

ec
ha

ni
sm

Re
fe

re
nc

e

Pe
rio

do
nt

iti
s

Sp
ec

ifi
c 

ba
ct

er
ia

l c
ol

on
iz

at
io

n
In

cr
ea

se
d 

fu
nc

tio
n 

of
 o

st
eo

cl
as

ts
In

cr
ea

se
d 

dy
sf

un
ct

io
n 

of
 o

st
eo

bl
as

ts

PA
In

du
ce

s 
pr

o-
in

fla
m

m
at

or
y 

re
sp

on
se

ω-
3 
LC
PU
FA
s

In
hi

bi
t p

ut
at

iv
e 

pe
rio

do
nt

al
 p

at
ho

ge
ns

In
hi
bi
t P
A-
in
du
ce
d 
ch
em
ok
in
e 
se
cr
et
io
n

31
,3

3,
49

Bu
ty

ra
te

In
hi

bi
t d

iff
er

en
tia

tio
n 

of
 

H
G
Fs

Re
so

lv
in

 D
1

In
hi

bi
t p

ut
at

iv
e 

pe
rio

do
nt

al
 p

at
ho

ge
ns

In
hi
bi
t P
A-
in
du
ce
d 
ch
em
ok
in
e 
se
cr
et
io
n

SF
A
s

In
du

ce
 o

xi
da

tiv
e 

st
re

ss
Fa
ci
lit
at
e 
in
fla
m
m
at
or
y 

pr
oc

es
se

s

Rv
E1

Re
du

ce
 in

fla
m

m
at

io
n

In
hi

bi
t o

st
eo

cl
as

t a
ct

iv
iti

es

O
st

eo
po

ro
si

s
In

cr
ea

se
d 

fu
nc

tio
n 

of
 o

st
eo

cl
as

ts
In

cr
ea

se
d 

dy
sf

un
ct

io
n 

of
 o

st
eo

bl
as

ts
ω-
6 
LC
PU
FA
s

In
du

ce
 c

hr
on

ic
 

in
fla

m
m

at
io

n
In

du
ce

 M
SC

 c
hr

on
ic

 
de

re
gu

la
tio

n

ω-
3 
LC
PU
FA
s

In
hi

bi
t o

st
eo

cl
as

to
ge

ne
si

s
Re

du
ce

 P
G

E2

51
,5
2,
58

PA
Pr

ov
id

e 
en

er
gy

 g
en

er
at

io
n 

fo
r d

iff
er

en
-

tia
tio

n 
of

 o
st

eo
bl

as
ts

O
st

eo
po

ro
si

s
Re

du
ce

d 
O

PG
Fa
ci
lit
at
ed
 o
st
eo
cl
as
t d
iff
er
en
tia
tio
n

—
—

ω-
3 
LC
PU
FA
s

In
hi

bi
t o

st
eo

cl
as

to
ge

ne
si

s
Re

du
ce

 P
G

E2

47
,6

1,
64

,6
5

—
—

SC
FA
s

In
hi

bi
t o

st
eo

cl
as

t d
iff

er
en

tia
tio

n
Pr

ov
id

e 
en

er
gy

 g
en

er
at

io
n 

fo
r d

iff
er

en
-

tia
tio

n 
of

 o
st

eo
bl

as
ts

Bo
ne

 fr
ac

tu
re

D
et

er
io

ra
tio

n 
of

 b
on

e 
st

ru
ct

ur
e

Lo
ss
 o
f b
on
e 
m
in
er
al

ω-
6 
LC
PU
FA
s

In
du

ce
 P

G
E2

 p
ro

du
ct

io
n

ω-
3 
LC
PU
FA
s

In
cr

ea
se

 c
al

ci
um

 re
so

rp
tio

n
In

cr
ea

se
 s

yn
th

es
is

 o
f b

on
e 

co
lla

ge
n

In
hi

bi
t u

rin
ar

y 
ca

lc
iu

m
 e

xc
re

tio
n

67
,6
8

Rh
eu

m
at

oi
d 

ar
th

rit
is

A
ut
oi
m
m
un
e 
in
fla
m
m
at
or
y 
di
se
as
e 
of
 u
nk
no
w
n 

ae
tio

lo
gy

ω-
6 
LC
PU
FA
s

In
du

ce
 p

ro
du

ct
io

n 
of

 p
ro

-
in

fla
m

m
at

or
y 

cy
to

ki
ne

s
ω-
3 
LC
PU
FA
s

Re
du

ce
 in

fla
m

m
at

io
n

Re
du

ce
 c

ar
til

ag
e-

de
gr

ad
in

g 
en

zy
m

es

75
,7

6

O
st

eo
ca

rc
in

om
a

D
er

iv
es

 fr
om

 p
rim

ar
y 

bo
ne

 s
ar

co
m

as
 o

r p
ro

st
at

e 
ca

nc
er

, b
re

as
t c

an
ce

r e
tc

A
A

Su
pp

or
ts

 im
pl

an
ta

tio
n 

an
d 

pr
op

ag
at

io
n 

of
 

m
et

as
ta

tic
 c

el
ls

D
H
A

Re
du

ce
 C

D
44

 e
xp

re
ss

io
n 

in
 m

et
as

ta
tic

 
ce

lls
In

hi
bi

t o
st

eo
cl

as
t f

or
m

at
io

n

88
-9
2,
94
-9
6

EP
A

Re
du

ce
 C

D
44

 e
xp

re
ss

io
n 

in
 m

et
as

ta
tic

 
ce

lls

O
st

eo
m

ye
lit

is
Bo

ne
 in

fe
ct

io
n 

of
 p

yo
ge

ni
c 

or
ga

ni
sm

s
—

—
ω-
3 
LC
PU
FA
s

Re
du
ce
 le
ve
ls
 o
f T
N
F-

α 
an
d 
IL
-6

Re
du

ce
 S

O
D

 a
ct

iv
ity

97
,1
01
-1
03
,2
98

M
ul

tip
le

 m
ye

lo
m

a
C

an
ce

r g
ro

w
in

g 
in

 b
on

e 
m

ar
ro

w
SF
A
s

—
PA

A
ct
iv
at
e 
m
ul
tip
le
 m
ye
lo
m
a 
ce
ll 
ap
op
to
si
s

94
-1

01

ω-
6 
LC
PU
FA
s

—
ω-
3 
LC
PU
FA
s

Pr
om

ot
e 

dr
ug

 s
en

si
tiv

ity
 o

f m
ye

lo
m

a 
ce

ll 
ap

op
to

si
s

A
ct
iv
at
e 
m
ul
tip
le
 m
ye
lo
m
a 
ce
ll 
ap
op
to
si
s

In
hi

bi
t f

un
ct

io
n 

of
 ω
-6
 L
C
PU
FA
s



     |  19 of 28BAO et al.

membrane such as GPR40, GPR120, CD36 and TLR4, as well as a few 
LRP and PPAR family members.12,244 As an energy source for chondro-
cytes, fatty acids participate in chondrocytes energy metabolism245 
and further alleviate or enhance chondrocytes damage and cartilage 
degeneration via multiple mechanisms. Understanding the regulation 
effects of fatty acids in chondrocytes might help to explore their po-
tential therapeutic values for bone disorders associated with chondro-
cytes inflammation and cartilage degeneration.

4.5.1 | Fatty acids as positive regulators of 
chondrocytes

ω-3 PUFAs and metabolites
EPA plays anti-inflammatory roles by competitively suppressing AA 
oxidation pathway,246 and EPA treatment could delay IL-α-induced 
chondrocyte death.247 In addition, EPA treatment could inhibit oxi-
dative stress-induced chondrocyte apoptosis via poly (ADP-ribose) 
polymerase and caspase 3 cleavage, p38 MAPK, p53 phosphoryla-
tion and MMPs expression and thus ameliorating cartilage degen-
eration.248 p38 MAPK-dependent mechanism is also involved in 
DHA-involved alleviation of cartilage damage.249

EPA and DHA can be converted to SPM and novel bioactive lipid 
mediators such as resolvins in vivo.250 Articular chondrocytes could 
participate in SPM metabolism by expressing biosynthetic enzymes 
like15-LO type 1,251 and SPM exhibits a more potent anti-inflam-
matory effect than their precursors in protecting chondrocytes 
and cartilage.12,250 As for resolvins, resolvin D1 demonstrated an-
ti-arthritic nature in a model of inflammatory arthritis indicated by 
significantly attenuated arthritic score and hind paw oedema and 
reduced leucocytes infiltration within paw.252

Resolvin D3 also shows similar effect on arthritis model.253 In 
mechanism, investigations by Benabdoune et al in an experimental 
osteoarthritis in human chondrocytes have found that RvD1 inhib-
its IL-1β-induced COX2, PGE2, inducible NO and MMP-13 by stifling 
IL-1β-induced activation of p38/MAPK, JNK1/2 and NF-κB/p65.254 
Moreover, resolvin D1 could maintain cartilage integrity in inflam-
matory arthritis by stimulating the production of chondrocytes ex-
tracellular matrix and inhibiting IL-1β-induced cells degradation via 
direct ALX/FPR2 receptor ligation.252 And, resolvin D1 could reduce 
4-hydroxynonenal-induced oxidative stress and chondrocytes apopto-
sis.254 These findings suggest that it is promising to develop novel ther-
apeutic strategies based on the functional mechanisms of SPM for the 
therapeutics of chondrocyte-related diseases such as osteoarthritis.251

AA derivatives
As epoxide metabolites of AA, epoxyeicosatrienoic acids (EETs) have 
been reported to reduce inflammatory cytokines such as TNF-α and 
IL-6 and decrease cytotoxicity in canine chondrocytes. However, 
since EETs could be rapidly metabolized into corresponding vicinal 
diols by soluble epoxide hydrolase (sEH), sEH inhibitors that are able 
to stabilize anti-inflammatory EETs might have therapeutic poten-
tials for chondrocytes survival and cartilage protection.255

SCFAs
Butyric acid and butyrate can reduce cartilage destruction mainly by 
inhibiting inflammation and MMPs expression. Studies have shown 
that in human chondrocytes, butyric acid could dose-dependently 
suppress IL-1β-induced PGE2 synthesis as well as TNF-α/IL-17-
induced PGE2 production, with a mechanism involving COX-2 ex-
pression inhibition.256 And butyric acid can reduce the release of 
IL-1β-induced proteoglycan from cartilage explants.256 Butyrate 
could inhibit the production of key MMPs in chondrocytes via pro-
inflammatory cytokines at both mRNA and protein levels, which 
further potently inhibit cartilage collagen breakdown.257 Moreover, 
sodium butyrate markedly inhibits IL-1β-induced expression of 
MMPs and ADAMTSs by suppressing phosphorylation of IκBα, 
NF-κB p65 and IKK to abolish inflammatory NF-κB activation.258 
Importantly, GPR43 receptor is greatly relevant to efficacy of bu-
tyrate in inhibiting IL-1β-induced inflammation in chondrocytes and 
its chemoattractant effects.259

4.5.2 | Fatty acids as negative regulators of 
chondrocytes

SFA and its metabolites
Several studies have shown that animals fed with high-SFAs diet 
exhibit accelerated cartilage degeneration,260 and long-chain SFAs 
are considered as important negative regulators of chondrocyte 
metabolism. Studies have shown that BMMSCs and adipose stem 
cells-derived chondrocytes which generate long-chain SFAs have 
decreased cartilaginous matrix production,261 and SFAs with differ-
ent chain lengths might exert relative effects in chondrocytes. It has 
been found that diet rich in longer chain SFAs such as PA and SA 
promotes more expression of collagenase-10 and MMP-13 and in-
creases much more chondrocyte apoptosis than diet rich in shorter 
chain SFAs.260

PA and SA have been reported to participate in inflammatory 
reactions by augmenting pro-inflammatory markers such as IL-6 in 
human chondrocytes.262 In primary mouse chondrocytes, SA could 
promote lactate dehydrogenase-dependent production of lactate 
to stabilize HIF1α protein and facilitate pro-inflammatory cytokines 
expression263 SA-stimulated NF-κβ p65 activation and pro-inflam-
matory cytokines expression in chondrocytes could be attenuated 
by miRNA-26a; conversely, NF-κB p65 could also inhibit miRNA-26a 
production by directly targeting the promoter region of miR-
NA-26a.264 In addition, PA and SA treatment could enhance auto-
phagy activation in chondrocytes, which is strongly associated with 
increased activation of NF-κB signalling pathway,265 while opposite 
effects have been observed upon LA stimulation.

Palmitate has been reported to synergize with IL-1β to induce 
caspase activation and chondrocyte apoptosis, as well as increase 
expression of cyclooxygenase 2 and IL-6 in chondrocytes via TLR-4 
signalling, which are all involved in the pathological processes of car-
tilage destruction.266,267 Lipotoxicity of palmitate could also be me-
diated by endoplasmic reticulum (ER) stress and further suppresses 
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IGF-1-mediated signalling and succedent proteoglycans and collagen 
type II synthesis in chondrocytes.268 And utilization of either JNK 
inhibitor or small molecule chemical chaperone could weaken the ef-
fect of palmitate to facilitate cartilage matrix synthesis and chondro-
cytes survival.269,270 Importantly, palmitate-induced ER stress could 
activate unfolded protein response signalling and subsequently 
promote apoptosis of meniscus cells to affect the development of 

obesity-related osteoarthritis.271 Moreover, in human chondrocytes, 
palmitate could induce expression of pro-apoptotic molecules such 
as cleaved caspase-3 (CC3) and negative cell survival regulators such 
as tribbles related protein 3 (TRB3) and nuclear protein 1 (Nupr1) 
and thus induces apoptosis of chondrocytes.272 Taken together, pal-
mitate has potent therapeutic implications for inflammatory bone 
diseases such as osteoarthritis.

F I G U R E  4  Modulation of fatty acids on specific bone cell types. Multiple receptors for fatty acids including GPRs, ChemR23, TLRs and 
PPARs are found in pre-osteoclasts, mature osteoclasts, osteoblasts and chondrocytes. Several GPRs including GPR18, GPR41, GPR43 
and GPR109A are receptors for SCFAs (C2-C5) expressed in both osteoclasts and osteoblasts. GPR40, found on osteoclasts, could be 
activated by medium/long-chain fatty acids with a chain length of C8-C22. GPR84, whose expression in macrophages and adipocytes could 
be enhanced under inflammatory conditions, is a receptor for MCFAs (C9-C14). GPR120 is expressed on osteoblasts and osteoclasts and 
could be stimulated by LCSFAs (C14-C18) and LCUFAs (C16-C22). PTH1R, belonging to GPR2 family, could be antagonized by ω-3 LCPUFAs 
to promote osteoblast activity. PPARs, with known ligands including LCPUFAs and metabolites such as PGE2, are nuclear receptors that 
regulate lipid metabolism by acting as transcription factors in BMMSCs, osteoblasts, osteoclasts and chondrocytes. TLRs, including TLR2 
and TLR4, are found in osteoblasts, pre-osteoclasts, osteoclasts and chondrocytes. Their ligands are mainly SFAs and LCPUFAs and are 
involved in inflammatory action. ChemR23 can act as chemerin receptor as well as RvE1 receptor in bone tissue cells such as osteoclasts 
and osteoblasts. Interactions of fatty acids with specific receptors induce transduction of transmembrane specific signals and activation of 
various downstream signalling pathways including NF-κB, NFATc1 or Runx2-mediated transcriptional regulation, and further modulating 
bone microenvironment homeostasis and pathological bone remodelling. GPRs, G protein-coupled receptors; chemR, chemokine-like 
receptor; TLR, toll-like receptor; SCFAs, short-chain fatty acids; MCFAs, medium-chain fatty acids; LCSFAs, long-chain saturated fatty acids; 
LCUFAs, long-chain unsaturated fatty acids; PTH1R, parathyroid hormone type 1 receptor; LCPUFAs, long-chain polyunsaturated fatty 
acids; PPARs, peroxisome proliferator-activated receptors; PGE2, prostaglandin E2; SFAs, saturated fatty acids; RvE1, resolvin E1; NF-κB, 
nuclear factor-kappa B; NFATc1, nuclear factor of activated T-cell cytoplasmic 1; Runx2, runt-related transcription factor 2
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ω-6 PUFAs and their metabolites
A growing body of evidence has shown that a higher ratio of ω-6-
to-ω-3 PUFAs might exert negative influences on cartilage.273 As 
for specific mechanisms, ω-6 PUFAs such as ALA and AA aggravate 
cartilage damage by serving as precursors for pro-inflammatory 
prostanoids, while ω-3 PUFAs such as EPA and DHA protect car-
tilage by being metabolized to anti-inflammatory mediators such as 
protectins and resolvins.273,274 Moreover, AA-derived PGE2 could 
serve as important inflammatory mediator to regulate inflammatory 
reactions of chondrocytes. Studies have shown that PGE2 could 
suppress differentiation of chondrocytes by activating downstream 
receptors protein kinase A (PKA) and protein kinase C (PKC), which 
might be responsible for activation of transcription factors associ-
ated with collagen X production.275

Taken together, fatty acids exert multiple effects on specific 
bone cell types and thereby associated bone diseases (Table 4), 
which might be mediated via distinct mechanisms at cellular and mo-
lecular levels (Figure 4). Understanding the mechanistic implications 
of fatty acids in bone cells will greatly benefit their further utilization 
in related bone disorders.

5  | CONCLUDING REMARKS

In this review, we reviewed impacts of fatty acids on bone me-
tabolism, summarized molecular mechanisms involved in actions 
of fatty acids in distinct bone cell types, and discussed their poten-
tial implications for metabolic bone disorders. Currently available 
findings imply that LCPUFAs mainly exert protective functions on 
bone by promoting functions of BMMSCs and osteoblasts while 
inhibiting activities of osteoclasts. MCFAs such as CA suppress 
osteoclastogenesis and thereby alleviate bone resorption. SCFAs 
and associated combinational treatment might inhibit bone re-
sorption and inflammatory response for potential therapeutics 
against inflammatory bone loss including arthritis. Overall, these 
fatty acids might serve as potential therapeutic and nutritional 
agents in managing metabolic bone disorders such as osteopo-
rosis, rheumatoid arthritis and oral-maxillofacial diseases such as 
periodontitis. Moreover, as natural compounds occurring widely 
in human body, fatty acids are available in a variety of ways and 
might be potent to antagonize possible side effects of current 
drug therapies. Nevertheless, currently available investigations 
have only reported roles of fatty acids in a limited number of bone 
disorder conditions, and further bench and clinical investigations 
are needed to comprehensively elucidate the underlying mecha-
nisms for their possible applications in additional skeletal disor-
ders such as temporomandibular joint disorder and osteosarcoma. 
Taken together, we conclude that involvement of fatty acids in 
bone diseases pathogenesis might provide potential therapeutic 
targets for interventions of bone disorders, and promising fatty 
acids with therapeutic effects might be used directly or indirectly 
in nutritional or drug formulations for prevention and treatment of 
specific types of bone disorders.
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