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Identifying relationships between 
imaging phenotypes and lung 
cancer-related mutation status: 
EGFR and KRAS
Gil Pinheiro1,9, Tania Pereira1,9*, Catarina Dias1,2, Cláudia Freitas3,4, Venceslau Hespanhol3,4, 
José Luis Costa4,5,6, António Cunha1,7 & Hélder P. Oliveira1,8

EGFR and KRAS are the most frequently mutated genes in lung cancer, being active research topics in 
targeted therapy. The biopsy is the traditional method to genetically characterise a tumour. However, 
it is a risky procedure, painful for the patient, and, occasionally, the tumour might be inaccessible. This 
work aims to study and debate the nature of the relationships between imaging phenotypes and lung 
cancer-related mutation status. Until now, the literature has failed to point to new research directions, 
mainly consisting of results-oriented works in a field where there is still not enough available data to 
train clinically viable models. We intend to open a discussion about critical points and to present new 
possibilities for future radiogenomics studies. We conducted high-dimensional data visualisation and 
developed classifiers, which allowed us to analyse the results for EGFR and KRAS biological markers 
according to different combinations of input features. We show that EGFR mutation status might 
be correlated to CT scans imaging phenotypes; however, the same does not seem to hold for KRAS 
mutation status. Also, the experiments suggest that the best way to approach this problem is by 
combining nodule-related features with features from other lung structures.

Lung cancer is the cancer type leading the incidence and mortality rates1,2. This is linked to the fact that it is often 
diagnosed in an advanced stage, with 15% or less chance of a 5-year survival3, which magnifies the importance of 
treatments for advanced-stage disease. In Non-small-cell lung cancer (NSCLC), which constitutes 85% of all cases 
of lung cancer, certain genomic biomarkers are now considered predictive biomarkers and critical for the prog-
nostic4. Epidermal Growth Factor Receptor (EGFR) and Kristen Rat Sarcoma Viral Oncogene Homolog KRAS 
are the most frequently mutated gene in lung cancer5. EGFR mutated is present in 15 to 50% of NSCLC patients 
from never-smokers5. The two most common EGFR mutations (deletions in exon 19 and the single amino acid 
substitution L858R in exon 21) correspond to approximately 85% of the EGFR mutations in NSCLC. The other 
low frequency mutations include: point mutations, deletions, insertions, and duplications correspond to approx-
imated 15% of EGFR mutations in NSCLC6. Unlike the previous marker, KRAS is associated with tobacco use, 
with only 5 to 10% of KRAS-mutant lung cancers arising in never or light smokers5,7.

Surgically treated NSCLC patients with EGFR mutations showed better disease-free survival (DFS) and overall 
survival (OS) and the opposite was verified for KRAS, with worse DFS and OS8. For cytotoxic chemotherapy, the 
role of EGFR and KRAS as a predictive marker is still unclear9; however, it appears that mutant KRAS may predict 
a lack of response to chemotherapy10. Regarding target therapy, tumour driver mutations have reliable predic-
tive value and, in fact, they guide treatment decision in clinics11. EGFR gene is a paradigmatic example, since 
its activating mutations, namely those located in exon 19 and 21, are associated with better response to target 
therapy, such as gefitinib and erlotinib12–14. Current molecularly-targeted therapies can effectively target specific 
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biomarkers, decreasing multiple undesirable side effects associated with cancer treatment15. Several clinical trials 
have been performed to evaluate the efficacy and safety of treatments for lung cancer patients with EGFR muta-
tions16. EGFR is a receptor tyrosine kinase that controls the growth and proliferation of cells. The target therapies 
of EGFR in lung cancer are based on small molecular tyrosine kinase inhibitors (EGFR-TKIs) that upon binding 
reduce intracellular signalling. KRAS, albeit the most common mutated oncogene, has been more difficult to 
target. The KRAS biochemistry complexity has hampered the development of direct KRAS inhibitors17. The cur-
rent approaches are based on covalent binding of the inhibitors. In particular, the AMG 510 was the first KRAS 
inhibitor to demonstrate anti-tumour activity in clinical trials18, including advanced NSCLC19. MRTX849 is also 
currently in phase I clinical trials and has the same target20,21.

Tissue biopsy provides a detailed information of the tissue architecture and topography. However, these 
biopsies tend to increase medical complications, especially when repeated biopsies are needed. Alternative 
less-invasive clinical procedures for pathological and molecular classification of the tumour are cytological sam-
ples and liquid biopsy. Cytological sample can provide adequate cellular material for accurately diagnose and 
characterize lung cancer22. These can be obtained from broncho-alveolar lavage, bronchial washings, bronchial 
brush smears, pleural fluid, sputum and guided fine needle aspiration cytology of mediastinal and metastatic 
lymph nodes23. A limitation of this option is the limited number of tumour cells that is possible to collect. The 
liquid biopsy is even less-invasive and it allows the molecular classification through a simple blood sample, ana-
lysing the circulating tumour cells and/or circulating tumour DNA24. A limitation of this strategy is the high 
sensitive methodologies required to characterize the circulating genetic material. Thus, there is the urge to find 
a non-invasive ways to shape the treatment25. Medical image analysis can help to solve these issues in two ways: 
by providing tools capable of measuring characteristics of the lung and, more specifically, the tumour; and with 
models that use only image features to obtain results through automatic or semi-automatic processes. These 
models can either use qualitative features, obtained by semantic annotations from human observers, or use 
quantitative features, obtained through a radiomic approach, which extracts features directly from the image26. 
Radiogenomics, a specific field within radiomics, is defined by the correlation between quantitative features, 
directly extracted from radiological images (imaging phenotype), and genetic information (genotype)27. Studies 
in lung cancer have presented the association between EGFR mutation status and quantitative features extracted 
from computed tomography (CT) scans27–30. The most recent methods are based on convolutional neural net-
works, which are end-to-end approaches that allow to automatically learn the whole process, reducing the subjec-
tivity and human effort27,31. Also, regarding qualitative features, recent works have shown that human semantic 
annotations of CT scans can be used to train a model to accurately predict EGFR mutation status, although the 
same was not verifiable for KRAS32,33.

Our previous work was a preliminary study which used a public database26,34,35 to create predictive models 
for EGFR and KRAS33. In the current work, we apply a more robust approach based on multiple splits to define 
the train and test sets, preventing an eventual bias from specific patients and effectively assessing the variance 
in the data. Additionally, this study aims to provide further advances and to open new discussions in the lung 
cancer radiogenomics field by exploring the data and building machine learning models, while considering dif-
ferent subsets of inputs. More specifically, predictive models for EGFR and KRAS mutation status in lung cancer 
were developed. Following the current direction in the literature, where the analysis only focuses on the nodule 
structure and texture36,37, we started by using objective radiomic features directly extracted from nodules in CT 
scans. Then, semantic features, annotated during radiologist evaluation, were used as input. Unlike their radiomic 
counterpart, they comprise not only nodule characteristics, but also lung characteristics external to the tumour. 
Clinical features as patient’s gender and smoking status were considered due to its significant association with 
mutation status prevalence, confirmed in recent studies38–40. Moreover, the comparison between its results and 
those found in the literature review is also presented and is suggested a new perspective about gene mutation 
status prediction based on image analysis.

Results
Data visualisation.  When using Principal Component Analysis (PCA) followed by t-distributed Stochastic 
Neighbour Embedding (t-SNE) for dimensionality reduction, it is possible to conclude that the separation of classes 
between mutated and wild type EGFR gene status is better when using hybrid semantic features. However, the sep-
aration is not perfect, as there are samples outside their cluster, which illustrates the level of complexity faced in a 
classification process (Fig. 1a). Contrarily, for KRAS, there is no visible separation between classes with any type of 
input features (Fig. 1b). The remaining data visualisation images can be found in Supplementary Fig. 1.

Classification results.  Mean values of Area Under the Curve (AUC) were reported for 100 random data 
splits, with a division of 80% and 20% for training and testing, respectively. Two main types of input features were 
considered: radiomic and semantic. The semantic were further divided into features that only describe the nod-
ule, features that only describe structures external to nodule and a hybrid between the previous two. Radiomics 
were not further divided as they only describe the nodule.

Only the predictive models for EGFR showed relevant results, with a maximum mean AUC of 0.7458 ± 0.0877 
using the hybrid semantic features (represented by the mean ROC curve in Fig. 2). The second best result was 
obtained using non-nodule semantic features. The worst results were obtained using features only from the nod-
ule, using radiomic and semantic type of features. For KRAS, it was not possible to build any acceptable model. 
Table 1 shows the performance results obtained by each model trained with different groups of the features. Mean 
and standard deviation of AUC were determined for 100 of different splits for training and test. The performance 
results confirm the difficulty of gene mutation status classification, which is visible in the t-SNE projections, 
where there was not possible to achieve a clear separation between classes (Fig. 1).
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Most relevant features.  A subset of features, ranked by importance for the most successful model (EGFR 
mutation status prediction using hybrid semantic features), is presented in Fig. 3. They were selected using a 
minimum threshold of 0.02 and add up to cumulative importance of 0.92 out of 1. The complete list of features 
importance can be seen in the Supplementary Table 3.

Discussion and Future Work
The results of the present study suggest that even though EGFR mutation status is correlated to CT scans imag-
ing phenotypes, the same does not hold true for KRAS mutation status. We hypothesise that this might be due 
to two reasons: mutated and wild type KRAS display identical imaging phenotypes, which is supported by the 
literature32,41,42, or our number of samples was too small and unrepresentative to find a relevant pattern for such 
a complex problem.

Figure 1.  Visualisation of sample distributions based on PCA and t-SNE. Each point is coloured according to 
its mutation status, with red dots and green crosses representing the wild type and mutated cases, respectively.

Figure 2.  Averaged ROC curve obtained for EGFR predictive model based on semantic features. For each of 
the N = 100 runs, the ROC curve is calculated. The blue line depicts the arithmetic average ROC curve and the 
shading the standard deviation. The red dashed lines indicate ROC curves of at-chance classifiers.

Features

AUC (mean ± standard deviation)

EGFR Mutation Status KRAS Mutation Status

Radiomic 0.5797 ± 0.1238 0.5087 ± 0.0104

Semantic Nodule 0.6542 ± 0.0953 0.4381 ± 0.0679

Semantic Non-Nodule 0.6831 ± 0.0890 0.4921 ± 0.0851

Semantic Hybrid 0.7458 ± 0.0877 0.5035 ± 0.0776

Table 1.  Classification results for EGFR and KRAS mutation status predictive models considering different sets 
of input features.
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The outcomes of this work also indicate that general lung semantic features in conjunction with tumour spe-
cific semantic features should be used in order to obtain the best possible EGFR mutation status classification 
results. Only average results were obtained using semantic features that solely describe aspects external to the 
nodule. The worst performances come from models that only use tumour-describing set of features, either of the 
radiomic or semantic types. This, combined with the fact that the most relevant features (as determined by the 
classifier) were tumour external (Fig. 3), might hint towards the importance of a holistic lung analysis, instead of 
a local nodule analysis. Although no previous works profoundly discuss or highlight this particular implication 
of EGFR mutation in imaging phenotypes, there are experiments in the literature that agree with this statement. 
For example, previous works already showed the importance of extra-tumoral features to obtain a successful 
EGFR mutation status classifier30,32. The most recent review and meta-analysis of CT and clinical characteristics 
to predict the risk of EGFR mutation confirms that CT features with the highest correlation with EGFR mutation 
are from the nodule and other structures of the lung43. Also, another work based on deep learning techniques 
with an interpretable visual output, identified that the regions surrounding the nodule were the most relevant for 
the classification decision31,44. In our opinion, it is crucial to emphasise this characteristic, as it might change the 
direction and broaden the analysis spectrum of future radiogenomics studies, which until now have been mainly 
focusing on the nodule or in a region of interest (ROI) around it16,45,46. Lung cancer is the result of multiple and 
complex combinations of morphological, molecular and genetic alterations47. Since there is a large spectrum of 
clinicopathological processes that occur during the lung cancer development, it is only natural that important 
information for the predictive models can be obtained from a larger region of analysis that contains other struc-
tures from the lung.

The biggest limitation of this work is the reduced size of the used dataset, which hardly is a good representa-
tion of the population affected by lung cancer. In order to better understand the variance in the data and to ensure 
that the outcomes are not highly influenced by a small number of cases, we used 100 random combinations of 
cases as train and test sets, reporting the mean values and the standard deviations for the conducted experiences. 
This limitation is common to the studies in this field, since in general datasets are small and based on patients 
cohorts from only one medical centre. A reproducible and clinically viable predictive model needs a large and het-
erogeneous cohort of patients and methods capable of coping with the inherent data heterogeneity27. So, a reliable 
model would require a reliable dataset, collected from multiple centres in order to capture the heterogeneity of the 
population, but under an uniform protocol to avoid any inconsistency during data record. The access to the data 
and the uniform acquisition represent the main limitation to build a large dataset. Different protocols used for the 
data acquisition restrain the mixture of data from different clinical institutions. Additionally, because of privacy 
issues, the clinical and imaging data is extremely difficult to obtain and requires a large amount of time and effort 
to submit the protocol to the ethical committees and get approval, and there are also indirect barriers such as 
fees and data management requirements48. Another limitation of the current study is the number of genes taken 
into account. The two most frequent gene mutations with lung cancer were selected; however other genes were 
significantly frequent in this type of cancer, and their study could play an important role for novel target therapies, 
even more personalised and effective. Finally, the stratification of the dataset based on the different mutations is 
relevant as they may provide different clinical information. The recent approval for the KRAS G12C mutations is 
a clear example18. However, this rare publicly available dataset is small and so does not provide statistical power 
to address this.

In the future, new radiomic features should be extracted from radiological images and explored according to 
this study results. That is, features that reflect the state of pulmonary structures external to the tumour nodule 
combined with nodule features. This would allow us to have a more complete, objective and automatic outlook on 
the lung, probably delivering more accurate and robust classifiers for EGFR mutation status prediction. Another 
important future work is to build a large dataset more representative of the feature populations. A large dataset 
will allow us to build more robust models which can deal with heterogeneities of the population, also could allow 
us to study other types of gene mutation status, and the stratification of the population by different mutations.

Figure 3.  Top 16 semantic features based on the importance scores of features, measured via XGBoost, for 
predicting the EGFR mutation status. Were represented the features that have an average importance score 
greater than a 0.02. For each of the N = 100 runs, the importance score is determined and the average and 
standard deviation is displayed in the bar graph.

https://doi.org/10.1038/s41598-020-60202-3


5Scientific Reports |         (2020) 10:3625  | https://doi.org/10.1038/s41598-020-60202-3

www.nature.com/scientificreportswww.nature.com/scientificreports/

Materials and Methods
Dataset.  The NSCLC-Radiogenomics dataset26,34,35 comprises data collected between 2008 and 2012 from a 
cohort of 211 patients with NSCLC referred for surgical treatment, being the only public dataset which compre-
hends information regarding the mutation status of lung cancer-related genes (EGFR, KRAS and ALK). It con-
tains a set of CT images stored in DICOM format. Since the samples were retrospectively collected, the scanning 
protocol and scanning parameters were not standardised; thus slice thickness varied from 0.625 mm to 3 mm 
(median:1.5 mm) and the X-ray current from 124 mA to 699 mA (mean: 220 mA) at 80-140 kVp (mean: 120 
kVp). The subjects were in the supine position with their arms to the side, while the scans were acquired from 
the top of the lung to the adrenal gland during a single breath26. The nodules segmentation masks are stored as 
DICOM Segmentation Objects49 and are represented as 3D binary images, where voxels belonging to the tumour 
ROI are represented by the value 1 and voxels outside the tumour ROI are represented by 0. In the cases where the 
segmentation mask images did not have the same dimensions as their corresponding CT images, the appropriate 
number of slices was added to the segmentation mask.

Molecular data.  Despite including a cohort of 211 NSCLC subjects, only 116 (wild type: 93, mutant: 23) were 
further considered in the presented radiomic study for EGFR mutation status prediction and 114 (wild type: 88, 
mutant: 26) for KRAS mutation status prediction. The scarce availability of tumour masks and target labels did not 
allow all subjects to be used. Also, Anaplastic lymphoma kinase (ALK), which is the third most frequent oncogene 
mutated in lung cancer5, was not targeted by this study, as the prevalence of mutated cases was too small (wild 
type: 108, mutant: 2).

Patients were referred for surgical treatment, and the surgical samples were used to obtain molecular char-
acterisation. Molecular data for EGFR, KRAS, ALK were obtained using gene expression microarrays, or RNA 
sequencing, or both50. SNaPshot technology based on dideoxy single-base extension of oligonucleotide primers 
after multiplex polymerase chain reaction (PCR) was used for single nucleotide mutation detection. For EGFR 
mutations the exons 18, 19, 20 and 21 were tested. For missense KRAS mutations the exon 2 positions 12 and 13 
were tested50.

Clinical features.  Clinical features were added to the radiomic features as well as to the semantic features to build 
the predictive models. From now on, we only mention the name of the main group of features that contribute to 
the models, i.e., radiomic and semantic features. Supplementary Table 1 shows detailed information regarding the 
clinical data distribution and nomenclature.

Radiomic features.  There are image properties, such as the distance between slices, which may differ from scan 
to scan, and consequently affect the features extracted and the learning ability of the algorithms. Therefore, before 
trying to extract patterns, the images went through a preprocessing step in order to standardise the scans across 
the whole dataset.

Firstly, the CT image values were converted to Hounsfield Unites (HU), which is a measure of radiodensity. 
The equation for computing the HU values based on radiodensity is shown in Eq. 1, where μ represents the orig-
inal linear attenuation coefficient of substance, μwater represents the linear attenuation coefficient of water and μair 
the linear attenuation of air51.

μ μ

μ μ
= ×

−

−
HU 1000

(1)
water

water air

By default, the values returned by the CT scanner are not in this unit. In such manner, the radiodensity values 
were converted to HU units, by multiplying the voxel value by the slope and adding the intercept related to the 
linear transformation, which values are stored in the metadata of the scans. With the purpose of learning patterns 
from the data using an automatic analysis methodology, it is extremely important that a pixel is represented in 
the same way in the entire dataset. Having this in mind, the entire dataset (including the tumour masks) were 
resampled so that neighbour slices and adjacent pixels are separated by 1 mm in x, y and z directions. Images were 
normalised between −1000 HU and 400 HU, since −1000 HU is the radiodensity of air and values above 400 HU 
represent hard tissues, not relevant for the task at hand52. Values under −1000 HU or above 400 HU were defined 
as −1000 HU and 400 HU, respectively.

From the 3D images of the nodules of the pre-processed CT scans, a set of 1218 radiomic features were 
extracted using the open-source package Pyradiomics53. Features were computed both on the original image and 
on images obtained after application of wavelet and Laplacian of Gaussian (LoG) filters. A wavelet transform 
decouples textural information by decomposing the original image in low and high frequencies. A 3D undeci-
mated wavelet transform was applied to each CT image, which decomposed the original image into 8 different 
images. Considering that L is a low-pass filter and H a high-pass filter, the original image X is decomposed into 
8 new images after the wavelet decomposition: XLLL, XLLH, XLHH, XLHL, XHHH, XHHL, XHLL, XHLH. For instance, XLHL 
is obtained after applying a low-pass filter along the x-dimension, a high-pass filter along the y-dimension and a 
low-pass filter along the z-dimension. The remaining images are built similarly, applying their respective sequence 
of low or high-pass filters in x, y and z-direction54. Concerning the LoG, five filters with different sigma values 
were applied (sigma = 1.0 mm, 2.0 mm, 3.0 mm, 4.0 mm, 5.0 mm), to improve texture analysis by detection of 
multi-scale edges and ridges55. In summary, considering the original image and the resulting images after filter 
application, there were 14 different images to extract features for each sample.

Six classes of features were extracted from the Pyradiomics package: shape-based features (14 features), 
first-order features (18 features), GLCM features (22 features), GLRLM features (16 features), GLSZM features 
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(16 features) and GLDM features (14 features). Shape features include different descriptors of the size and shape 
of the ROI. Having in mind that shape descriptors are independent of intensity values, only the tumour segmen-
tation masks were required for its computation. First-order features are related to the voxel intensities within 
the ROI using basic metrics (e.g. mean and standard deviation). GLCM features describe the second-order joint 
probability function of the ROI. GLRLM features define the length of successive pixels that share the same grey 
level intensity. GLSZM features quantify the grey level zones in an image, which represent the number of con-
nected voxels that have an equal grey level value. At last, GLDM features quantify grey level dependencies in an 
image. A straightforward overview of the steps involved with the feature extraction is presented in Fig. 4.

Semantic features.  The dataset comprises a set of subjects whose tumour was analysed by radiologists using 30 
nodule and parenchymal features, which describe nodule’s geometry, location, internal features and other related 
findings. From these subjects, 158 are characterised in terms of EGFR mutation status and 157 subjects character-
ised in terms of KRAS mutation status, which were the samples selected for the presented semantic study.

The semantic terms that were used to characterise the patients are common in radiology clinical practice and 
derive from descriptions in the radiology literature26. Definitions of some of the terms used in this description can 
be found in56. The template of semantic terms was developed by two academic thoracic radiologists exclusively 
for tumours with identifiable nodules and excluded cases without this manifestation. More information about the 
semantic annotations protocol can be found at26.

From the original set of semantic features, some were discarded due to a large number of not applicable val-
ues (e.g. the fibrosis type field in a patient that has fibrosis absent), thus, only 18 features were used in the final 
study. The final dataset comprises percentages of 26% and 25% mutated cases for EGFR and KRAS, respectively. 
Supplementary Table 2 shows detailed information regarding the semantic data distribution and nomenclature. 
Before feeding the data into the model, features were binarised following a one-hot encoding strategy. After that, 
the number of features increased from 20 to 73.

Feature engineering and selection.  Considering semantic features, most Lung Parenchyma categories are under-
represented (see Supplementary Tables 1 and 2), with Normal and Bronchial wall thickening making up to 79.1% 
and 77.2% of the present Lung Parenchyma categories in the EGFR and KRAS datasets, respectively. To balance 
the occurrences, we binarise this feature, putting the Normal category in a group and the remaining in another, 
creating a new category titled Not normal.

Both semantic and radiomic features were submitted through a process of feature selection, where the corre-
lation matrix was computed, and a correlation threshold of 0.95 between variables was set. Additionally, the least 
importance radiomic features were excluded. This was done by taking the feature importances from a gradient 
boosting machine algorithm and only keeping the ones necessary to achieve a cumulative importance of 0.95.

Dimensionality reduction.  We use Principal Component Analysis (PCA)57 followed by t-Distributed 
Stochastic Neighbour Embedding (t-SNE)58 to reduce our high-dimensional data to a two-dimensional space, 
in order to investigate the existence of class separation between EGFR and KRAS wild type and mutated samples. 

Figure 4.  Overview of the process of feature extraction via Pyradiomics. First, medical images and 
segmentation masks are loaded into the software. This step allows to select the region of the tumour. Then, after 
filters have been applied to the original image, radiomic features are extracted from the ROI of the resultant 
images.
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PCA allows to find the minimum number of variables that minimise information loss from the original data. This 
is done by creating new uncorrelated variables (principal components) that maximise variance, which comes 
down to solving an eigenvector problem. t-SNE is used to further reduce the data dimension to a 2D space. 
In order to reduce the data dimension, this method minimises the divergence between pairs of input samples 
(high-dimensional space) and pairs of the corresponding points in the embedding (low-dimensional space) using 
a cost function.

Balancing training set.  In general, machine learning algorithms assume a similar distribution of classes. 
Here, EGFR wild type is over-represented, which could result in a model biased towards this class. However, in 
this study, the correct classification of both classes is equally important, as the classification of a patient with the 
wrong mutation status could lead to the administration of a less suitable treatment and, consequently, to shorter 
progression-free survival. To overcome this class imbalance, Synthetic Minority Over-sampling Technique - 
Nominal and Continuous (SMOTE-NC) was applied, an extended version of SMOTE generalised to handle data 
with continuous and nominal features59. This technique creates new random synthetic minority class instances 
between the lines that connect each one of the n nearest neighbours of each minority class sample. In comparison 
to traditional over-sampling, SMOTE-NC has the advantage of building a more general decision region of the 
minority class. After this algorithm is applied, the training set contains the same number of mutated and wild 
type samples.

Classification and feature importance.  The classifier used in this work was Extreme Gradient Boosting 
(XGBoost), which is a scalable and accurate implementation of gradient boosted trees algorithms60 that has been 
used for lung cancer related works61,62. A benefit of using gradient boosting is that after the boosted trees are 
constructed, it is possible to retrieve the importance scores for each feature, based on how useful or valuable each 
feature was in the construction of the boosted decision trees within the model. Their importance is calculated for 
a single decision tree by the amount that each attribute split point improves the performance measure, weighted 
by the number of observations the node is responsible. The feature importance is then averaged across all of the 
decision trees within the model.

Training and performance metrics.  The training and testing processes were repeated for 100 random 
splits of the original dataset. Each split comprised a training and test sets consisting of 80% and 20% of the 
original data, respectively. The mean and standard deviation for all the 100 results were reported in favour of 
reliability and to demonstrate the variance in the data. The classifier hyper-parameters were tuned through a 
5-fold cross-validated randomised search on the training data, maximising the models F-measure. The data is 
balanced individually for each fold using SMOTE-NC, avoiding data leakage. After parameter optimisation, 
probabilistic outputs of each model with optimal parameters were analysed using the AUC of Receiver Operating 
Characteristic (ROC). ROC is a probability curve, and AUC represents the degree or measure of separability, 
telling how much model is capable of distinguishing between classes. The ROC curve is plotted with True Positive 
Rate (TPR) against the False Positive Rate (FPR), usually with TPR on the y-axis and FPR on the x-axis.

Experimental design.  We designed four experiments in order to test and compare which type of input 
features allow to achieve better performance in gene mutation status prediction. We first trained a model that 
took nodule-related radiomic features as input. Then, for direct comparison purposes and to allow a modular 
evaluation, we split the semantic data into three parts: nodule, non-nodule and hybrid. The first one contains only 
nodular information, the second one contains only information external to the nodule, and the third one is the 
combination of both. The split can be seen in detail in Table 2 of the supplementary material.

Accession codes.  The developed code is available on GitLab (https://gitlab.inesctec.pt/ippr-pub/
lucasradsemegfrkras).

Data availability
The data was obtained from the open-access NSCLC-Radiogenomics dataset publicly available at The Cancer 
Imaging Archive (TCIA) database26,34,35. Imaging and clinical data have been de-identified by TCIA and approved 
by the Institutional Review Board of the TCIA hosting institution. Ethical approval was reviewed and approved 
by the Washington University Institutional Review Board protocols. Informed consent was obtained from all 
individual participants included in the study.
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