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A multi-omics dataset of heat-
shock response in the yeast RNA 
binding protein Mip6
Carme Nuño-Cabanes1,2,7, Manuel Ugidos1,2,7, Sonia Tarazona3, Manuel Martín-Expósito   1, 
Alberto Ferrer3, Susana Rodríguez-Navarro   1,2,8 ✉ & Ana Conesa   4,5,6,8 ✉

Gene expression is a biological process regulated at different molecular levels, including chromatin 
accessibility, transcription, and RNA maturation and transport. In addition, these regulatory 
mechanisms have strong links with cellular metabolism. Here we present a multi-omics dataset that 
captures different aspects of this multi-layered process in yeast. We obtained RNA-seq, metabolomics, 
and H4K12ac ChIP-seq data for wild-type and mip6Δ strains during a heat-shock time course. Mip6 is 
an RNA-binding protein that contributes to RNA export during environmental stress and is informative 
of the contribution of post-transcriptional regulation to control cellular adaptations to environmental 
changes. The experiment was performed in quadruplicate, and the different omics measurements 
were obtained from the same biological samples, which facilitates the integration and analysis of data 
using covariance-based methods. We validate our dataset by showing that ChIP-seq, RNA-seq and 
metabolomics signals recapitulate existing knowledge about the response of ribosomal genes and 
the contribution of trehalose metabolism to heat stress. Raw data, processed data and preprocessing 
scripts are made available.

Background & Summary
Eukaryotic gene expression is a complex process in which the information coded in genes is transformed into 
functions that support living cells. This process comprises different interconnected steps, which occur in separate 
compartments and are performed by specific molecular components1,2. One of the earlier steps consists of setting 
up the appropriate epigenetic modifications to allow the expression or repression of specific gene programs3,4. 
These modifications take place mostly on DNA and histones, ensuring access to the proper transcriptional 
machinery. The specific set of modifications across the genome regulates the final synthesis of the mRNA5. These 
newly synthetized RNA molecules are extensively modified prior to their export to the cytoplasm, where they 
can be degraded by the mRNA decay machinery, stored in specific foci or translated into proteins6,7. Throughout 
this journey, RNA molecules are guided by RNA-binding proteins that control their fate7–9. Finally, the encoded 
protein products participate in numerous processes, including cellular metabolism where organic compounds 
are transformed and/or stored. A number of these compounds, such as Acetyl-CoA, glucose or methyl groups, 
participate, in turn, in chromatin modifications that regulate gene expression.

Our current understanding of transcriptional regulation was largely established using yeast as a model organ-
ism. Yeast is an ideal research model for transcriptome research because they exhibit most of the cellular com-
plexity present in eukaryotes and have relatively compact, accessible genomes. However, while the interconnected 
transcriptional circuit has been studied and accepted by many yeast labs2,10–15, these studies usually target aspects 
of the transcriptional regulation and produce separate results that contribute to the overall transcriptional model. 
Moreover, different strains, experimental conditions and batches are used by different labs and there are few 
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examples of experimental datasets where all these layers have been measured on exactly the same samples. This 
poses challenges to the mathematical integration of the data, as methods that rely on the analysis of co-variation 
patterns will have application restrictions. When the multi-layered data are obtained on the same samples, addi-
tional analysis opportunities arise that facilitate the establishment of relationships across regulatory mechanisms.

In this Data Descriptor, we present a yeast multi-omics dataset that features three basic layers of the tran-
scriptional circuit, measured in the same set of samples. These include one epigenetic modification - H4K12ac, a 
mark for active promoters-, gene expression -RNA-seq- and targeted metabolomics. Moreover, data are obtained 
for both WT and a mip6Δ mutant, in control and heat-shock induced conditions. Mip6 is an RNA-binding 
protein that participates in RNA export under stress16 and consequently is informative of the contribution of 
post-transcriptional regulation to the adaptation of RNA levels to environmental changes. Taken together, 
the selection of yeast strains, growth conditions and omics experiments, creates a unique dataset to study the 
cross-talk between epigenetic, transcriptional and metabolic regulation in response to environmental cues. The 
availability of multi-omics data on the same set of samples will facilitate the application of powerful statistical 

Fig. 1  Experimental design and sample management. (a) Treatment strategy. For each strain and replicate, 
a yeast culture flask was grown at 30 °C until the exponential phase, then split into three flasks, each of them 
receiving a different treatment. (b) Sampling strategy. From the same treatment flask, aliquots were collected for 
RNA-seq, metabolomics and ChIP-seq.
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Fig. 2  RNA-seq data preprocessing. (a) Example of base quality scores across all reads obtained by fastQC 
analysis, showing uniform read quality. (b) Biotype plot of NOISeq package, which indicates that the vast 
majority of detected features are protein-coding genes. (c) Batch effect correction. PCA score plots are 
represented. The left panel shows raw data where a day-of-culture batch effect is observed. The right plot shows 
the corrected data where this batch effect has been removed.
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approaches that fully leverage paired measurements to propose quantitative regulatory models. A subset of this 
collection, namely gene expression data for 20 genes that are regulated by stress transcriptional factors Msn2/4, 
has been published elsewhere16.

Methods
Experimental design.  Figure 1 illustrates the experimental desing of our dataset. Panel A describes the 
strategy to manage sampling and the time-course nature of our experiment. A single, 330 mL culture (either for 
WT or mip6Δ strains) was grown at 30 °C until the exponential phase (OD = 0.7), and this culture was subse-
quently split across three flasks. One flask was maintained at 30 °C and labeled as time point 0. The other two 
flasks were incubated at 39 °C for 20 minutes and 120 minutes, respectively, by adding preheated media to rapidly 
increase the temperature to 39 °C. These last two flasks capture the heat-shock response, while the 30 °C flask 

Relative metabolite concentration*
WT mip6∆

Name Class 30 °C 39 °C 20′ 30 °C 39 °C 20′

Acetate carboxylic acid 66.55 34.73 72.47 63.91

Alanine amino-acid 30.46 52.78 31.48 51.51

Arginine amino-acid 20.18 19.45 21.39 19.15

Asparagine amino-acid 4.37 3.72 4.23 3.67

Aspartic acid amino-acid 12.00 12.94 12.72 14.04

Glucose sugar 2.80 2.01 2.55 2.39

Citrate carboxylic acid 1.32 2.29 1.85 2.67

Ethanol alcohol 40.55 45.87 45.59 35.47

Fructose 1,6-biphosphate sugar 2.56 1.08 1.88 1.81

Galactitol alcohol 6.34 7.29 6.37 5.30

Glutamic acid amino-acid 69.42 75.83 72.25 68.85

Glutamine amino-acid 4.90 5.78 5.44 5.11

Glutathione other 5.02 6.60 4.19 4.15

Glycerol alcohol 11.10 4.02 10.25 7.20

Glycine amino-acid 17.21 16.21 20.93 20.01

Glycerophosphocholine alcohol 27.13 43.10 30.96 37.31

Histidine amino-acid 3.54 3.84 3.41 3.70

Isoleucine amino-acid 4.79 4.05 5.59 4.15

Lactate carboxylic acid 11.21 12.60 12.97 18.25

Leucine amino-acid 5.73 6.59 5.42 4.61

Lysine amino-acid 69.70 67.99 70.65 65.10

Myo-inositol vitamin-derivated 2.24 1.08 1.64 1.79

NAD other 2.51 1.77 2.45 1.91

Phenylalanine amino-acid 5.11 5.32 5.39 5.66

Proline amino-acid 2.57 1.43 1.46 1.68

Serine amino-acid 2.51 7.54 2.66 5.41

Succinate carboxylic acid 2.51 1.09 3.17 1.47

Thiamine derivate 1 vitamin-derivated 1.00 1.00 1.01 0.99

Thiamine derivate 2 vitamin-derivated 2.76 2.69 2.59 2.30

Trehalose sugar 1.11 8.51 1.12 6.15

UDP-glucose sugar 1.69 1.48 1.96 1.00

Valine amino-acid 6.69 6.86 7.35 5.90

Beta-D glucoronic acid carboxylic acid 2.63 2.45 2.77 2.96

Alpha-glucose sugar N.D. N.D. N.D. N.D.

ATP other N.D. N.D. N.D. N.D.

CMP/CTP other N.D. N.D. N.D. N.D.

GMP other N.D. N.D. N.D. N.D.

Trypthphane amino-acid N.D. N.D. N.D. N.D.

Tyrosine amino-acid N.D. N.D. N.D. N.D.

UDP-derivative 1 other N.D. N.D. N.D. N.D.

UDP-derivative 2 other N.D. N.D. N.D. N.D.

UDP-derivative 3 other N.D. N.D. N.D. N.D.

Table 1.  Metabolites measured by NMR in control and 20′ heat-shock. Metabolites measured in this study. 
*Average value of four replicates; N..D.: not detected.
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serves as a control representing non-stress conditions. The rationale for having two flasks for the 39 °C temper-
ature instead of a single flask sampled at two different time points was to avoid introducing effects related to 
culture volume. Panel B describes how samples were obtained for omics measuments. Basically, for each of the 
flasks described above three aliquotes were extracted for RNA-seq, NMR metabolomics, and ChIP-seq analyses. 
Therefore, the three omics assays were performed on the same cell culture. RNA-seq and NMR aliquotes were 
obtained first, and the remaining culture was treated to induce cross-linking before collecting the ChIP-seq ali-
quote. After aliquoting, each tube was inmediatelly frozen and stored at −80 °C.
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Fig. 3  Batch effect correction of metabolomics data. PCA score plots are represented. (a) Raw data shows a 
slight day of culture batch effect for the 20 min 39 °C condition. (b) Batch effect corrected data.

Fig. 4  ChIP-seq data preprocessing. (a) Example of base quality scores across all reads obtained by fastQC 
analysis. (b) PCA of H4 and H4K12ac data. The first PC indicates the type of ChIP-seq assay, while the second 
PC reflects the heat treatment in the H4K12ac samples. No batch effect is observed.
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The process described in Fig. 1 was repeated 4 times to generate four biological replicates. However, due to 
sample management limitations these 4 replicates were created on two different days. Specifically, biological rep-
licates 1 and 2 were obtained in day 1, and replicates 3 and 4 were obtained in day 2.

Dataset Database and accession

mRNA-seq GEO, GSE13556828

ChIP-seq GEO, GSE13556828

Metabolomics MetaboLights, MTBLS132029

Table 2.  Public repositories hosting the yeast Mip6 data.
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Fig. 5  Replicability of processed data. Wild type 39 °C 120 minutes sample is selected as an example. Log2 
transformed data are shown. (a) RNA-seq. (b) Metabolomics. (c) ChIP-seq (H4). (d) ChIP-seq (H4K12ac). Red 
diagonal line indicates perfect correlation between samples.
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Acquisition and preprocessing of multi-omics data.  RNA-seq.  Total RNA was isolated by hot acid 
phenol extraction. RNA integrity was checked with Bioanalyzer (Agilent) and then submitted to a commercial 
sequencing facility (Macrogen Corea). Sequencing was done with Illumina using the TruSeq protocol. Between 
50–60 million reads of 100 bp paired data were obtained from each sample. Raw sequencing data quality was 
checked by fastQC and good overall quality (Fig. 2a) was observed in all cases. No trimming was deemed neces-
sary. Reads were mapped to the yeast saccer3 genome with Tophat217 and genes were quantified with HTSEQ18, 
intersection-option. Supplementary Table S1 shows the number of reads, mapping rate and number of reads in 
genes for all samples, revealing uniform quantities across the dataset.

The NOISeq19 R package was used to perform the quality control of count data. We observed most of reads 
mapped onto protein-coding genes (>80%), as expected (Fig. 2b). Counts were normalized via TMM20 and a low 
count filtering was applied with the NOISeq cpm method (with cpm = 1). Principal Component Analysis (PCA) 
indicated a slight batch effect for the day of culture growth (Fig. 2c left) that was removed by ARSyN21 (Fig. 2c 
right). In total, we obtained gene expression values for 6,379 genes.

Metabolomics.  Metabolomics measurements were performed on an NMR platform as described in22. Basically, 
metabolites were extracted via chloroform–methanol extraction and the spectra of cell extract samples were 
recorded on a Bruker AVII-500 using a TCI cryoprobe with spinning at 3,500 Hz. Spectra were processed using 
Topspin2.16 software (Bruker GmbH, Karlsruhe, Germany). Metabolite identification and assignment were per-
formed with the help of the Human Metabolome Database and 2D NMR experiments. Signal peaks of spectra 
were normalized considering that the sum of peak areas across all metabolites was constant for every sample, 
and values for each metabolite were given as a fraction of the total area. A total of 45 compounds were detected, 
that included 5 sugars, 17 amino-acids, 4 alcohols, 3 vitamin-derivated compounds, 5 carboxylic acids, and other 
compounds (CMP, NAD, Glutathione, ATP and GMP), plus 3 unidentified metabolites (Table 1). Raw data were 
log2 transformed and compounds with non-positive measure across all samples were removed, as they were con-
sidered to be below reliable detection limit. PCA analysis indicated a small batch effect (Fig. 3a), that was removed 
by ARSyN (Fig. 3b).

ChIP-seq.  For ChIP-seq samples, chromatin immunoprecipitation was performed as previously described23. 
After cross-linking the cultures for 20 minutes at room temperature with 1% formaldehyde (Sigma), they were 
quenched with 125 mM glycine for 15 minutes. Subsequently, the cells were collected by centrifugation, split in 
two aliquots (one for each ChIP) and washed with 25 mL of cold Tris-saline buffer (20 mM Tris-HCl, 150 mM 
NaCl, pH 7.5) three times. The pellets were frozen in liquid nitrogen and stored at −80 °C until further pro-
cessing. Cells were disrupted by adding 300 µL of lysis buffer (50 mM HEPES-KOH at pH 7.5, 1 mM EDTA, 
140 mM NaCl, 1 mM PMSF and protease inhibitors) and 200 µL of glass beads and vortexing for 13 minutes 
at 4 °C. The cell extracts were sonicated for 30 minutes in a Bioruptor sonicator (Diagenode) at high intensity 
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Fig. 6  RP and RiBi gene expression levels during heat-shock response. (a) Expression levels of RP and RiBi 
genes (left and right panel, respectively) calculated from RNA-seq at different time-points of the heat-shock. 
WT and mip6Δ samples are depicted in lighter and darker colors, respectively. Each bar represents the mean 
of four biological replicates with the standard error of the mean (s.e.m.) shown as error bars. All values were 
normalized to the value of the WT at 30 °C. (b) Validation of the RNA-seq experiment results by RT-qPCR 
from samples incubated under 30 °C and 39 °C for 20 minutes. Each bar represents the mean of three biological 
replicates with s.e.m. shown as error bars. Values were calculated using the ΔΔCt method.
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using 30 seconds on/30 second off cycles in a 4 °C water bath. The cellular lysate was clarified by centrifugation 
at 12,000 rpm for 10 minutes at 4 °C and the whole supernatant was used for immunoprecipitation by incubat-
ing with magnetic beads (Dynabeads, Invitrogen) bound to anti-histone H4 (Abcam) or anti-histone H4K12ac 
(Active Motif) antibody for 2 hours at 4 °C. Beads were subsequently washed twice with lysis buffer, twice with 
lysis buffer supplemented with 360 mM NaCl, twice with wash buffer (10 mM Tris-HCl, pH 8.0, 250 mM LiCl, 
125 mM Nadeoxycholol, 1 mM EDTA and 0.5% NP-40), and once with TE buffer. Samples were eluted by adding 
50 µL of elution buffer (50 mM Tris-HCl, pH 8, 10 mM EDTA, 1% SDS) to the beads and incubating for 10 min 
at 65 °C. This step was repeated twice. The samples were incubated overnight at 65 °C to reverse the cross-linking 
and then incubated with 100 µg/250 µl of proteinase K (Ambion) for 1.5 h at 45 °C. DNA was isolated by phenol 
extraction. This DNA was sent to Macrogen Corea for sequencing.

Sequencing was done following the Illumina TruSeq protocol. Around 20 million 50 bp reads were obtained 
for each sample. Note that two ChIP-seq data files were obtained for each sample: H4 and H4K12ac. H4 files con-
tain the reads after purification of total H4 histone and H4K12ac files contain the data associated to acetylation 
of Lysine 12. Raw sequencing data quality was checked by fastQC and good overall quality (Fig. 4a) was observed 
in all cases. Trimming of Illumina adapters was performed using Cutadapt24. Reads were mapped to the yeast 
saccer3 genome with Bowtie225. Supplementary Tables S2 and S3 summarize sequencing performance in terms of 
number of reads and mapping rate for H4 and H4K12ac samples, respectively.

H4 sample of mip6.39.0 was discarded as it showed poor sequencing performance. Macs2 software26 was 
used to call Histone 4 acetylation peaks on the H4K12ac samples alone. Next, a consensus file was generated by 
merging peaks across all samples using the merge command from bedtools software27 with default parameters. 
These consensus regions were used to map back reads of all samples, including H4 samples. Peaks were quantified 
with HTSEQ18, intersection-option. NOISeq19, R package was used to perform a quality control of count data. 
Moreover, coverage per base was obtained for both, H4 and H4K12ac samples, using the genomecov command 
from bedtools26.

Data Records
Raw data.  The yeast WT and mip6Δ heat-shock multi-omics data have been deposited in different public 
repositories28,29. Table 2 shows a list of the current hosting of raw data files.
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Fig. 7  ChIP-seq data correlate with gene expression changes. (a) Global metagene indicates that H4K12 
acetylation is mostly present at the Transcription Start Site (TSS) of genes. (b) Metagene analysis of RP genes 
reveal acetylation differences across time points. (c) Boxplot of log2FC values between consecutive time points 
for H4 and H4K12ac signals. Positions for marker RP and trehalose metabolism genes are indicated. Although 
signal distribution for RNA-seq is wider, positions at the data distribution for marker genes are shared between 
RNA-seq and ChIP-seq data.
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Additionally, processed data are also accessible from the Figshare repository, with https://doi.org/10.6084/
m9.figshare.c.4716677 30.

Technical validation
Validation of dataset replicability.  In order to assess replicability, pairwise scatter plots were obtained for 
RNA-seq data (Fig. 5a), metabolomics data (Fig. 5b) and ChIP-seq data (Fig. 5c,d). Only WT strain replicates are 
shown as mip6Δ strain data behaved similarly. Replicates were highly and equally correlated with each other, and 
no experimental outliers were detected.

Validation of biological consistency.  Translational repression upon heat-shock occurs in most eukar-
yotes31,32, and it is well known that ribosomal genes rapidly shut down after heat treatment. Moreover, previous 
studies assessing the impact of heat-shock on yeast cells revealed a protective effect for trehalose33,34. We evaluated 
whether this effect was corroborated by our data.

First, we analyzed ribosomal data. As expected, we found a general down regulation of both ribosomal protein 
genes (RP genes, Fig. 6a, left panel) and ribosomal biosynthesis genes (RiBi genes, Fig. 6a, right panel) upon a heat 
treatment at 39 °C. This response was similar for WT and mip6Δ strains. The strongest effect was observed after 
20 minutes of heat (blue bars), and recovery was observed for all genes after 120 minutes (orange bars). The drastic 
downregulation of several RP genes after 20 minutes at 39 °C was further validated in independent experiments 
by q-PCR (Fig. 6b).

It is well stablished that histone modifications modulate gene expression programs35. Among other mod-
ifications, histone acetylation is considered as a key player in the epigenetic control of gene expression and is 
associated with transcriptionally active genes36. Moreover, a significant deacetylation of H4 was observed after a 
one hour heat-shock of HeLa cells, being histone H4K12ac affected37. To evaluate our ChIP-seq data in relation to 
heat-shock we first analyzed the composite profile across all genes for the H4K12ac marker (Fig. 7a). In agreement 
with its role in transcriptional activation, we found a general enrichment of H4K12ac at the Transcription Start 
Site (TSS) of genes, and, as expected for the heat-shock response, we found consistently lower levels for all 39 °C 
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Fig. 8  Trehalose metabolism genes and metabolites during heat-shock response. (a) Expression levels of 
trehalose metabolism genes calculated from RNA-seq at different time-points after heat shock. WT and 
mip6Δ samples are depicted in lighter and darker colors, respectively. Each bar represents the mean of four 
biological replicates with the s.e.m. shown as error bars. All values were normalized to the value of the WT 
at 30 °C. Lower panel shows a scheme of trehalose metabolism in budding yeast where genes that codify for 
trehalose metabolism enzymes are represented in blue and metabolites in black. (b) Trehalose metabolite 
levels in WT and mip6Δ cells at different time points of the heat-shock. Each bar represents the mean of four 
biological replicates except for mip6Δ 39 °C 20 minutes value, which is calculated from three replicates. Error 
bars represent the s.e.m. *Indicates one-tailed unpaired Student’s t-test p-value < 0.05. (c) Trehalose metabolite 
levels in WT and mip6Δpes4Δ cells under 30 °C and 39 °C 20 minutes conditions. Each bar represents the 
mean of three biological replicates with the s.e.m. shown as error bars. * indicates one-tailed unpaired Student’s 
t-test p-value < 0.05. (d) Correlation network of trehalose metabolism. Genes are showed in gray boxes and 
metabolites are represented using green ellipses. The color intensity and thickness of edges are proportional to 
the correlation values between nodes. Correlations lower than 0.5 are not showed. For network clarity, some 
direct associations were omitted if an intermediate node exists to infer such connection.
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samples. Moreover, we found a significant reduction of H4K12 acetylation at the TSS of RB genes after 20 minutes 
of heat-shock (Kolmogorov-Smirnov test p.value < 1e-10, Fig. 7b, blue lines), which agrees with the strong down 
regulation of their expression at this time point (Fig. 6a, blue lines). Notably, H4K12 acetylation levels appeared 
to be fully restored after 120 minutes (Fig. 7b, orange lines) while gene expression levels were not (Fig. 6a, orange 
lines). This result suggests that H4K12 acetylation responds more rapidly to heat stress than gene expression.

To determine if this time-dependent heat-response pattern between gene expression and H4K12 acetylation 
was a general pattern we analyzed the distribution of both types of data. In particular, we obtained the mean read 
coverage per base at the TSS ± 100  p for the H4K12ac signal in each gene, and computed log2 fold-change values 
(Log2FC) of the comparison between consecutive time-points. We compared this distribution to the Log2FC of 
gene expression. This analysis showed that the gene expression response measured by RNA-seq (grey boxes) has 
a larger dynamic range than H4K12 acetylation measured by ChIP-seq (white boxes), as the distributions are 
broader in the former (Fig. 7c). Additionally, the transcriptional response at 0′–20′ is overall larger than that at 20’ 
to 120′. However, the direction of signal change at the gene-level seems to be the same for both omics layers, since 
the position of selected genes in the Log2FC distributions is similar for RNA-seq and H4K12ac data (Fig. 7c). 
This was true both for genes that are down-regulated upon heat-shock (RP genes) than for upregulated genes (i.e. 
trehalose metabolism genes, Fig. 7c). We concluded that a coordinated signal of H4K12ac and gene expression 
can be inferred from our data, although the magnitude of change in each differs, with RNA-seq data manifesting 
a larger dynamic range.

Figure 7c suggested that expression changes of trehalose metabolism genes in mip6Δ cells were larger than in 
WT. We therefore investigated further this pathway. We confirmed a general -although with different magnitudes- 
upregulation for genes members of the trehalose metabolism pathway (Fig. 8a). Interestingly, we observe the 
highest value always for mip6Δ cells under these conditions, particularly for TSL1 and PGM2 genes, that showed 
the strongest transcriptional regulation, suggesting that a heat-induced accumulation of trehalose might be larger 
in the mip6Δ versus the WT. We verified this hypothesis by analyzing trehalose levels of our metabolomics data-
set (Fig. 8b). We found a strong increase of this metabolite in the treated cells and a significant higher accumu-
lation in the mutant. The metabolomics measurement was further confirmed by an independent analysis, where 
we measured trehalose levels in a double mutant lacking MIP6 and its yeast paralogue PES416 (Fig. 8c). Finally, 
network analysis of gene-metabolite levels of the trehalose pathway shows a strong correlation of trehalose with 
genes using this metabolite either as substrate (NTH1, NTH2) and product (TPS2), suggesting a direct regulation 
of trehalose levels by these gene products (Fig. 8d).

Taken together, this section shows a biologically consistent and coordinated signal of our RNA-seq, ChIP-seq 
and metabolomics datasets that agrees with previous findings. Our analysis also suggests a specific role for mip6 
in the metabolic control of the heat-shock response, further supporting the biological interest of the dataset.

Code availability
Preprocessing scripts for each of the omics datasets are available at the Github repository (https://github.com/
ConesaLab/MultiMip6).
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