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Abstract Malaria is caused by Plasmodium parasite. It is

transmitted by female Anopheles bite. Thick and thin blood

smears of the patient are manually examined by an expert

pathologist with the help of a microscope to diagnose the

disease. Such expert pathologists may not be available in

many parts of the world due to poor health facilities.

Moreover, manual inspection requires full concentration of

the pathologist and it is a tedious and time consuming way

to detect the malaria. Therefore, development of automated

systems is momentous for a quick and reliable detection of

malaria. It can reduce the false negative rate and it can help

in detecting the disease at early stages where it can be

cured effectively. In this paper, we present a computer

aided design to automatically detect malarial parasite from

microscopic blood images. The proposed method uses

bilateral filtering to remove the noise and enhance the

image quality. Adaptive thresholding and morphological

image processing algorithms are used to detect the malaria

parasites inside individual cell. To measure the efficiency

of the proposed algorithm, we have tested our method on a

NIH Malaria dataset and also compared the results with

existing similar methods. Our method achieved the detec-

tion accuracy of more than 91% outperforming the com-

peting methods. The results show that the proposed

algorithm is reliable and can be of great assistance to the

pathologists and hematologists for accurate malaria para-

site detection.

Keywords Malaria diagnosis � Microscopic images �
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Introduction

Malaria is one of the leading causes of death over the world

with almost 400,000 deaths per year. More than 200 mil-

lion cases of malaria are reported every year worldwide

(WHO 2019). Malaria is caused by a protozoan parasite of

the genus Plasmodium and it is usually diagnosed by an

expert pathologist manually by examining the blood cells

of the patient under a microscope. The manual examination

is a tedious, time consuming, and error prone way to detect

the malaria. Moreover, it is difficult to analyze each blood

smear with full concentration as in many parts of the world

the patient to doctor ratio is significantly below the World

Health Organization (WHO) recommendations, one

physician per 1000 population. The statistics show that

over 45% of WHO member states do not meet this rec-

ommendation (WHO 2019). According to the malaria

report of World Health Organization (WHO 2018) most of

the deaths due to malaria occur in continental Africa and in

2017 among 435,000 deaths 93% were from Africa. This is

because in that region malaria finds suitable environment to

grow, and secondly, very less resources are available there

to prevent this disease. In such situations, detection of

malaria should be rapid and accurate to help in early

identification and treatment. Therefore, development of

automated systems is momentous for a quick, reliable, and

timely detection of malaria.

Malaria is transferred into human body from the bites of

female Anopheles mosquitoes. This parasite infects the red

blood cells (RBC) and goes through a complex life cycle.

During the life cycle, the malaria parasite grows and
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reproduces which damages the RBCs. At different stages of

life, the parasite changes its shape which can be seen under

microscope. There are five species of Plasmodium which

cause malaria in humans: Plasmodium falciparum, Plas-

modium vivax, Plasmodium malariae, Plasmodium ovale,

Plasmodium knowlesi. Among these five species, P. falci-

parum and Plasmodium vivax are the most common

(Warhurst et al. 1996; Mahmoud et al. 2019).

The manual method for malaria diagnosis is widely used

because it is less expensive and can identify all species of

malaria. This method is commonly used to find severity of

malaria, testing of medicine against malaria, and also used

to identify any parasites left after a treatment. For micro-

scopic analysis of blood two kinds of blood smears are

prepared: thick smear and thin smear. Thick smear can

detect malaria more fast and accurately as compared to thin

smear. On the other hand, the thin smear can detect species

of malaria and can also identify severity of malaria

(Warhurst et al. 1996; Das et al. 2015; Rosado et al. 2016;

Jan et al. 2018). Besides having all these benefits, light

microscopy has a huge disadvantage of extensive training,

and correctness of result entirely depends on the skills of

the microscopist. There exist some other techniques for

detection of malaria, such as, microarrays (Patarakul 2008),

polymerase chain reaction (PCR) (Johnston et al. 2006),

rapid diagnostic test (RDT) (Moody 2002), quantitative

buffy coat (QBC) (Clendennen et al. 1995), and

immunofluorescent antibody testing (IFA) (She et al. 2007)

etc. These techniques are either expensive or very complex

to perform, hence the light microscopy still stays the

commonly used technique for detection of malaria.

In recent years, the automatic detection of malaria has

been an important research area. There are some key pro-

cessing steps performed in almost every automatic malaria

diagnostic system. The first step is the acquisition of digital

microscopic blood images followed by a preprocessing

performed in order to remove noise and artifacts from

images. Third step is the separation of RBCs, white blood

cells, platelets, and parasites, etc. In fourth step, some

features are computed to differentiate between segmented

objects and finally based on the computed features RBCs

are classified in either infected or uninfected category.

In the malaria detection method presented by Yang et al.

(2017), the thin blood smear images obtained through light

microscopy are used and noise in images is removed by

using mean filtering. Histogram thresholding is applied for

segmentation and images are classified by using support

vector machine (SVM). After preprocessing, the method of

Linder et al. (2014) classifies the images using SVM on the

basis of local binary pattern (LBP) and the algorithm of

Mohammed and Abdelrahman (2017) does the same but

uses normalized cross-correlation feasture. After segmen-

tation, the classification of Kareem et al. (2012) is

performed based on Hue Saturation Value (HSV), relative

size, and geometry. The algorithm presented by Nasir et al.

(2012) uses K-mean clustering to segment image followed

by seeded region growing algorithm to remove any

remaining unwanted region.

A number of malaria detection algorithms use the Otsu

thresholding (Otsu 1979) to segment the objects of interests

and then use different classifiers to separate the cells into

affected and non-affected, e.g., Gatc et al. (2013), Malihi

et al. (2013), Savkare and Narote (2015). Histogram based

techniques to segment the blood cells from the image are

also widely used in malaria detection algorithm e.g., Zou

et al. (2010), Anggraini et al. (2011), Kaewkamnerd et al.

(2012), Mushabe et al. (2013), Maiseli et al. (2014).

Anggraini et al. (2011) removed the noise in thin blood

smear through median filtering and segmentation was

performed using Otsu thresholding (Otsu 1979). Naive

bayes tree is used to classify cells based on the color

intensity of cells. Le et al. (2008) proposed a technique

based on supervised thresholding and tested it for both thin

and thick blood smear.

Pan et al. (2018) presented an algorithm in which they

classified cells by using deep convolutional neural net-

works. A deep learning based malaria detection system was

presented by Hung et al. (2017). The detection and clas-

sification is performed using faster R-CNN followed by

AlexNet for fine classification. The malaria detectors pro-

posed by Liang (2016), Bibin et al. (2017), Poostchi et al.

(2018), Vijayalakshmi and Kanna (2019) also use deep

learning. Liang (2016) proposed a technique in which the

images were first segmented and then to separate infected

and uninfected cells a convolutional neural network was

applied. Ross et al. (2006) used different morphological

methods to classify thin blood smear microscopic images

as malaria infected and uninfected. In malaria detection

approach presented by Elter et al. (2011), the infected and

uninfected cells were classified by using a SVM based on

texture and morphological features. The method of Das

et al. (2012) preprocessed images with illumination cor-

rection and noise reduction by geometric mean filter.

In this paper, we present a computer aided diagnosis

system for malaria detection from the microscopic blood

images. The algorithm is fully automatic and does not

require any assistance from the user. There are two major

advantages of the proposed method. First, instead of using

the conventional preprocessing techniques, it exploits

bilateral filtering to remove noise from the image. Second,

we propose to use of object contours and 8-connected rule

to identify the parasites in the cell. The performance of the

proposed algorithm was evaluated on a publicly available

malaria dataset and also compared with existing similar

methods.
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Materials and methods

The proposed algorithm works in two steps. First, the cell

images were processed to remove the noise and enhance

the quality of the image. Second, the image was processed

to detect the parasite though adaptive thresholding and

morphological operations. The Infected cells contain par-

asites which serve as discriminator between infected and

uninfected cells.

Image preprocessing

The first step in the proposed algorithm is the image

preprocessing to enhance the quality of the image and to

remove any noise present in the image. This step is

important as the performance of the later stages of the

proposed algorithm depends on the quality of the image

being fed to it. Due to poor acquisition, the images may

be polluted with noise which must be removed before

processing the image for parasite detection. Simple

blurring filters e.g., average filter, are well-known for

suppressing different noises in digital images, including,

uniform noise, Gaussian noise, etc. However, in our case

the images were low-resolution and content sensitive -

the boundary of the parasite in the cell is very important

and using simple blurring filters can deteriorate it

resulting in the mis-detection of the parasite. Therefore,

we need a filter that remove the noise but preserves the

edges in the image. In our method, we used bilateral

filter (Tomasi and Manduchi 1998) to remove the noise

from the image.

In the conventional filtering methods, the filter weights

depend on the spatial distance of the pixel from the filter

center. Contrastingly, the filter weights in the bilateral filter

not only depend on the spatial distance but also on the

range differences i.e., color or intensity difference. The

later characteristic of the filter helps it to achieve the edge

preserving property. The bilateral filters are non-linear in

nature as their weights depend on the contents of the

underlying image. It is important to note that the compu-

tational complexity of bilateral filtering is no more than the

conventional filtering. Let Io be the input original micro-

scope color image of size M � N. Each pixel pðx; yÞ 2 Io
consists of triplets - red, green, and blue components,

represented as a vector p ¼ ½rgb�>. Here (x, y) are the

spatial coordinates of the pixel in the image. The bilateral

filtered image using window of size ð2d þ 1Þ � ð2d þ 1Þ is
obtained as:

�Iðx; yÞ ¼1

w

X

�d� i;j� d

h
Ioðxþ i; yþ jÞ

grðkIoðxþ i; yþ jÞ � Ioðx; yÞkÞgsðkik; kjkÞ
i
;

ð1Þ

where gr is the range kernel that smooths the intensity

difference between the center pixel at (x, y) and its

neighborhood pixel at (i, j), gs is the kernel that smooths

based on the distance between the pixels (x, y) and (i, j). In

our study, both of these kernels are based on Gaussian

function,

grðiÞ ¼ exp
� i2

2r2r ; ð2Þ

gsðl;mÞ ¼ exp
�ðl2þm2Þ

2r2s ; ð3Þ

where rr and rs are variance parameters. In (1), weight w

normalizes the filtered value. It is computed as,

wðx; yÞ ¼
X

�d� i;j� d

grðkIoðxþ i; yþ jÞ � Ioðx; yÞkÞgsðkik; kjkÞ;

ð4Þ

A sample input image from the test dataset is shown in

Fig. 1a, and the results of applying different commonly

used filters as preprocessing are shown in Fig. 1b–d. The

results of applying ‘average filter’, ‘Gaussian lowpass

filter’, and ‘median filter’ are shown in Fig. 1b–d,

respectively. The result of applying the proposed

preprocessing is shown in Fig. 1e. It can be observed that

the result of average filtering (Fig. 1b) is very poor, though

the noise is suppressed but it also deteriorated the

boundaries of the objects which would result in poor

parasite detection. The object boundaries in Gaussian

lowpass filtered image (Fig. 1c) are better than average

filtered image, however the noise is still presented in the

filtered image. Similar observation can be made about the

median filter (Fig. 1d). Compared to other preprocessing

techniques, the noise present in the input image is greatly

reduced by the proposed preprocessing technique without

affecting the structural details present in the image.

Parasite detection

The proposed algorithm detects the parasites from the

image using its intensity values. Therefore, the prepro-

cessed image �I is converted into grayscale I. This was

achieved by processing each pixel p by using the following

formula:

v ¼ 0:2989 0:5870 0:1140½ �
r

g

b

2
64

3
75 ð5Þ
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Using (5), each pixel of the color image is converted into

grayscale value. The resultant image is denoted as I. In the

malaria dataset used in performance evaluation, each

image contains one red blood cell (Fig. 5). To differentiate

the infected and uninfected cells, different features have

been used in literature e.g., edges and color. In this

research we propose to use the object contours for this

purpose instead of edges. We recall that an object contour

is a closed curve compared to an edge which is a set of

connected neighboring pixels. Therefore, contours are

expected to be more helpful in detecting the objects inside

a cell than the edges.

Numerous algorithms have been proposed to detect

contours from grayscale and color images e.g., Catanzaro

et al. (2009), Leordeanu et al. (2012), Yang et al. (2016),

Li et al. (2018). Any of such approach can be used to detect

the boundaries of the objects. However, we find that in the

problem under discussion, any simple contour detection

technique can be used as the images are colorless and

textureless. To keep the proposed algorithm simple and

efficient, we used Matlab built-in contour detection algo-

rithm. It returns a contour matrix C that consists of two

rows defining the cn contour levels.The very first column

contains the contour levels A and number of vertices na at

each level while the remaining columns contains the

coordinates (x, y) value of the vertices. In each column, the

first row contains x value of the vertex and the second row

corresponds to the y value of the vertex.

C ¼
Aa x1a x2a � � � xna Ab x1b � � �

VðnaÞ y1a y2a � � � yna VðnbÞ y1b � � �

� �

ð6Þ

Figure 2d shows the contours detected from image in

Fig. 2c.

Adaptive thresholding is performed to segment para-

sites. In conventional thresholding techniques, a global

threshold value is used for all pixels in the image whereas

adaptive thresholding changes its threshold value for each

pixel dynamically throughout the image based on its

neighborhood. In our algorithm, the threshold value for

each pixel was determined statistically which considered

local intensity value of the neighbor pixels. This helps to

remove the false positives, retaining only those pixel which

are potential parasites. For a pixel in the contour image Ic,

in a window of size w� w centered at that pixel (x, y) was

processed to estimate its threshold value t.

tðx; yÞ ¼ 1

w2

Xw
2

i¼�w
2

Xw
2

j¼�w
2

Icðxþ i; yþ jÞ ð7Þ

If pixel value p(x, y) is greater than its respective threshold

t(x, y), it is assigned foreground value otherwise it assumes

background value. After performing the adaptive

thresholding a binary image Ib is obtained.

Ibðx; yÞ ¼
1 if Icðx; yÞ� tðx; yÞ
0 if Icðx; yÞ� tðx; yÞ

�

Figure 2e shows the result of adaptive thresholding the

image in Fig. 2d. Figure 2e contains parasites, some arti-

facts, and boundaries of the cells. To get the parasites, we

have to eliminate the outer edge and other little compo-

nents. For this purpose, we will find the connectivity

among pixel and its immediate neighbors in eight direc-

tions i.e., left, right, up, down, and diagonals. In the image

Ib, we used 8-connected components around the pixel

(Fig. 3), the components that do not qualify this rule were

discarded by leaving behind the islands which are the

potential parasites (Fig. 4).

After removing edges and other artifacts from Fig. 2d,

the results are shown in Fig. 4 which is our final image If .

The non-zero pixels in this image represent the presence of

parasites. Finally, we computer number of connected

components in If and pass them through a threshold value

to distinguish between the infected and uninfected cells. If

number of components n are more than the threshold then

that the cell is classified as infected, classified as uninfected

otherwise. Different values of this threshold are experi-

mented and results are discussed in next section.

Fig. 1 a A sample input color image of a RBC, b result of preprocessing with an ‘averaging filter’, c result of preprocessing with an ‘Gaussian

lowpass filter’, d result of preprocessing with an ‘median filter’, e result with proposed preprocessing
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Results and discussion

In this section, we report the performance of a proposed

algorithm on a large publicly available dataset. We also

compared the results of our algorithm with the other

competing methods using different objective metrics to

assess the effectiveness of the proposed method.

Dataset used for performance evaluation

The dataset we used to evaluate the performance of the

proposed algorithm was taken from the Malaria Dataset

provided by the National Library of Medicine (NLM),

USA. The dataset is publicly available at

https://ceb.nlm.nih.gov/repositories/malaria-datasets/ and

was introduced by Rajaraman et al. (2018). The dataset

was collected at Chittagong Medical College Hospital,

Bangladesh with Giemsa-stained thin blood smear slides.

The blood smears from 150 P. falciparum-infected and 50

healthy patients were taken. The resultant images were

manually annotated by expert microscopists at the Mahi-

dol-Oxford Tropical Medicine Research Unit in Bangkok,

Thailand. To preserve the patients’ privacy, the images

were de-identified before public release. Our test dataset

comprises of 2000 images with equal instances of para-

sitized and uninfected cells. Few sample infected and

uninfected images from the dataset are shown in Fig. 5.

Objective performance evaluation

In this section, we evaluated the performance of the pro-

posed malaria parasite detection algorithm. The proposed

algorithm was executed for each image in the dataset and

on an image, there are four possible outcomes of the pro-

posed algorithm (Table 1): true positives (TP), true nega-

tives (TN), false positives (FP), and false negatives (FN).

The true positives (TP) represent the infected cells detected

without error and the true negatives (TN) denote the

uninfected cells which are correctly detected. The false

positives (FP) are the healthy cells detected as infected and

Fig. 2 a A sample input color image of an RBC, b image after preprocessing, c the grayscale image obtained from b by using (5), d contours

detected in c, e image after adaptive thresholding

Fig. 3 The 8-connectivity used to discard the edges and other small

blobs. The objects, if any, obeying the connectivity were left which

are considered parasites

Fig. 4 Final image after removing the edges and other small blobs

through 8-connected components

Fig. 5 Sample microscope images of parasitized cells (top row) and

uninfected cells (bottom row) taken from Malaria dataset
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the false negative (FN) are the infected cells detected as

healthy.

To objectively quantify the performance of the proposed

algorithm five statistical metrics: Precision, Specificity,

Recall, Accuracy, and F1-score (Fawcett 2006; Hajian-

Tilaki 2013; Farid et al. 2018) were computed for whole

dataset. Precision demonstrates how much the model is

precise in terms of positive results. It computes out of all

positive predicted values how many of them are actually

positive.

Precision ¼ TP

TPþ FP
ð8Þ

Specificity measures the ratio of actual negatives that are

correctly identified.

Specificity ¼ TN

TN þ FP
ð9Þ

Recall computes how much of the actual positive results

are captured correctly. It helps in false negative cases such

that a patient was suffering from malaria but was diagnosed

as healthy. It is computed as following:

Recall ¼ TP

TPþ FN
ð10Þ

Accuracy measures percentage of correctly classified cells

from the overall assessments.

Accuracy ¼ TPþ TN

TPþ FN þ TN þ FP
ð11Þ

The F1 score is the weighted harmonic average of the

precision and recall which ranges from 0 (worst) to 1

(best). Therefore, this score takes both false positives and

false negatives into account and provides overall accuracy

of the model.

F1score ¼ 2� Precision� Recall

Precisionþ Recall
ð12Þ

In all experiments, the number of contours levels cn (6)

was set to 20, and three values for window size (w) 19, 17,

and 15 were experimented. The number of connected

components n was also empirically evaluated with values

0, 1, and 2. The results of this evaluation are presented in

Tables 2 and 3. These results show that the best values

were produced by window size w of 19 ð19� 19Þ and

number of connected objects (n) in the infected image

should be at least one while for uninfected cells n should be

zero. For w ¼ 19 and n[ 0, the algorithm achieves the

best scores in accuracy, recall, and F1 score. The precision

score for these settings is 0.9466 which is closest to the best

results 0.9512, with a negligible difference, less than 0.005.

We also compared the performance of the proposed

algorithm with other existing similar methods, including

those of Ross et al. (2006), Das et al. (2012), Hung et al.

(2017) and Pan et al. (2018). Although this comparison

would not be equitable or well earned as the datasets used

in these methodologies were different, however it can

provide a glance on the effectiveness of the proposed

method. The results of this comparison are presented in

Table 4. Our technique outperformed all competing

methods with 0.9466 precision, 0.9180 accuracy, and

0.9500 specificity. The recall measure of Das method is

better than ours, however its overall performance is sig-

nificantly poor than our method. F1 score is considered to

be more reliable as it considers both precision and recall.

Our method achieved the best F1 score of 0.9153 outper-

forming the compared method. These statistics show that

the proposed algorithm is reliable and effective in detection

of the malarial parasites from microscope images of red

blood cells.

Image preprocessing is the first step in most existing

malaria detection algorithms. The objective of this step is

to remove the noise from the image before applying the

later steps. Usually, noise is removed though order statis-

tics filters e.g., median filter or through the blur filters

e.g., average filter and Gaussian lowpass filter. We showed

in Sect. 2 that these filters may not be effective in many

cases (Fig. 1). In this paper, we exploited the bilateral fil-

tering and found that it produces better quality images that

in turn improves the detection accuracy of the proposed

method. Here we report the performance of the proposed

algorithm with different filters as preprocessing step. We

computed the performance measures without using any

preprocessing, using average filter, Gaussian lowpass filter,

median filter, and bilateral filter. Table 5 presents the

results of this experiment. The results demonstrates that the

best results in most metrics are achieved using bilateral

filtering as preprocessing in the proposed method.

Few visual results of the proposed algorithm are pre-

sented in Figs. 6 and 7. The left-most column in each row

Table 1 Division of results in TP, TN, FN, and FP

Infected Uninfected

Infected True positive (TP) False negative (FN)

Uninfected False positive (FP) True negative (TN)
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Table 2 Resultant TP, TN, FN, and FP values for different values of ‘w’ and ‘n’ on the whole dataset

w n TP TN FN FP

19 [ 0 886 950 114 50

19 [ 1 878 922 122 78

19 [ 2 840 943 160 57

17 [ 0 899 893 101 107

17 [ 1 848 930 152 70

17 [ 2 802 952 198 48

15 [ 0 869 897 131 103

15 [ 1 804 938 196 62

15 [ 2 760 961 240 39

Table 3 Precision, recall, accuracy, and F1 score for different values of ‘w’ and ‘n’. The best results are marked in bold

w n Precision Recall Accuracy F1 score

19 [ 0 0.9466 0.8860 0.9180 0.9153

19 [ 1 0.9184 0.8780 0.9000 0.8978

19 [ 2 0.9365 0.8400 0.8915 0.8856

17 [ 0 0.8936 0.8790 0.8960 0.8963

17 [ 1 0.9237 0.8480 0.8890 0.8843

17 [ 2 0.9435 0.8020 0.8770 0.8670

15 [ 0 0.8940 0.8690 0.8830 0.8813

15 [ 1 0.9284 0.8040 0.8710 0.8617

15 [ 2 0.9512 0.7600 0.8605 0.8449

Table 4 Performance comparison of the proposed algorithm with other competing methods*. The best results are marked in bold

Method Precision Specificity Recall Accuracy F1 score

Ross – – 0.8500 0.7300 –

Das – 0.6890 0.9810 0.8400 –

Hung 0.7804 0.8519 0.7766 0.8215 0.7784

Pan 0.7439 0.8273 0.7402 0.7921 0.7420

Proposed 0.9466 0.9500 0.8860 0.9180 0.9153

*Ross et al. (2006), Das et al. (2012), Hung et al. (2017) and Pan et al. (2018)

Table 5 Performance comparison of different preprocessing algorithms. The best results are marked in bold

Preprocessing method Precision Specificity Recall Accuracy F1-score

No Preproprocessing 0.8878 0.8840 0.9180 0.9010 0.9027

Average filter 0.9305 0.9420 0.6430 0.7975 0.7605

Gaussian lowpass filter 0.9315 0.9490 0.7740 0.8715 0.8576

Median filter 0.9076 0.9150 0.8350 0.8750 0.8698

Bilateral filter 0.9466 0.9500 0.8860 0.9180 0.9153
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shows the input image, the second, third, and fourth col-

umns show the results of intermediate steps of the algo-

rithm. The final results are shown in the right-most column.

Figure 6 shows the five images from the test dataset that

are infected and our method successfully detected them.

Figure 7 shows the results of our algorithm on five unin-

fected images. We also report some failure cases of our

method in Fig. 8. We observed that when the image is

corrupted due to sever noise or its acquisition quality is

poor, our algorithm is mistaken considering the noise

bursts as parasites. Poor quality of the cell image can result

in diluted parasite which gets removed during preprocess-

ing or adaptive thresholding resulting in missed detection.

The proposed algorithm is implemented in Matlab and is

made available free of cost for peers on the project web-

page (http://www.di.unito.it/*farid/Research/malaria.html

). We also computed the time complexity of the proposed

method. For this purpose, the proposed algorithm was

executed over the whole dataset and time for each image

was recorded and their average was computed. The

experiment was executed on Intel� CoreTM i5 processor

with 8 GB RAM and 64-bit operating system. The results

show that the proposed malaria detection algorithm is very

fast and takes an average of 2.8 s to process one image.

This time also includes the file input/output time. An

efficient implementation of the algorithm can further

improve the execution time.

Fig. 6 Successfully detected parasitized cells by our algorithm.

a Input image, b preprocessed grayscale image, c contour image,

d results of adaptive thresholding, e final results after refinement

Fig. 7 Successfully detected uninfected cells by our algorithm.

a Input image, b preprocessed grayscale image, c contour image,

d results of adaptive thresholding, e final results after refinement

Fig. 8 Failure cases. Top two rows show examples of parasitized

cells which our method could not detect. The bottom row shows a

case where cell was uninfected but detected as infected. a Input

image, b preprocessed grayscale image, c contour image, d results of

adaptive thresholding, e final results after refinement
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Conclusions

In this paper, we presented a novel algorithm to automat-

ically detect malaria from microscope blood smears. The

algorithm preprocessed the cell images using bilateral fil-

tering which has not been explored in previous techniques.

Then by using adaptive thresholding and 8-connected rules,

normal and infected cells were separated. The performance

of the proposed algorithm was evaluated on standard

malaria dataset consisting of large number of images with

infected and healthy blood cells. The performance was

computed using five statistical metrics and compared with

existing similar techniques. The proposed method outper-

formed the compared method by achieving accuracy and

F1 scores more than 0.91. The results reveal the efficacy of

the proposed algorithm.
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