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Abstract
Prostate cancer (PCa) is a highly prevalent malignancy and constitutes a major
cause of cancer-related morbidity and mortality. It emerges through the
acquisition of genetic and epigenetic alterations. Epigenetic modifications include
DNA methylation, histone modifications and microRNA deregulation. These
generate heritable transformations in the expression of genes but do not change
the DNA sequence. Alterations in DNA methylation (hypo and
hypermethylation) are the most characterized in PCa. They lead to genomic
instability and inadequate gene expression. Major and minor-specific
modifications in chromatin recasting are involved in PCa, with signs suggesting a
dysfunction of enzymes modified by histones. MicroRNA deregulation also
contributes to the initiation of PCa, including involvement in androgen receptor
signalization and apoptosis. The influence of inflammation on prostate tumor
carcinogenesis is currently much better known. Recent discoveries about
microbial species resident in the urinary tract suggest that these are the initiators
of chronic inflammation, promoting prostate inflammatory atrophy and
eventually leading to PCa. Complete characterization of the relationship between
the urinary microbiome and prostatic chronic inflammation will be crucial to
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develop plans for the prevention of PCa. The prevalent nature of epigenetic and
inflammatory alterations may provide potential biomarkers for PCa diagnosis,
treatment decisions, evaluation of prognosis and posttreatment surveillance.
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Core tip: Epigenetic modifications are a common feature of prostate cancer (PCa) and
play an important role in prostate carcinogenesis as well as in disease progression. Two
important recent discoveries were the presence of resident microbial species in the
urinary tract and their role in the initiation of chronic inflammation, proliferative
inflammatory atrophy and development of PCa. Facts that may explain the higher
prevalence of PCa in western countries include elevated inflammation due to metabolic
syndrome and associated comorbidities. It is essential to completely characterize the link
between these facts to allow the development of strategies for PCa prevention.
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INTRODUCTION
Prostate cancer (PCa) is the most prevalent noncutaneous malignancy in men in the
western world, and it is the second cause of male cancer-related deaths[1]. It is a major
cause of cancer-related morbidity and mortality. The prostate gland is composed of
four zones: Central, fibromuscular, transitional and peripheral zone. Although the
epithelium  of  the  prostate  also  harbors  androgen-independent  basal  cells  and
neuroendocrine  cells,  95%  of  PCa  are  adenocarcinomas;  most  originate  in  the
peripheral zone and are characterized by multifocality, as well as morphological and
molecular heterogeneity[2,3].

Is prostate specific antigen replaceable?
The best biomarker for assessing PCa recurrence remains the prostate specific antigen
(PSA) test, and it has been partly responsible for the higher awareness of PCa. In the
majority of screening studies, the conventional cut-off for abnormal PSA level is 4.0
ng/mL. PSA performance is systematically reviewed in the literature by the American
Cancer Society[4]. In a grouped analysis and with PSA levels of cut-off of 4.0 ng/mL,
the sensitivity for detecting any PCa or Gleason ≥ 8 was 21% and 51%, respectively.
The specificity was 91%. With PSA levels of 3.0 ng/mL, the sensitivity increased to
32% and 68%, respectively, and the specificity was 85%. In men with symptomatic
benign prostatic hyperplasia, there is a weak discriminatory capability from PSA.
Therefore, screening for PCa using serum PSA is much debated, and, at best,  the
survival benefit is marginal[5,6].  Based on established prognostic risk factors (PSA,
TNM and Gleason score)[7,8], PCa patients are stratified into low, intermediate, high or
very high-risk categories[9]. Low-risk patients are increasingly being offered active
surveillance with a curative option in case of progression, while intermediate, high-
risk and very high-risk patients are generally offered curative-intent intervention.
However, there is a significant shortcoming of the present prognostication, as some
low-risk patients progress rapidly, while many of the higher risk patients will not
develop symptomatic disease or die from PCa if left untreated. Hence, there is a need
for improved prognostic assessment of PCa to better identify patients who do not
need radical  treatment,  sparing them from side effects (incontinence,  impotence,
lymphocele and other), and those that should receive more intensive treatment[9-11].
Although there has been extensive research on prognostic markers, only a few are
used routinely: PSA, Gleason score and TNM status. PSA velocity or doubling time is
currently  emerging  as  strong  predictor  of  PCa  death[12].  Several  novel  tumor
biomarkers  have  been  investigated,  but  recent  reviews  criticize  the  poor
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quality/statistical power and heterogeneity of many of those studies. Unfortunately,
this renders many of the results inconclusive[13,14]. Short follow-up times (often < 5
years) make long-term prediction for clinically useful endpoints unpredictable[10,15].
The low cost and noninvasiveness of PSA are difficult to replace. The ideal alternative
would be a set of diagnostic and prognostic biomarkers, including PSA, that could
detect  various  analytes.  The  treatment  strategy  should  be  individualized  and
performed early, taking into account the information from the test. Tissue samples as
a biomaterial  are far from ideal  due to the significant sampling error (limited to
portions of the gland) and its highly invasive approach. The ideal PCa biomarkers
should not be invasive, and instead collected from blood or urine, for example, and
have a strong and reproducible methodology[16]. However, tissue samples might offer
a base for initial biomarker investigation that might be subsequently validated in
other types of clinical samples[17,18].

Epigenetic balancing: A short overview
Transformations of proteins associated with DNA or transformations of DNA itself
that occur during cell division, different from the habitual sequence of DNA and that
will  be  expressed genetically  are  termed epigenetics[19].  There  are  three  primary
mechanisms of epigenetics: MicroRNA (miRNA) regulation, chromatin remodeling
and methylation of DNA.

Methylation of DNA
This mechanism is involved in carcinogenesis at local and global levels because it is
essential in the control of innumerable cellular events[20,21]. The alteration and extent of
epigenetics are responsible for these cellular events. Insufficient gene silencing is
associated with DNA hypermethylation, while genetic instability and activation of
oncogenes is induced by DNA hypomethylation[20,22].

Chromatin remodeling and histone modifications
The nucleosome is the fundamental unit of the nuclear DNA, and chromatin is the
higher order of organization. DNA comprising 147 base pairs is involved, forming a
frame, with the protein core and its eight histones[23,24]. Histones are implicated in the
control of DNA replication, repair and transcription. They are functional biomolecules
that provide sustention to DNA[23,25,26]. In healthy cells, modifications of histones are
involved  in  embryonic  stem  cell  growth  and  specialization,  deactivation  of
chromosome X and genomic imprinting[23,27]. In neoplastic cells, alterations in DNA
methylation  and  modifications  of  histones  happen  in  a  large  percentage  of  the
genome[20,21,28]. Important marks of human cancer are, for instance, hypomethylation of
DNA in repetitive sequences, such as decreased lysine 20 trimethylation (H4K20me3)
and  decreased  lysine  16  acetylation  (H4K16ac)  of  H4[29].  Another  example  is
hypermethylation of DNA in silenced genes. Here, we can see association of loss of
acetylation of histone 3 (H3ac), methylation of lysines 9 and 27 of histone 3 (H3K9me
and H3K27me) and monomethylation of H3K4me[20,30].

Curiously, identical inhibitory histone signs were found in some specific genes
with  tumor-suppressor  actions  that  are  not  stopped  by  DNA  methylation[29].
Therefore, cancer growth and progression have been linked to modifications in the
expression  of  decisive  histone  regulating  enzymes  (HDMs,  HMTs,  HDACs and
HATs)[20,21,23,24].

Micro RNAs
MiRNA  are  a  class  of  small,  noncoding  RNA,  usually  an  extension  of  18  to  25
nucleotides. The synthesis (pri-miR) and the processing steps (pre-miR) occur in the
nucleus. After export to the cytoplasm, mature miR ligate to their corresponding
mRNA  sequences  and  change  their  expression  via  an  RNA-induced  silencing
complex[31-33]. Every miRNA generally modulates many mRNAs, and mRNAs could be
targeted by many miRNAs[34]. MiRNAs control and regulate approximately 30 percent
of  human  genes.  This  process  occurs  in  a  specific  tissue  and  under  temporal
circumstances[31]. The importance of miRNAs in malignance is dependent upon the
particular target genes[31,32]. In terms of programming genes, miRNA expression is
changed  because  of  gene  mutation,  deletion,  amplification,  abnormalities  of
chromosomes, alterations in transcription factors, and epigenetic mechanisms[31,32,35].
MiRNAs, curiously, can target the posttranscriptional command of crucial enzyme
modifiers  of  chromatin,  and  therefore  are  also  involved  in  chromatin  structure
control. Additionally, miRNAs can establish a ligation with the principal epigenetic
routes, including the usual goals for epigenetic regulation via methylation of DNA or
modifications of chromatin of promoters[31,32].

Inflammatory biomarkers

WJCO https://www.wjgnet.com February 24, 2020 Volume 11 Issue 2

Santos PB et al. Clinically aggressive prostate cancer biomarkers

45



One of the presumed risk factors for PCa evolution is chronic inflammation. The
mechanism  appears  to  be  the  creation  of  lesions  that  are  the  genesis  of  tumor
initiation and progression[3,36,37].  Chronic inflammation has been appointed as an
enabling characteristic of human cancer growth[38]. Prostate carcinogenesis allegedly
drives from epigenetic modifications or mutagenesis induced by reactive oxygen
species via oxidative stress[39,40]. Infection of the prostatic gland includes the presence
of  an  inflammatory  stromal  microenvironment  that  permits  the  exposure  to
pathogenic  organisms  described  by  the  urinary  microbiome[41-47].  Once  started,
prostatic epithelial barrier disruption and inflammation could produce a feed-forward
mechanism resulting in a chronic and persistent inflammatory condition[4,48,49]. Thus,
prevention  strategies  for  PCa  could  clarify  the  connection  between  the  urinary
microbiome and chronic inflammation of prostate.

STUDY ANALYSIS
PubMed  was  the  source  of  publications  on  PCa  epigenetics  and  inflammatory
pathways.  Keywords  used  were  PCa,  histone  modifications,  DNA methylation,
miRNAs and inflammation. The search was done on December 29, 2018, and only
papers in English were used. A total of 86 original reports were selected.

Methylation of DNA
Irshad  et  al[50]  have  performed  a  search  for  biomarkers  that  might  discriminate
between clinically indolent and clinically aggressive PCa. In 2013, they identified a 19-
gene signature enriched in indolent PCa using a gene set enrichment analysis, and
classified  this  signature  with  a  decision  tree  learning model.  They were  able  to
identify 3 genes-CDKN1A, PMP22 and FGFR1 -  that together and with accuracy
predict the evolution of PCa with low grade Gleason scores. Moreover, in prostate
biopsy samples,  it  was possible  to  differentiate  the prognosis  at  10 years  of  low
Gleason scores (Gleason 6) through the expression of proteins from this panel of 3
genes.

Histone modifications and chromatin remodeling
The available data on PCa diagnosis implicated by miRNAs and histone modifications
are growing. Levels of H4Ac, H3Ac, H3K4, H3K9me3, H3K9me2, and H3K4me1 are
considerably reduced in PCa compared with healthy tissue. With almost over 90%
specificity  and  almost  80%  sensitivity,  H3K9me2  and  H3Ac  could  differentiate
between neoplastic and nonneoplastic tissue[51].

MicroRNA deregulation
Recently,  two-gene promoter methylation panels-MiR-193b and miR-34b/c-were
studied in 209 patients with the objective of perceive their diagnostic and prognostic
capabilities[52]. Tissue biopsies and urine from PCa and control patients were used[52,53].
In another report from the same study group involving 336 patients, Torres-Ferreira et
al[53] showed that methylation of miR-129-2 or miR-34b/c promoters defined clinically
aggressive neoplasms, and MiR-193b promoter methylation correctly detected PCa in
urine  sediments.  This  panel  may  be  a  clinically  helpful  instrument  for  risk
stratification of aggressiveness in urine and tissue biopsies.

The results of Moreira-Barbosa et al[52]  were consistent with other research that
quantitatively analyzed the methylation of RASSF1A, GSTP1 and APC in 350 samples
of needle core biopsies. The negative predictive value was between 88%-100%. These
findings corroborate tests evolving methylation as very important instruments for the
decision of rebiopsy[54-56].

Long non-coding RNAs are nowadays arousing great interest. They have pertinent
characteristics:  They  are  tissue  and  cancer-specific,  extremely  abundant[57]  and
detectable in urine and blood[58,59]. In the diagnosis scenario, PCA3, FR0348383 and
MALAT1, may counsel avoidance of biopsies without missing high risk tumors[60,61]. In
the  prognosis  setting,  SChLAP1,  PCAT-14  and  PCAT-18  seem  to  be  the  most
promising.  SChLAP1,  detected  in  urine,  showed  significance  in  predicting
biochemical relapse, clinical progression and PCa specific mortality[58,62]. PCAT-14 was
associated with worse overall and metastasis free survival[63] and PCAT-18, detected
in  plasma,  seems to  be  highly  specific  for  metastatic  castration resistant  PCa in
comparison with localized PCa[64].

Current molecular taxonomy of primary PCa
Primary PCa heterogeneity is notorious in clinical course as well as in the variety of
molecular  characteristics.  The Cancer  Genome Atlas  Research Network,  in  2015,
presented a molecular analysis of 333 primary PCa[65]. The outcomes showed 74% of
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the study tumors were present in one of the seven subgroups of gene fusions (FL1,
ETV1/4 and ERG) or mutations (IDH1, FOXA1 and SPOP). Remarkable heterogeneity
was observed in  epigenetic  profiles  that  included an IDH1-mutant  subcategory.
Tumors having FOXA1 and SPOP mutations had the highest  levels  of  androgen
receptor (AR) induced transcription. Furthermore, 25% of PCa showed a supposed
injury in signaling pathways of MAPK or PI3K. Inactivation of DNA repair genes
occurred in 19%[65]. One of the most important pieces of evidence corroborated by this
study was the presence of molecular heterogeneity and molecular defects potentially
triggered in primary PCa.

Inflammatory biomarkers
Current evidence, described recently by Sfanos et al[66], showed that the urinary tract,
instead  of  being  completely  sterile,  as  was  thought,  contains  a  large  variety  of
microorganisms. The discovery of DNA from bacteria of a distinct flora questioned
the  principle  of  sterile  urine[67].  Another  discovery  implicates  chronic  prostatic
inflammation  as  the  main  etiological  factor  of  what  was  called  proliferative
inflammatory atrophy (PIA). PIA was described as composed of cells highly sensitive
to  genomic  alterations  that  could  be  transformed  into  prostatic  intraepithelial
neoplasia (PIN) and PCa[3,68,69]. The same authors make an association between these
two facts. They consider that the microorganisms resident in the urinary tract can be
the precursors  of  prostatic  chronic  inflammation,  thus  developing PIA and PCa
(Figure 1). The precise mechanisms of this transformation are not known. Direct DNA
damage and genetic instability caused by reactive oxygen species (ROS) and reactive
nitrogen species liberated by immune cells is one theory[3,70]. Another mechanism is
related to the recruitment of epigenetic machinery to sites of DNA damage provoked
by oxidative stress, which includes DNA methyltransferases, chromatin remodelers
and  repressor  complexes[39,40].  This  mechanism  could  be  an  explanation  for  the
silencing of transcription and vast methylation of aberrant DNA in promoters of
genes that occur over PCa progression and metastasis[71,72]. The model, studied in vitro,
demonstrated that prostate epithelial cells, in association with androgen receptor (AR)
signaling, develop TMPRSS2-ERG  gene fusions when exposed to oxidative stress,
contributing to PCa formation[73]. The precise mechanisms by which this occurs are not
entirely known, but the researchers proposed that formation of ROS and DNA breaks
results from signaling of epithelial cells by inflammatory cytokines, such as tumor
necrosis factor (TNF)[73].

Another theory involves transcriptional function induced by AR that requires DNA
topoisomerase 2β (TOP2B) and ROS. TOP2B, after binding AR, is recruited to certain
loci, such as TMPRSS2, and then can create a break in double-strand DNA[74].

In this model, TOP2B may get stuck on the DNA as a consequence of an increase of
ROS,  generating  breaks  in  double-strand  DNA.  This  can  lead  to  genomic
rearrangements  during  PCa  initiation[74,75].  Prostate  carcinogenesis  may  also  be
determined by inflammation through the formation of intermediate cells that are
suspected targets for this process, specifically enriched in areas of PIA[77]. These kinds
of  lesions  are  normally  seen  in  direct  relation  to  PIN  and  occasionally
adenocarcinoma[76,77]. Furthermore, hypermethylation of the CpG islands sometimes
occurs in PIA (less than 10%). This phenomenon arises in epithelial cells and at the
GSTP1  promoter.  It  is  commonly seen in  PIN and carcinoma,  but  not  in  normal
epithelium[78].

In 2016[79], a study with dissociated cells isolated from benign human prostate tissue
concluded that a large number of the epithelial cells of the luminal compartment of
PIA expressed low levels of CD38. In contrast, mature luminal cells expressed high
levels  of  CD38.  The  first  cells  (CD38low)  were  termed inflammation-associated
luminal  cells  (IALs).  They  showed,  compared  with  CD38hi,  an  increase  in  the
signaling of nuclear factor-κB (NFκB) and a decrease in the signaling of AR (measured
by decreased expression of AR-target genes KLK2, KLK3, KLK4, MSMB, ACPP and
FKBP5). Moreover, IALs improved GSTP1 expression along with anti-apoptotic factor
Bcl-2 and were positive for CK8 and CK5 but negative for keratin 14 (a basal cell
cytokeratin) and tumor protein[79]. These facts also favor the composition of IALs by
intermediate cells.

In an in vivo tissue trial (rodent models of prostatitis), IALs, compared with CD38hi
cells, had a greater ability to create lesions initiated by oncogenes (e.g.,  AR, AKT,
MYC) and with similarity  to  human PCa[80].  These  studies  support  the  idea that
inflammation induces the formation of progenitor-like target cells (intermediate cells)
that are susceptible to tumorigenesis.

In 2013, Fang et al[81] induced prostate tumorigenesis by coculturing immortalized
prostate  epithelial  cells  (“RWPE-1  and  benign  prostatic  hyperplasia  -1  cells-the
nonneoplastic, immortalized human prostatic epithelial cell lines and THP-1 cells-the human
acute  monocytic  leukemia  cell  line”)  with  macrophages  and  without  adding  any
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Figure 1

Figure 1  Hypothetical theory of preinitiation and initiation of prostate cancer. Two important recent discoveries were the presence of resident microbial species
in the urinary tract and their role in the initiation of chronic inflammation, proliferative inflammatory atrophy and development of Prostate cancer (PCa). Facts that may
explain the higher prevalence of PCa in western countries include elevated inflammation due to metabolic syndrome and associated comorbidities. It is essential to
completely characterize the link between these facts to allow the development of strategies for PCa prevention. PCa: Prostate cancer.

carcinogens. They showed that this phenomenon included the “signaling change of
activation of macrophage androgen receptor (AR)-inflammatory chemokine CCL4-STAT3”,
along  with  the  “epithelial-to-mesenchymal  transition”  and  the  downregulation  of
p53/PTEN tumor suppressors. Their outcomes highlight the importance of infiltrating
macrophages and inflammatory cytokines in prostate cancerogenesis and identified
the AR-CCL4-STAT3 axis as determinant governors during prostate tumour initiation.
Gueron et  al[82],  in  2012,  hypothesized that  the  molecular  signaling  triggered by
inflammatory  mediators  may  develop  in  PCa  progression.  Thus,  chronic
inflammation  may  represent  an  important  therapeutic  target  in  advanced  PCa.
According  to  those  authors,  the  most  relevant  chemokine  receptors  in  PCa
dissemination are CXCR4, CXCR7 and CXCR6. On the other hand, the expression of
CXCL8  (IL-8),  one  of  the  best-characterized  members  of  the  chemokine  family,
correlates with increased angiogenesis, tumorigenicity and lymph node metastasis in
vivo.  Moreover,  IL-6,  one  of  the  most  relevant  inflammatory  mediators  clearly
implicated in PCa, has been associated with proliferation, angiogenesis, apoptosis and
the modulation of tumor growth and differentiation in many cancers. High levels of
IL-6 and its soluble receptor in circulating plasma have been documented in PCa
patients, correlating with more advanced disease stage, therapy resistance, and poor
prognosis, and may be predictive of recurrence after treatment of localized PCa. Arya
et al[83]  also demonstrated that metastases express functional CXCR4 receptor and
CXCL12 ligand enhances the migratory capabilities of PCa cells. These results propose
that the CXCL12:CXCR4 pathway may influence PCa during metastasis.

Another important issue is the control mechanisms that underlie the development
of PCa and the resistance to androgen-deprivation treatment. Androgen deprivation
therapy has become one of the major therapies for patients at distinct stages of the
disease.  Nonetheless,  a  significant  fraction  of  patients  progress  to  androgen-
independence.  There  is  important  positive  and  negative  interaction  between
signalization of steroid hormones, including androgen receptors, and inflammatory
signalization  done  by  NF-kB and other  transcription  elements[84,85].  High NF-κB
expression  is  associated  with  CXCR4  expression,  and  they  are  coexpressed  in
approximately one-third of patients with organ-confined PCa[86]. Larger studies are
required to accurately determine the frequency of coexpression and prognostic utility
of NF-κB and CXCR4 alone and in combination.

CONCLUSION
Epigenetic modifications are a common feature of PCa and play an important role in
prostate carcinogenesis as well as in disease progression. Even though aberrant DNA
methylation is the best-studied cancer-related epigenetic alteration in PCa, the study
of alterations in chromatin remodeling and miRNA regulation constitute a growing
research field that will provide an overall view of the PCa epigenome as well as of the
interaction  between  epigenetic  and  genetic  mechanism  involved  in  prostate
carcinogenesis.  Two  important  recent  discoveries  were  made:  The  presence  of
resident microbial species in the urinary tract and their role in the initiation of chronic
inflammation,  PIA and development  of  PCa.  Facts  that  may  explain  the  higher
prevalence of PCa in the western countries include elevated inflammation due to
metabolic  syndrome  and  associated  comorbidities.  It  is  essential  to  completely
characterize  the  link  between  these  facts  -  chronic  prostatic  inflammation  and
epigenetic alterations - to allow the development of strategies for PCa prevention.
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