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Abstract

Predictive models of signaling networks are essential for understanding cell population 

heterogeneity and designing rational interventions in disease. However, using computational 

models to predict heterogeneity of signaling dynamics is often challenging because of the 

extensive variability of biochemical parameters across cell populations. Here, we describe a 

maximum entropy-based framework for inference of heterogeneity in dynamics of signaling 

networks (MERIDIAN). MERIDIAN estimates the joint probability distribution over signaling 

network parameters that is consistent with experimentally measured cell-to-cell variability of 

biochemical species. We apply the developed approach to investigate the response heterogeneity in 

the EGFR/Akt signaling network. Our analysis demonstrates that a significant fraction of cells 

exhibits high phosphorylated Akt (pAkt) levels hours after EGF stimulation. Our findings also 

suggest that cells with high EGFR levels predominantly contribute to the subpopulation of cells 

with high pAkt activity. We also discuss how MERIDIAN can be extended to accommodate 

various experimental measurements.
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Graphical Abstract

In Brief

Dixit et al. describe MERIDIAN, a nonparametric maximum entropy-based framework to infer 

predictive signaling-network parameter distributions from single-cell data. Using this framework, 

they analyze population heterogeneity in phosphorylation cascades downstream of growth factors.

INTRODUCTION

Signaling cascades in genetically identical cells often respond to extracellular stimuli in a 

heterogeneous manner (Raj and van Oudenaarden, 2008). This heterogeneity arises largely 

because of cell-to-cell variability in biochemical signaling parameters, such as reaction rates 

and chemical species abundances (Albeck et al., 2008; Spencer et al., 2009; Meyer et al., 

2012; Llamosi et al., 2016; Kallenberger et al., 2017). The response variability across cells 

can have important functional consequences, for example, in multimodal developmental 

decisions (Chastanet et al., 2010) and fractional killing of cancer cells treated with 

chemotherapeutic compounds (Albeck et al., 2008; Spencer et al., 2009, Gerosa et al., 2019). 

Therefore, the ability to predict heterogeneity in cell populations is important for predicting 

heterogeneous outcomes of biological stimulations and in designing rational intervention in 

disease states (Niepel et al., 2009).
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Several experimental techniques such as flow cytometry, immunofluorescence (Wu and 

Singh, 2012), and live cell assays (Meyer et al., 2012) have been developed to investigate the 

cell-to-cell variability of biochemical species abundances. However, it is often difficult to 

estimate the distribution of biochemical parameters consistent with these experimental 

measurements. The reasons for this challenge are primarily 3-fold. First, biochemical 

parameters such as protein abundances and reaction rates vary substantially across cells in a 

population (Raj and van Oudenaarden, 2008). For example, previous studies have reported 

the coefficients of variation of protein abundances in the range of 0.1–0.6 (Niepel et al., 

2009). Consequently, effective rates of signaling reactions also vary substantially between 

cells (Chung et al., 1997; Meyer et al., 2012). Second, multivariate parameter distributions 

can potentially have complex shapes. For example, abundance distributions of key signaling 

proteins and enzyme often exhibit multimodality (Frei et al., 2016). Finally, available single-

cell measurements are typically not sufficient to uniquely infer the underlying parameter 

variability—the challenge usually referred to as “parameter non-identifiability” (Banks et 

al., 2012).

Over the last decade, several computational methods have been developed to estimate the 

joint distribution of parameters consistent with experimentally measured cell-to-cell 

variability of biochemical species (Waldherr et al., 2009; Hasenauer et al., 2011, 2014; 

Zechner et al., 2012, 2014; Loos et al., 2018; Waldherr, 2018; Loos and Hasenauer, 2019). 

Most of these methods circumvent the ill-posed inverse problem of estimation of the 

parameter distribution (Banks et al., 2012) by making specific ad hoc choices about the 

underlying distribution. For example, Hasenauer et al. (2011, 2014) (see also (Waldherr et 

al., 2009; Loos et al., 2018) approximate the parameter distribution as a linear combination 

of predefined functions. Waldherr et al. 2009 approximate the parameter distribution using 

Latin hypercube sampling (LHS). Similarly, (Zechner et al. (2012, 2014) assume that the 

parameters are distributed according to a log-normal or gamma distribution. The limitations 

arising due to these specific choices of parameter distributions remain unknown.

Building on our previous work (Dixit, 2013; Eydgahi et al., 2013), we developed 

MERIDIAN, a maximum entropy-based framework for inference of heterogeneity in 

dynamics of signaling networks. Instead of enforcing a specific functional form of the 

parameter distribution a priori, MERIDIAN uses data-derived constraints to derive it de 
novo. The maximum entropy principle (Dixit et al., 2018) was first introduced more than a 

century ago in statistical physics. Notably, later work established the maximum entropy 

approach as an inference method with principled axiomatic justifications (Shore and 

Johnson, 1980). Among all candidate distributions that agree with the imposed constraints, 

the maximum entropy approach selects the one with the least amount of biases. Maximum 

entropy-based approaches have been successfully applied to a variety of biological 

problems, including protein structure prediction (Weigt et al., 2009), protein sequence 

evolution (Mora et al., 2010), neuron firing dynamics (Schneidman et al., 2006), molecular 

simulations (Dixit et al., 2015; Tiwary and Berne, 2016), and dynamics of biochemical 

reaction networks (Dixit, 2018).

In the paper, following a description of the key ideas behind MERIDIAN, we illustrate its 

performance using synthetic data. We then use MERIDIAN to study the heterogeneity in the 
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signaling network leading to phosphorylation of protein kinase B (Akt). Epidermal growth 

factor (EGF)-induced Akt phosphorylation governs key intracellular processes (Manning 

and Toker, 2017) including metabolism, apoptosis, and cell cycle entry. Because of its 

central role in mammalian signaling, aberrations in the Akt pathway are implicated in 

multiple disorders (Manning and Toker, 2017). We apply MERIDIAN to infer the 

distribution over signaling parameters using previously collected experimental data on 

phosphorylated Akt (pAkt) (Lyashenko et al., 2018) and data on cell surface EGF receptor 

(sEGFR) abundance measured in MCF10A cells. We demonstrate that the parameter 

distribution inferred using MERIDIAN allows us to accurately predict the cell-to-cell 

heterogeneity of pAkt levels at late time points after stimulation as well as the heterogeneity 

of sEGFRs in response to EGF signal. Finally, we discuss possible generalizations of the 

developed framework to accommodate various experimental measurements.

RESULTS

Outline of MERIDIAN

We consider a signaling network comprising N chemical species whose intracellular 

abundances we denote by x̄ = {x1, x2, …, xN}. We assume that the molecular interactions 

among the species are described by a system of ordinary differential equations

d
dt x̄(t, θ̄) = f(x̄, θ̄) (Equation 1)

where f(x̄, θ̄) is a function of species abundances x̄ and θ̄ = {θ1, θ2, …} is a vector of 

parameters describing the dynamics of the signaling networks. We denote by xa(t, θ̄) the 

solution of Equation 1 for species “a” at time t with specific parameters θ̄, which we assume 

to vary across cells.

The MERIDIAN inference approach is illustrated in Figure 1. We use experimentally 

measured cell-to-cell variability of protein species “a” at multiple experimental conditions, 

for example, several time points (illustrated by histograms in Figure 1), to constrain the 

parameter distribution P(θ̄). Specifically, we first quantify the experimentally measured 

biochemical species variability by estimating bin fractionsφik. In our notation, the index i 
specifies the experimental measurement, for example, measurement time and measured 

species, and k indicates the abundance distribution bin number for a given condition. Every 

distinct dynamical trajectory xa(t, θ̄) (illustrated by red and blue curves in Figure 1) 

generated by specific parameter values θ̄ passes through a unique set of abundance bins (red 

curve through red bins and blue curve through blue bins in Figure 1) at multiple 

experimental conditions. Using MERIDIAN, we find a corresponding probability 

distribution P(θ̄) over parameters such that the corresponding distribution over dynamic 

trajectories P[xa(t, θ̄)] is consistent with all experimentally measured abundance bin 

fractions. Below, we present the approach that we use to derive the functional form of P(θ̄).
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Derivation of P(θ̄) using MERIDIAN

For simplicity, we first consider the case when the distribution of cell-to-cell variability in 

one species xa is available only at a single time point t (for example, t = t1 in Figure 1). We 

denote by ϕ̄ = {ϕ1, ϕ2, … , ϕB} the fraction of cells whose experimental measurement of xa 

lies in individual abundance bins (numbered from 1 to B). Here, given that we are 

considering only one experimental measurement, we use, for brevity, only one index to 

indicate the bin fractions. We also assume that there are no experimental errors in 

determining ϕ̄. Later, we demonstrate how it is possible to incorporate known experimental 

errors both in the inference procedure and in making predictions using P(θ̄).

Given a parameter distribution P(θ̄), the predicted fractions ψ̄ = {ψ1, ψ2, … , ψB} can be 

obtained as follows. Using Markov chain Monte Carlo (MCMC), we generate multiple 

parameter sets θ̄ from P(θ̄). For each θ̄, we solve Equation 1 and find xa(t, θ̄), i.e., the 

predicted value of the species abundance at time t. Then, using the samples from the 

ensemble of trajectories, we estimate the predicted ψk as the fraction of sampled trajectories 

for which xa(t, θ̄) passed through the kth bin. Mathematically:

ψk = ∫ Ik xa(t, θ̄) P(θ̄)dθ̄ (Equation 2)

where Ik(x) is an indicator function i.e., Ik(x) is equal to one if x lies in the kth bin and zero 

otherwise.

The central idea behind MERIDIAN is to find the maximum entropy distribution P(θ̄) over 

parameters such that all predicted fractions ψk agree with those from experimental 

measurements, φk. Formally, we seek P(θ̄) with the maximum entropy

S = − ∫ P(θ̄) logP(θ̄)
q(θ̄) dθ̄ (Equation 3)

subject to normalization (∫ P(θ̄) dθ̄ = 1) and data-derived constraints ψk = φk for all k. Here, 

q(θ̄) plays a role similar to the prior distribution in Bayesian statistics (Caticha and Preuss, 

2004). In this work, we choose q(θ̄) to be a uniform distribution within literature-derived 

ranges of parameters, but other choices can be used as well.

To impose aforementioned constraints and perform the entropy maximization, we use the 

method of Lagrange multipliers. To that end, we write the Lagrangian function

L = S + η ∫ P(θ̄) dθ̄ − 1 − ∑
k = 1

B
λk ∫ Ik xa(t, θ̄) P(θ̄)dθ̄ − ϕk (Equation 4)

where η is the Lagrange multiplier associated with normalization and λk are the Lagrange 

multipliers associated with bin fractions φk. By differentiating Equation 4 with respect to 

P(θ̄) and setting the derivative to zero, we obtain the Gibbs-Boltzmann form:
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P(θ̄ ∣ λ̄) = 1
Ω q(θ̄) exp − ∑

k = 1

B
λkIk xa(t, θ̄) , (Equation 5)

where Ω is the partition function that normalizes the probability distribution. Equation 5 is a 

key conceptual foundation of this work. We use it to estimate the parameter distribution 

based on user-specified constraints.

The aforementioned derivations are restricted to using single-cell data measured at one time 

point. In the STAR Methods, we discuss the generalization of the approach when 

abundances of multiple species are measured at several time points. The details of the 

convex numerical optimization problem of Lagrange multipliers, MERIDIAN-based 

predictions, and possible generalizations of MERIDIAN to accommodate various 

experimental measurements can also be found in the STAR Methods.

Finally, we note that given the high-dimensional nature of the parameter space, in many 

computational models of biological systems, the collected data are usually not sufficient to 

fully constrain the multidimensional parameter distribution (Banks et al., 2012). As a result, 

the parameter distribution inferred by MERIDIAN reflects both the true biological 

variability in parameters as well as parameter non-identifiability. Moreover, the relative 

contribution of non-identifiability to the inferred parameter distribution will likely increase 

with an increase in the dimensionality of the parameter space.

MERIDIAN Performance on Synthetic Data

Before applying MERIDIAN to investigate experimentally measured cell-to-cell variability, 

we decided to first validate the approach with synthetic data. To that end, we used a 

previously published model of the EGFR/Akt pathway (Chen et al., 2009) to generate in 
silico single-cell data for five different perturbations of the pathway. These perturbations 

represented several known cancer-related pathologies of the signaling network. Using the 

pathway model, we then investigated whether MERIDIAN can accurately predict single-cell 

distributions of biochemical species by comparing the predicted distributions with 

synthetically generated single-cell data.

Computational Model of the EGFR/Akt Signaling Network—Signal transduction in 

the EGFR/Akt network is illustrated in Figure 2. Following stimulation of cells with EGF, it 

binds to cell surface EGFRs (sEGFRs). Ligand-bound receptors then dimerize with other 

ligand-bound receptors as well as ligand-free receptors. EGFR dimers phosphorylate each 

other, and phosphorylated receptors (active receptors, pEGFRs) on the cell surface lead to 

downstream phosphorylation of Akt (pAkt). Both active and unphosphorylated (inactive) 

receptors are internalized with different rates from the cell surface because of receptor 

endocytosis. After addition of EGF to the extracellular medium, pAkt levels first increase 

transiently within minutes and then, as a result of receptor endocytosis, both pAkt and 

sEGFR levels decrease within hours after EGF stimulation (Chen et al., 2009).

To explore the cell-to-cell variability in this pathway, we used a dynamical model of EGF/

EGFR dependent Akt phosphorylation based on (Chen et al. 2009). The model (see Figure 
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2) includes reactions describing EGF binding to EGFR and subsequent receptor 

dimerization, phosphorylation, dephosphorylation, internalization, and degradation. To keep 

the model relatively small, we simplified pEGFR-dependent pAkt activation by assuming a 

single-step activation of Akt by pEGFR (STAR Methods). The first and second order rate 

constants used in the model should be treated as effective rates, given that the law of mass 

action is only an approximation to the complex interactions in the EGFR/Akt pathway. The 

pathway model we used had 17 chemical species and 20 parameters. See Table S1 for the 

list of model parameters and Table S2 for the list of model variables. The model equations 

are given in the STAR Methods.

Parameter Inference Using Synthetic Data—Using synthetic multivariate parameter 

distributions, we generated in silico data for five different EGFR pathway parameterizations. 

The first parameterization represented the wild-type state of the network in MCF10A cells. 

Next, we simulated four different perturbations to the synthetic parameter distribution to 

represent four common cancer-related pathway pathologies. Specifically, we simulated (1) 

EGFR overexpression (Herbst, 2004), by increasing the rate of EGFR delivery to the cell 

surface, (2) PTEN loss (Martini et al., 2014), by decreasing the rate of dephosphorylation of 

pAkt, (3) decrease in EGFR downregulation, by decreasing the rate of endocytosis of 

activated EGFRs (Tomas et al., 2014), and (4) decrease in EGFR phosphatase activity, by 

reducing the rate of EGFR dephosphorylation (Tiganis, 2002) (see STAR Methods).

For each of these five parameterizations, we generated single-cell data (for ~4 × 104 in silico 
single cells) describing (1) pAkt levels at 0, 5, 15, 30, and 45 min after stimulation with 0.1, 

0.31, 3.16, 10, and 100 ng/ml of EGF and (2) steady-state sEGFR levels after prolonged 

stimulation with 0, 1, and 100 ng/ml of EGF (180 min) (STAR Methods). These 24 synthetic 

single-cell distributions (21 pAkt distributions and 3 sEGFR distributions) were each binned 

into 15 bins. The bin sizes and locations were chosen to cover the entire range of the 

observed variability (Table S3) and a total of 15 × 24 = 360 bin fractions ϕ̄ were obtained. 

Next, for each aforementioned parameterization, we inferred the joint parameter distribution 

of the EGFR pathway by optimizing the 360 Lagrange multipliers using MERIDIAN (STAR 

Methods; Figures S1-S5).

Prediction of Single-Cell Dynamics Using the Inferred Distribution—Using the 

inferred parameter distribution, we next investigated whether single cell pAkt distributions at 

early times after stimulation (up to 45 min of continuous EGF stimulation) could predict the 

late time steady-state distributions of pAkt levels. To that end, using the synthetic parameter 

distributions for each of the five parameterizations, we sampled ~4 × 104 parameter sets and 

simulated single-cell pAkt levels after 3 h of EGF stimulation across multiple EGF doses. 

These represented the synthetic in silico data against which we tested the MERIDIAN-based 

predictions. The MERIDIAN predictions were generated by sampling ~4 × 104 parameter 

sets from the inferred parameter distributions (STAR Methods).

Notably, the mean values and standard deviations of pAkt levels were accurately predicted 

by MERIDIAN across all five realizations (the means and the standard deviations of steady-

state pAkt levels were within ~7% of the in silico data, comparable to the prediction 

accuracy with real data, see below). As shown in Figures 3A-3C and S6, MERIDIAN 
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accurately predicted single-cell pAkt distributions for all five parameterizations of the 

pathway and across two orders of magnitude in EGF concentration.

Using MERIDIAN to Model Experimental EGFR/Akt Heterogeneity in MCF10A Cells

Based on the ability of MERIDIAN to predict single-cell abundance distributions across 

several in silico parameterizations of the EGFR/Akt pathway, we next investigated the 

performance of MERIDIAN with experimental data describing single-cell heterogeneity in 

mammalian cells. Toward that end, we used previously measured cell-to-cell variability in 

pAkt levels at early times after EGF stimulation in MCF10A cells (Lyashenko et al., 2018). 

In addition, we also measured data describing sEGFR abundance variability across MCF10A 

cells (STAR Methods). Specifically, we used pAkt levels after stimulation with five different 

EGF doses (0.1, 0.316, 3.16, 10, and 100 ng/ml) at 4 early time points (5, 15, 30, and 45 

min) and sEGFR levels without EGF stimulation and after 3 h of EGF stimulation at 1 

ng/mL (STAR Methods).

Each experimentally measured distribution was binned using 11 bins; the bin sizes and 

locations were chosen to cover the entire range of the observed species abundance variability 

(Table S4). In total, we used 264 bin fractions and corresponding 264 Lagrange multipliers. 

We numerically determined the optimal Lagrange multipliers using MERIDIAN based on 

the pathway model described above (STAR Methods). It took approximately 90 h to 

optimize the Lagrange multipliers.

The optimal Lagrange multipliers accurately reproduced the experimentally measured bin 

fractions (Pearson’s r2 = 0.9, p < 10−10, median relative error |14%, Figure S7). 

Furthermore, fitted bin fractions obtained in two independent calculations showed excellent 

agreement with each other, as expected for a convex optimization problem (Pearson r2 = 

0.99, p < 10−10, Figure S8). In Figure 3D, we show the temporal profile of experimentally 

measured cell-to-cell variability in pAkt levels (colored circles) for stimulation with 10 

ng/ml EGF and the corresponding fits (dashed black lines) based on MERIDIAN-inferred 

parameter distribution. The inferred marginal distributions of the individual model 

parameters are given in Figure S9, and the correlation structure of inferred parameters is 

given in Table S5.

Prediction of Single-Cell Dynamics—Because Akt is a key hub of mammalian cell 

signaling (Manning and Toker, 2017), sustained activity of pAkt is implicated in diverse 

human diseases, such as psychiatric disorders (Gilman et al., 2012) and cancer (Vivanco and 

Sawyers, 2002). Using the developed approach, we next investigated whether we could 

predict pAkt levels hours after EGF stimulation using the parameter distribution inferred 

using MERIDIAN and experimentally measured pAkt variability at early times after EGF 

stimulation. To that end, we numerically sampled multiple parameter sets using the inferred 

parameter distribution and for each sampled parameter set used the model of the EGFR/Akt 

network to predict pAkt levels at late times across a range of EGF stimulation levels. We 

then compared the predicted and experimentally observed distributions of pAkt levels across 

cells at late times (180 min) after sustained EGF stimulation (Figures 4A, 4B, and S10). Our 

simulations correctly predicted that a significant fraction of cells have high pAkt levels even 
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hours after stimulation. For example, the predicted and observed coefficient of variation of 

the pAkt distributions in cells stimulated with 10 ng/mL EGF for 180 min were in good 

agreement (0.41 and 0.37, respectively). Furthermore, the inferred parameter distribution 

accurately captured the pAkt population mean and variability (Figure 4C) at late times 

across four orders of magnitude of EGF concentrations used to stimulate cells with a mean 

relative error of ~15%.

MERIDIAN also allowed us to investigate biochemical model parameters that significantly 

correlated with high pAkt levels at steady state. Across all simulated trajectories, sEGFR 

levels showed the highest correlation with pAkt levels among all receptor-related parameters 

(Table S6, Pearson r = 0.4, EGF stimulation 10 ng/mL). This suggests that cells with high 

EGFR levels, in particular, predominantly contribute to the subpopulation of cells with high 

steady-state pAkt activity. This insight demonstrates how MERIDIAN can be used to gain a 

mechanistic understanding of the main sources of cell-to-cell heterogeneity in signaling 

dynamics.

We next investigated whether MERIDIAN could also predict the heterogeneity in sEGFR 

levels after prolonged stimulation with EGF. To that end, we compared the predicted and 

experimentally measured steady-state sEGFR levels across EGF stimulation doses (Figure 

4). Similar to pAkt, the simulations accurately captured both the population mean and 

variability of the EGFR receptor levels across multiple levels of EGF stimulations (Figure 

4F). The simulations and experiments demonstrated that, in agreement with the model 

prediction, even hours after the growth factor stimulation there is a significant fraction of 

cells with relatively high levels of sEGFR (Figures 4D and 4E).

DISCUSSION

Comparison of MERIDIAN with Previous Work

We briefly discuss below key differences between MERIDIAN and two other previously 

described approaches developed to infer parameter distributions from single cell data: the 

discretized Bayesian (DB) approach by (Hasenauer et al. (2011) and the Latin hypercube 

sampling (LHS)-based approach by (Waldherr et al. 2009).

In the DB approach, the multidimensional parameter space is first discretized using 

Cartesian grid coordinates. The joint parameter distribution is then expressed as a weighted 

sum of several multivariate Gaussian distributions centered on the Cartesian grid points. 

Finally, the posterior distribution over the Gaussian weights (and thus parameters) is 

obtained from the single-cell data. A significant advantage of DB is a straightforward 

implementation and efficient handling of multidimensional data, in cases when several 

chemical species are simultaneously measured in single cells. However, due to its reliance 

on discretization of the multidimensional parameter space, applications of DB to study 

realistic signaling networks can rapidly become computationally prohibitive. For example, 

using DB with 10 grid points per dimension in a 20-dimensional network parameter space 

will require estimation of ~10 trillion Gaussian distribution weights. In contrast, as we 

demonstrated with synthetic and experimental data, MERIDIAN can easily handle 

realistically sized signaling network models with many dozens of parameters.
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Waldherr et al. (2009) addressed the curse of dimensionality faced by DB by employing the 

so-called LHS approach (Stein, 1987). In LHS, parameter sets are chosen from the Latin 

hypercube: only one parameter set is allowed to be in each of the multidimensional rows and 

columns. A potential advantage of LHS is that it avoids computationally expensive 

determination of the Lagrange multipliers. At the same time, LHS only sparsely samples the 

parameter space and generally cannot assign probabilities to arbitrary regions in the high-

dimensional parameter space. In contrast, a key advantage of MERIDIAN is that the 

continuous density defined in Equation 5 allows us to estimate the relative probability for all 

parameter regions. Finally, unlike the LHS approach, MERIDIAN allows estimation of the 

uncertainty in model predictions using measurement errors (STAR Methods).

Possible Extensions of the MERIDIAN Framework

Using MERIDIAN with Inherently Stochastic Network Models—A straightforward 

extension makes it possible to use the MERIDIAN framework for signaling networks when 

the time evolution of species abundances is intrinsically stochastic, for example, 

transcriptional networks and prokaryotic signaling networks with relatively small species 

abundances (Raj and van Oudenaarden, 2008; Chastanet et al., 2010). To that end, the 

definition of the predicted bin fraction can be modified to ψk = ∫ P(x(t, θ̄) = x ∣ θ̄)dθ̄, where 

P(x(t, θ̄) = x ∣ θ̄) is the distribution of x values at time t with parameters θ̄. The species 

abundance distribution can then be obtained numerically, using Gillespie’s stochastic 

simulation algorithm (Gillespie, 2007) and its fast approximations (Cao and Grima, 2018) or 

approximated using moment closure techniques (Gillespie, 2009). We have previously 

implemented this logic to understand intrinsic and extrinsic noise in a simple gene 

expression circuit in E. coli (Dixit, 2013).

Constraining Moments in MERIDIAN—MERIDIAN can also be used to infer 

parameter distributions when, instead of the entire abundance distributions, only a few 

moments are available, such as average protein abundances measured using quantitative 

western blots or mass spectrometry (Shi et al., 2016). For example, in the case when the 

population mean m and the variance v of one species x are measured at a fixed time point t, 
instead of constraining fractions ψk that represent cell-to-cell variability across different 

bins of the relevant abundance distribution, it is possible to constrain the population mean 

μ1 = ∫ x(t, θ̄)P(θ̄)dθ̄ and the second moment μ2 = ∫ x(t, θ̄)2P(θ̄)dθ̄ to their experimentally 

measured values. Entropy maximization can then be carried out with these constraints. In 

this case, we have

P(θ̄) = 1
Ω q(θ̄) exp( − λ1x(t, θ̄) − λ1x(t, θ̄)2) (Equation 6)

Using MERIDIAN with Live Cell Imaging Data—MERIDIAN can also be extended to 

infer parameter distributions from experiments where dynamics of species abundances 

within single cells are continuously monitored using live cell imaging (Meyer et al., 2012; 

Kallenberger et al., 2017). For example, if time evolution of a species x(t) is measured in nc 

cells from time t = 0 to t = T. We can discretize the continuous time observations into K 
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discrete time measurements (t1, t2,…, tK}. At each time point ti, one can then divide the 

range of observed abundances in Bi bins. Each individual dynamical trajectory x(t) can be 

characterized by a vector of indices x(t) ~ {B1a1, B2a2,…, BKaK} where Biai is the index of 

the abundance distribution bin through which the trajectory x(t) passed at time point ti. 
Given a sufficiently large number of experimentally measured trajectories, it is then possible 

to constrain the fraction of trajectories that populate a given sequence of bins to infer the 

parameter distribution.

Conclusions

Cells in an isogenic population exhibit heterogeneity in part because of heterogeneity in 

signaling network parameters (Albeck et al., 2008; Niepel et al., 2009; Spencer et al., 2009; 

Meyer et al., 2012; Llamosi et al., 2016; Kallenberger et al., 2017). In this work, we 

developed MERIDIAN, a maximum entropy-based approach to infer signaling network 

parameter heterogeneity from single-cell measurements of chemical species abundances. 

Two components contribute to the inferred parameter distribution: (1) the true biological 

parameter variability due to cell-to-cell heterogeneity and (2) the non-identifiability in 

parameter estimation given the single cell data. Consequently, the inferred distribution is 

likely to be broader compared to the true biological variability (Mukherjee et al., 2013). The 

non-identifiability contribution can be further minimized by (1) optimally designing 

experimental conditions to reduce non-identifiability (Bandara et al., 2009; Kreutz and 

Timmer, 2009) and by (2) directly including constraints on population average 

measurements for rate constants and other parameters of the signaling network. Notably, the 

parameter distributions inferred using MERIDIAN were predictive; MERIDIAN based 

predictions of heterogeneity in steady state pAkt and sEGFR levels agreed closely with the 

experimental data. Moreover, we showed that insights from MERIDIAN can allow us to 

understand biochemical parameters that are responsible for cell subpopulations of 

phenotypic interest, for example, cells with high steady-state pAkt levels predominantly 

corresponded to cells with high steady-state sEGFR.

Recent developments in cytometry (Chattopadhyay et al., 2014), single-cell mass 

spectrometry (Budnik et al., 2018; Specht et al., 2019), and single-cell RNA sequencing 

(Saliba et al., 2014) make it possible to simultaneously measure abundances of several 

species in single cells. Several elegant statistical approaches have been developed to 

reconstruct trajectories of intracellular species dynamics consistent with time-stamped 

single-cell abundance data (Gut et al., 2015; Mukherjee et al., 2017a, 2017b). 

Complementary to these statistical methods, MERIDIAN allows us to infer the distribution 

over signaling parameters that describe mechanistic interactions in the signaling network. 

Notably, the inferred parameter distribution can be used to predict the ensemble of single-

cell trajectories for time intervals and experimental conditions beyond the ones used in 

constraining the parameter distribution.

Finally, although we applied MERIDIAN to understanding signaling network dynamics, it 

can also be used in other diverse research contexts. For example, the MERIDIAN can be 

applied to computationally reconstruct the distribution of longitudinal dynamics from cross-
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sectional time snapshot data or to estimate parameter distributions from a lower dimension 

in fields such as public health, economics, and ecology (Das et al., 2015).

STAR★METHODS

LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources should be directed to and will be fulfilled by 

the Lead Contact, Purushottam Dixit (dixitpd@gmail.com). This study did not generate new 

unique reagents.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

In this work, we used distributions of cell-to-cell variability in phosphorylated Akt levels as 

well as cell surface EGFR levels. We used the experimental data on pAkt levels previously 

measured in Lyashenko et al. (Lyashenko et al., 2018). sEGFR data was measured for this 

work. Below, we describe it briefly.

MCF 10A cells (Soule et al., 1990) were obtained from the ATCC. The cells were grown 

according to ATCC recommendations. We confirmed the cell identity by short tandem repeat 

(STR) profiling at the Dana-Farber Cancer Institute. We tested the cells with MycoAlert 

PKUS mycoplasma detection kit (Lonza) and ensured that they were free of mycoplasma 

infection. For the experiments, we coated 96 well plates (Thermo Fisher Scientific) with 

type I collagen from rat tail (Sigma-Aldrich) by incubating plates with 65 microliter of 4-

mg/ml collagen I solution in PBS for two hours at room temperature. We washed the plates 

twice with PBS using EL406 Microplate Washer Dispenser (BioTek) and sterilized them 

under UV light for 20 minutes prior to use. Cells were harvested during logarithmic growth. 

We dispensed 2500 cells per well into collagen-coated 96 well plates using a EL406 

Microplate Washer Dispenser. We grew the cells in 200 microliter of complete medium for 

24 hours. The cells were serum-starved twice in starvation media (DMEM/F12 lemented 

with 1% penicillin-streptomycin and 0.1% bovine serum albumin). Next, we incubated the 

cells in 200 microliter of starvation media for 19 hours and again for one more hour. This 

time point constituted t=0 for all experiments.

We created the EGF treatment solutions by dispensing the appropriate amounts of epidermal 

growth factor (EGF, Peprotech) into starvation media using a D300 Digital Dispenser 

(Hewlett-Packard). To fit the parameter distributions, we used EGF concentrations of 0, 1, 

and 100 ng/ml for the surface EGFR measurements. At t=0 cells were stimulated with 100 

microliter of 3× solution and incubated for 3 hours. To test the model predictions, we 

collected sEGFR distributions at 180 minutes after stimulation with 0.0078, 0.0156, 0.0312, 

0.0625, 0.125, 0.25, 0.5, 1, and 100 ng/ml of EGF. All incubations were terminated by 

adding 100 μl of 12% formaldehyde solution (Sigma) in phosphate buffered saline (PBS) 

and fixing the cells for 30 min at room temperature.

We performed all subsequent washes and treatments with the EL406 Microplate Washer 

Dispenser. We washed the cells twice in PBS and permeabilized them with 0.3% Triton 

X-100 (Sigma-Aldrich) in PBS for 30 min at room temperature. Cells were washed once 

again in PBS, and blocked in 40 microliter of Odyssey blocking buffer (LI-COR 
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Biotechnology) for 60 min at room temperature. Cells were incubated with 30 microliter of 

anti-EGFR antibody (Thermo Fisher Scientific, MA5-13319, 1:100) over night at 4°C. We 

then washed the cells once in PBS and three time in PBS with 0.1% Tween 20 (Sigma-

Aldrich; PBS-T for 5 min each and incubated with 30 microliter of a 1:1000 dilution of 

Alexa Fluor 647 conjugated goat anti-rabbit or goat anti-mouse secondary antibody in 

Odyssey blocking buffer for 60 min at room temperature. Next we washed the cells two 

times in PBS-T, once with PBS, and stained for 30 min at room temperature with whole cell 

stain green (Thermo Fisher Scientific) and Hoechst (Thermo Fisher Scientific). Finally, cells 

were washed three times in PBS, covered in 200 microliter of PBS, and sealed for 

microscopy. We imaged cells with an Operetta high content imaging system (Perkin Elmer) 

and analyzed the resulting scans using the Columbus image data storage and analysis system 

(Perkin Elmer). We performed the experiments in biological triplicates for surface EGFR. To 

avoid potentially pathological bright cells, we removed the top 1% of the data in all single 

cell distributions.

METHOD DETAILS

Generalization of Equation 5 for Multiple Species—Here, we give a generalization 

of Equation 5 in the main text when the single cell distributions measured from multiple 

chemical species are used to constrain the parameter distribution. Consider that we have 

measured cell-to-cell variability in n different experimental conditions. The experimental 

conditions are identified by several indicators including identity of the measured species, 

input level, time of measurement, etc. We avoid multiple subscripts to specify these various 

indicators and denote the experimental conditions as {x1, x2,…, xn} We consider that the 

single cell distribution at each measurement “a” is binned in Ba bins. The maximum entropy 

parameter distribution is given by (see Equation 5 in the main text)

P(θ̄) = 1
Ω q(θ̄) exp − ∑

a = 1

n
∑

k = 1

Ba
λakIak xa(θ̄) . (Equation S1)

In Equation S1, Iak(x) is the indicator function corresponding to the kth bin for the ath 

experimental condition, Ba is the number of bins representing the ath experimental condition, 

and λak is the corresponding Lagrange multipliers.

Inference of Lagrange Multipliers from Data Is Convex—The entropy functional

S = − ∫ P(θ̄) log P(θ̄) dθ̄ (Equation S2)

is convex with respect to the probability distribution P(θ̄). Moreover, the constraints that 

impose normalization and bin fractions are linear with respect to the probability distribution 

and are thus convex with respect to P(θ̄) as well. Consequently, entire Lagrangian function 

(Equation 4 of the main text)
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L[P(θ̄)] = S + η ∫ P(θ̄) dθ̄ − 1 − ∑
k = 1

B
λk ∫ Ik xa(t, θ̄) P(θ̄)dθ̄ − ϕk (Equation S3)

is also convex. Let us consider the dual problem in the space of Lagrange multipliers. We 

substitute the maximum entropy probability distribution P(θ̄) from Equation 5 of the main 

text. We have the dual

L[λ̄] = − log Ω (λ̄) − ∑
k = 1

B
λkϕk . (Equation S4)

Given that the original objective function is convex, the minimization of the dual (Equation 

S4) is equivalent to the problem of maximizing the original objective function (the entropy).

Numerical Estimation of Lagrange Multipliers—The Lagrange multipliers in 

Equation 5 of the main text need to be numerically optimized such that the predicted bin 

fractions are consistent with the experimentally estimated ones. As shown above, the search 

for the Lagrange multipliers is a convex optimization problem and can be solved using an 

iterative algorithm proposed in (Tkacik et al., 2006) (see Figure S1). The search algorithm is 

based on the dual formulation of the constrained optimization problem; the maximization in 

Equation 4 with respect to P(θ̄) is equivalent to minimization of the dual in Equation S5 with 

respect to the Lagrange multipliers (Bertsekas, 1996).

L[λ̄] = − log Ω (λ̄) − ∑
k = 1

B
λkϕk . (Equation S5)

Differentiating the dual with respect to λk, we find that the gradient:

∂
∂λk

L[λ̄] = ψk(λ̄) − ϕk (Equation S6)

is the difference between predicted bin fractions and the measured bin fractions. Utilizing 

this formula for the gradient, the algorithm works as follows. We start from a randomly 

chosen point in the space of Lagrange multipliers. In the nth iteration of the optimization 

algorithm, using the current vector of the Lagrange multipliers λ̄(n), we estimate the 

predicted bin reactions using MCMC (see below in STAR Methods). Next, we estimate the 

error vector Δ̄(n) = ψ̄(n) − ϕ̄ for the nth iteration. We then update the multipliers for the n+1st 

iteration as λ̄(n + 1) = λ̄(n) − α(n)Δ̄(n) (see Figure S1). The positive “learning rate” α(n) is 

chosen to minimize the error Δ̄(n + 1) (see below in STAR Methods).

We note that in realistic applications, constraints on entropy maximization may be inferred 

from noisy experimental data and as a result can be mutually inconsistent (see for example, 

(Di Pierro et al., 2016; Olsson et al., 2017)); no probability distribution may exist that will 

simultaneously reproduces all constraints. In single cell data considered here, this can 
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happen, for example, due to batch-specific optical offsets that may differ between different 

experimental measurements (Waters, 2009). In such a case, optimization problem in 

Equation S4 is ill-conditioned or infeasible.

A Bayesian approach has been proposed to resolve this issue (Barton et al., 2014; Olsson et 

al., 2017; Bottaro et al., 2018; Cocco et al., 2018; Dixit, 2018). In the Bayesian approach, 

the entropy maximization is carried out analytically to obtain an exponential family 

distribution (see Equation 5 in the main text). Next, a Bayesian posterior distribution over 

the Lagrange multipliers is formulated where the likelihood of Lagrange multipliers depends 

on how well they reproduce the imposed constraints. To avoid ill-conditioning/infeasibility, 

regularizing priors may be then introduced as well. Next, the multipliers are determined to 

maximize the Bayesian posterior distribution. Alternatively, a full Bayesian posterior 

distribution can be also obtained.

In this application of MERIDIAN, the inferred parameter distribution as well as model fits 

approached stable behavior over iterations. We did need to not impose regularizing priors on 

the Lagrange multipliers. However, in future applications, a full Bayesian approach can be 

implemented.

Making Predictions Using P(θ̄)—Here, we show how to make predictions using the 

inferred parameter distribution. In the discussion so far, we assumed that experimentally 

measured cell-to-cell variability had no errors. However, single cell experiments are often 

subject to uncertainty. Thus, we consider that the measurements are characterized by their 

mean values ϕ̄ as well as the standard errors of the mean σ̄, which are estimated using 

several experimental replicates. We assume that following an iterative procedure described 

in Figure S1, we have obtained an optimal set of Lagrange multipliers Λ̄. We denote by ψ̄(Λ̄)
the corresponding model predicted bin fractions.

Any fixed set of Lagrange multipliers uniquely determines model predictions ψ̄. Thus, the 

errors in experimental measurements are captured by a distribution over the Lagrange 

multipliers themselves. We write the probability of non-optimal Lagrange multipliers λ̄ ≠ Λ̄
as

P(λ̄) ∝ exp − ∑
k = 1

B (ψk(λ̄) − ϕk)2

2σk
2 ≈ exp − ∑

k = 1

B ψk(λ̄) − ψk(Λ̄) 2

2σk
2 (Equation S7)

Equation S7 assumes that the errors are normally distributed and that the residuals 

Δk = ψk(Λ̄) − ϕk are small. We have also neglected the Jacobian determinant associated with 

changing the variables from ψ̄(λ̄) to λ̄. Sampling Lagrange multipliers from Equation S7 is in 

principle possible but may be numerically inefficient. This is because it requires on-the-fly 

estimation of predicted bin fractions ψk(λ̄) for non-optimal Lagrange multipliers λ̄ ≠ Λ̄. 

However, if we are interested the first two moments (means and uncertainties), we can 

approximate the distribution over Lagrange multipliers as a multivariate Gaussian 

distribution. This is equivalent to assuming that the experimental errors σk are small 

compared to the mean values ϕk. In the EGFR/Akt data used in this work, the standard errors 
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in the mean are indeed small; median relative error is ~9% and the mean relative error is 

~11%. To express the distribution in Equation S7 as a Gaussian, we first write

ψk(λ̄) ≈ ψk(Λ̄) + ∑ d
dλj

ψk(λ̄)
λ̄ = Λ̄

(δλj) (Equation S8)

where δλj = λj − Λj is the deviation in λj away from the optimal Lagrange multipliers. 

Using linear response theory from statistical physics (Hazoglou et al., 2015), the derivatives 

in Equation S8 can be expressed as ensemble average over the parameter space. We write

d
dλj

ψk(λ̄)
λ̄ = Λ̄

= d
dλj

∫ Ik xa(t, θ̄) q(θ̄) exp −∑l = 1
B ΛlIl xa(t, θ̄) dθ̄

∫ q(θ̄) exp −∑l = 1
B ΛlIl xa(t, θ̄) dθ̄

(Equation S9)

d
dλj

ψk(λ̄)
λ̄ = Λ̄

= − cjk = − 〈Ik xa(t, θ̄) Ij xa(t, θ̄) 〉λ̄ = Λ̄ − ψk(Λ̄

)ψj(Λ̄)
(Equation S10)

In Equation S10, cjk is the covariance matrix among the constraints. The average is 

computed using Equation 5 in the main text with λ̄ = Λ̄.

Combining Equations S7, S9, and S10, we obtain the Gaussian approximation to the 

distribution over Lagrange multipliers:

P(λ̄) ∝ exp − ∑
k = 1

B −∑jcjk λj − Λj
2

2σk
2 . (Equation S11)

The multivariate Gaussian distribution in Equation S11 is fully determined by the means and 

the covariance matrix of the Lagrange multipliers. We determine these next.

Since we assume that the model can fit the data reasonably accurately, the average value of 

the deviation in Lagrange multipliers in Equation S7 is ⟨δλj⟩ = 0. Next, we estimate the 

covariance matrix among the Lagrange multipliers. Let us consider a particular bin fraction 

ϕk. The model estimated uncertainty is given by

sk
2 = ∫ ψk(λ̄)2 P(λ̄)dλ̄ − ψ(Λ̄)2

(Equation S12)

≈ 〈 ψk(Λ̄) − ∑
j

cjk(δλj)
2
〉 − ψ(Λ̄)2 (Equation S13)

= ∑
j, l

cjkclk 〈δλjδλl〉 − 〈δλj〉〈δλl〉 (Equation S14)
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The experimentally estimated uncertainty in ϕk is σk
2. Equating the two, we have

σk
2 = ∑

j, l
cjkclk 〈δλjδλl〉 − 〈δλj〉〈δλl〉 (Equation S15)

〈δλjδλl〉 − 〈δλj〉〈δλl〉 = (c+)diag(σ2)(c+)T
jl (Equation S16)

In Equation S16, c+ is the pseudoinverse of the covariance matrix.

These first two moments fully describe the multivariate Gaussian distribution over Lagrange 

multipliers (Equation S11). Next, we show how to estimate mean predictions and 

uncertainty in model predictions.

Consider a variable Y (θ̄) that depends on model parameters θ̄. We are interested in estimating 

its mean predicted value “m” and the corresponding uncertainty “s”. Let us denote by 

y(λ̄) = ∫ Y (θ̄)P(θ̄ ∣ λ̄)dθ̄ the model prediction when the Lagrange multipliers are fixed at λ̄. We 

have the mean prediction

m = ∫ y(λ̄)P(λ̄)dλ̄ ≈ y(Λ̄) (Equation S17)

Next, we seek the estimated uncertainty:

s2 = ∫ y(λ̄)2P(λ̄)dλ̄ − m2 (Equation S18)

≈ 〈 y(Λ) − ∑gjδλj
2〉λ̄ = Λ̄ − y(Λ̄)2 (Equation S19)

= ∑
j, l

gjgl 〈δλjδλl〉 − 〈δλj〉〈δλl〉 . (Equation S20)

In Equation S20, the couplings gj are given by

gj = 〈Y (θ̄)Ij〉λ̄ = Λ̄ − 〈Y (θ̄)〉λ̄ = Λ̄ψj(Λ̄) . (Equation S21)

Equations S17-S21 show how to estimate model predictions and the corresponding 

uncertainty from the parameter distribution P(θ̄ ∣ Λ̄) (Equation 5 in the main text).

In the theoretical development above, we restricted the Taylor series expansion to the first 

order in λ̄. More generally, higher order Taylor series expansions can also be included. 

Notably, similar to Equation S4, all higher order Taylor series coefficients can be estimated 

using MCMC calculations performed using the parameter distribution P(θ̄ ∣ Λ̄).
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Possible Extensions of MERIDIAN

Using MERIDIAN with High-Dimensional Data: MERIDIAN can be used to infer 

parameter distributions when multiple chemical species are simultaneously measured in 

single cells, for example, using single cell mass spectrometry (Budnik et al., 2018, Specht et 

al., 2019). Here, it may be difficult to accurately estimate the multidimensional bin counts 

from multidimensional data. Therefore, one can apply the following approach. For example, 

if two species x and y are simultaneously measured across several cells, in addition to 

constraining the one-dimensional bin fractions ϕ̄(x) and ϕ̄(y), we can also constrain the cross-

moment r = ⟨xy⟩. With these three types of constraints, the maximum entropy distribution is 

given by

P(θ̄) = 1
Ω q(θ̄) exp − ∑

k = 1

Bx
λkIk

(x)(x) − ∑
k = 1

By
κkIk

(y)(y) − τxy . (Equation S22)

In Equation S22, Ik
(x) and Ik

y are the indicator functions for species x and y respectively, Bx 

and By are the number of bins used in the x- and the y-dimension, λ̄ and κ̄ are Lagrange 

multipliers constraining the bin fractions ϕ̄(x) and ϕ̄(y) respectively, and τ is the Lagrange 

multiplier that constrains the cross-moment. By adding cross-moment constraints for each 

pair of species, Equation 6 in the main can be generalized to multiple dimensions, adding 

~N2/2 Lagrange multipliers, where N is the number of measured species.

Speeding up MERIDIAN Inference Using Neural Networks: A key numerical bottleneck 

in applying the MERIDIAN inference approach is the numerical optimization of a large 

number of Lagrange multipliers. It is a well-known problem in maximum entropy inference 

(Loaiza-Ganem et al., 2017). To address this challenge, Loaiza-Ganem et al. (Loaiza-Ganem 

et al., 2017) proposed a maximum entropy flow network approach (see also Bittner et al., 

2019) which is based on approximate deep generative modeling. Briefly, instead of finding 

the continuous maximum entropy density distribution in Equation 5 in the main text, they 

find an approximate maximum entropy distribution within a specified parametric family. The 

parametric family, parameterized by several layers of a neural network, is sufficiently 

accurate in approximating true maximum entropy distributions. Moreover, a recent extension 

of this approach (Bittner and Cunningham, 2019) enables fast simultaneous sampling of 

maximum entropy distributions along with a distribution of Lagrange multipliers. These fast 

approximation methods will be useful when applying MERIDIAN to study large signaling 

networks with several experimentally measured single cell distributions.

Model of the EGFR/Akt Signaling Pathway—In this section, we describe in detail the 

dynamical model used to simulate levels of phosphorylated Akt as well as cell surface 

EGFRs after stimulation of cells with EGF.

The model of EGF/EGFR dependent phosphorylation of Akt was based on the previous 

work of Chen et al. (Chen et al., 2009). We retained the branch of the Chen et al. model that 

leads to phosphorylation of Akt subsequent to EGF stimulation. The model had 17 species 
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and 20 parameters. The description of the species is given in Table S2. The description of 

the parameters is given in Table S1. A system of ordinary differential equations describing 

dynamics of concentrations of species participating in signaling is given below (Equations 

S23-S38). The model described EGF binding to EGFRs, subsequent receptors dimerization, 

phosphorylation, dephosphorylation, receptors internalization, degradation and delivery to 

cell surface and activation of Akt. We denote by active receptors phosphorylated receptors 

and by inactive receptors all other receptor states. In agreement with the literature only cell 

surface-localized phosphorylated receptors were allowed to activate Akt (Nicholson and 

Anderson, 2002). We simplified the phosphorylation of pAkt through pEGFR; we 

implemented direct interaction between pEGFR and Akt leading to phosphorylation of Akt.

dR
dt = ksyn − k1uR + k−1B − kiR + krecRi − k2RB + k−2D1 (Equation S23)

dRi
dt = kiR − krecRi − kdegRi (Equation S24)

dB
dt = k1uR − k−1B − k2RB + k−2D1 − 2k2B2 + 2k−2D2 − kiB

+ krecBi
(Equation S25)

dBi
dt = kiB − krecBi − kdegBi (Equation S26)

dD1
dt = k2RB − k−2D1 − kapD1 + kdpP1 − k1uD1 + k−1D2 − kiD1

+ krecD1i
(Equation S27)

dD1i
dt = kiD1 − krecD1i − kdegD1i + kdpP1i − kapD1i (Equation S28)

dD2
dt = k2B2 − k−2D2 − kiD2 + krecD2i − kapD2 + kdpP2 + k1uD1

− k−1D2
(Equation S29)

dD2i
dt = kiD2 − krecD2i − kdegD2i + kdpP2i − kapD2i (Equation S30)

dP1
dt = kapD1 − kdpP1 − k1uP1 + k−1P2 − ki

∗P1 + krec
∗ P1i

− kbindP1Akt + kdbP1Akt + kaP1Akt
(Equation S31)
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dP1i
dt = ki

∗P1 − krec
∗ P1i − kdeg

∗ P1i − kdpP1i + kapD1i (Equation S32)

dP2
dt = kapD2 − kdpP2 + k1uP1 − k−1P2 − ki

∗P2 + krec
∗ P2i

− kbindP2Akt + kdbP2Akt + kaP2Akt
(Equation S33)

dP2i
dt = ki

∗P2 − krec
∗ P2i − kdeg

∗ P2i − kdpP2i + kapD2i (Equation S34)

dP1Akt
dt = kbindP1Akt − kdbP1Akt − kaP1Akt (Equation S35)

dP2Akt
dt = kbindP2Akt − kdbP2Akt − kaP2Akt (Equation S36)

dpAkt
dt = ka(P1Akt + P2Akt) − kppAkt (Equation S37)

dAkt
dt = − kbindAkt (P1 + P2) + kdb (P1Akt + P2Akt) + kppAkt (Equation S38)

Implementation of MERIDIAN with Synthetic Data

Generating In Silico Data from Synthetic Parameter Distributions: We tested performance 

of MERIDIAN with synthetic data using in silico generated single cell abundance 

distributions of phosphorylated Akt (pAkt) and cell surface EGFR levels. The design of the 

in silico study closely mimicked the actual experimental data. As mentioned in the main 

text, five parameterizations of the EGFR pathway were chosen: (1) the wild type, mimicking 

the behavior of MCF10A cells, (2) a two-fold EGFR overexpression, (3) PTEN loss, 

represented by a ten-fold decrease in Akt dephosphorylation, (4) two-fold decrease in the 

rate of endocytosis of activated EGFRs, and (5) two-fold decrease in dephosphorylation rate 

of EGFRs.

For each of the five parameterizations, single cell data was generated as follows. First, we 

sampled in silico parameter sets from known distributions. Parameters were assumed to be 

independent of each other and distributed normally (means and variances are given in Table 

S3. Next, we sampled ~4 × 104 parameter sets and solved the differential equations 

(Equations S23-S38). For each parameter set, single cell pAkt levels were recorded for a few 

EGF stimuli (0.1, 0.31, 3.16, 10, and 100 ng/ml EGF) and a few early time points (0, 5, 15, 

30, and 45 minutes of EGF stimulation).
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A cell specific but EGF independent offset was added to the predicted pAkt levels from each 

in silico cell (representing off target antibody binding and EGF independent pAkt levels). 

Using the same parameter sets, we also obtained cell surface EGFR levels at 3 EGF doses 

(0, 1, and 100 ng/ml) at steady state (t = 180 minutes of EGF stimulation). Similar to pAkt 

levels, a cell-dependent offset was added to the sEGFR levels.

For each parameterization of the network, we collected in silico data for 24 single cell 

distributions (21 pAkt distributions and 3 sEGFR distributions). The distributions were 

binned in 15 bins each (Table S3). These in silico bin fractions were then used to infer the 

MERIDIAN-based parameter distributions. This corresponded to a total of 24 × 15 = 360 

bin fractions and associated Lagrange multipliers.

Inference of Lagrange Multipliers: The 360 Lagrange multipliers associated with each of 

the five parameterizations were inferred using a protocol described in detail below (see the 

description for experimental data). The optimization for Lagrange multipliers was stopped 

when the median relative error between the fitted bin fractions ψ̄ and the in silico bin 

fractions ϕ̄ reached ~5% (Figures S2-S6). Notably, the Pearson correlation coefficient 

between the fitted bin fractions and the predicted bin fractions was high for all five pathway 

perturbations (r2 ~ 0.99).

Applying MERIDIAN to Study EGFR/Akt Pathway in MCF10A Cells

Binning Single Cell Data: To infer the joint distribution over model parameters, we used 24 

measured distributions of cell-to-cell variability (20 pAkt distributions, 1 pAkt background 

fluorescence distribution and 3 sEGFR distributions, see below). For each measured 

distribution we used 11 bins. The locations and widths of the bins were chosen to fully cover 

the observed abundance range while also ensuring reliable estimates of the bin fractions ϕ̄. 

See Table S4 for bin locations and experimentally estimated bin fractions.

We detected a small but significant pAkt signal in the absence of EGF stimulation. This 

background fluorescence signal likely originated from off target binding of pAkt-detecting 

antibodies. We assumed that the fluorescent readouts of pAkt/sEGFR levels in individual 

cells were equal to the sum of EGF dependent pAkt/sEGFR levels as computed using the 

signaling network model and the cell-dependent, but time-independent background 

fluorescence signal. In case of pAkt levels, the distribution of the background fluorescence 

was fitted to the experimentally measured distribution of the background fluorescence (pAkt 

readout without EGF stimulation). Unlike pAkt levels that respond to stimulation with EGF, 

cells maintain a high number of EGF receptors on the cell surface in the absence of EGF. As 

a result, we did not have experimental access to ‘background fluorescence’ distribution for 

sEGFR-detecting antibodies. We determined the range of background sEGFR fluorescence 

levels as follows. At the highest saturating dose of EGF (100 ng/ml) majority of the cell 

surface EGFRs are likely to be removed from the cell surface and degraded. At this dose, we 

assumed that the sEGFR background fluorescence can account for half of the measured 

fluorescence. We did not fit the distribution of background sEGFR levels to a specific 

distribution.
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Numerical Inference of Lagrange Multipliers: The numerical search for Lagrange 

multipliers that are associated with bin fractions is a convex optimization problem (see 

above). We resorted to a straightforward and stable algorithm proposed in (Tkacik et al., 

2006). The algorithm proceeded as follows. We started the calculations with an initial guess 

for the Lagrange multipliers at zero for each of the 11 bins of the 24 fitted distributions. In 

the nth iteration, using the Lagrange multipliers λ̄(n), we estimated the predicted bin fractions 

ψ̄(n) using Markov chain Monte Carlo (MCMC) sampling.

MCMC sampling was performed as follows. We propagated 50 parallel chains starting at 

random points in the parameter space. Individual MCMC chains in the parameter space were 

run as follows. In the MCMC, on an average 10 parameters were changed in a single Monte 

Carlo step. The parameters were constrained to be within the upper and lower limits 

determined individually for each parameter based on available literature estimates (see Table 

S1). Each chain was run for 50000 MCMC steps. At each step, we solved the system of 

differential equations given in Equations S23-S38 numerically with the proposed parameter 

assignment using the ode15s function of MATLAB. We evaluated the pAkt and sEGFR 

levels and accepted the proposed parameters using the Metropolis criterion applied to 

Equation 5 in the main text. Briefly, for any set of parameters, we defined the energy

E(θ̄) = − log P(θ̄) = ∑
i = 1

n
∑

k = 1

Bi
λikIik xi(θ̄) + const . (Equation S39)

Starting from any parameter set θ̄, a new parameter set θ̄′ was proposed as described above. 

Then, the differential equations describing system dynamics were solved and the new energy 

E(θ̄′) was computed. The difference in energy δE = E(θ̄′) − E(θ̄) was used to probabilistically 

accept/reject the new parameter set with an acceptance probability

pacc = min(1, exp( − δE)) . (Equation S40)

Parameter points that predicted pAkt and sEGFR levels outside of the ranges observed in 

experimental data were rejected (see Table S7 for allowed ranges). We discarded the first 

5000 steps as equilibration and saved parameter values every 50th iteration. At the end of the 

calculation, parameter samples from all MCMC chains were combined together. We also 

imposed a few realistic constraints on pAkt and sEGFR time courses predicted by the model. 

All parameter sets that did not satisfy these constraints were discarded. The constraints were 

as follows. (1) Given that EGF ligand induces receptor endocytosis, we required that the 

surface EGFR levels at 180 minutes of sustained stimulation with 100 ng/ml EGF to be 

lower than the steady state surface EGFR levels in the absence of EGF stimulation. (2) 

Similarly we required that pAkt levels at 45 minutes were lower than pAkt levels at 5 

minutes for the highest EGF stimulation (100 ng/ml).

Using the sampled parameters, we estimated the bin fractions ψ̄n as well as the elements of 

the relative error vector Δ̄(n) = ψ̄(n) − ϕ̄(n) in the nth iteration. For the n+1st iteration, we 
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proposed new multipliers λ̄(n + 1) = λ̄(n) − α(n)Δ̄(n). The multiplication constant α(n) was 

chosen as follows. First, the approximate estimate of the predicted bin fractions for a given 

value of α(n) was obtained using the Taylor series expansion

ψ̄pred
(n + 1) ≈ ψ̄(n) − α(n)c(n)Δ̄(n)

(Equation S41)

where c(n) is the covariance matrix with entries

ckl
(n) = 〈IkIl〉λ̄(n) − ψk λ̄(n) ψl λ̄(n)

(Equation S42)

when the Lagrange multipliers are fixed at λ̄n. We chose α(n) in the interval [0.05, An] so as 

to minimize the predicted error epred
(n + 1) = ψ̄pred

(n + 1) − ϕ̄ .

1000 MCMC steps took 5–10 minutes. At the end of the calculation, the numerically 

inferred distribution over parameters captured with high accuracy the individual bin 

fractions of the distributions that were used to constrain it (Pearson’s r2 = 0.9, p < 10−10, 

median relative error = 14%). Notably, as seen in Figure S9, the predicted bin fractions from 

two independent calculations to determine the Lagrange multipliers were highly correlated 

with each other (Pearson’s r2 = 0.99, p < 10−10) indicating that the calculations converged to 

the same parameter distribution.

Inversion of Covariance Matrix: In order to make predictions using MERIDIAN, we first 

sample several parameter points from the parameter distribution P(θ̄ ∣ Λ̄) (Equation 5 in the 

main text) using MCMC and the Metropolis criterion as described above. Using NS 

parameter samples, we generate a sparse matrix with entries Mab where a is the index of the 

sample point (a∈(0, NS)) and b is the index of the bin (and the experiment). There are a total 

of 24×11 = 264 bins used in this work and the b index runs between 1 and 264. The entry 

Mab = 1 only if the model solutions pass through the bth bin for any given set of parameters. 

From the matrix M, we estimate the 264×264 covariance matrix among the constraints. The 

entries of the convariance matrix are given by

ckl = 〈IkIl〉Λ̄ − ψk(Λ̄)ψl(Λ̄) (Equation S43)

where k, l∈[1,264]. Next, we compute the inverse of the covariance matrix. Since all bin 

fractions at any given experimental conditions add up to one by definition, the covariance 

matrix is not full rank. Indeed, it has a total of 24 zero eigenvalues corresponding to 24 

redundancies in the constrained single cell distributions. When inverting the covariance 

matrix, we neglect these 24 zero eigenvalues. The resultant inverse c+ is the so-called 

Moore-Penrose pseudoinverse of the matrix.

QUANTIFICATION AND STATISTICAL ANALYSIS

All Pearson correlation coefficients and the corresponding p values were calculated using 

MATLAB.
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DATA AND CODE AVAILABILITY

All data and MATLAB code used in this work is available at https://github.com/dixitpd/

MERIDIAN.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Efficient approach to infer signaling parameter distributions from single cell 

data

• Nonparametric inference of parameter distributions using maximum entropy 

principle

• Investigation of population heterogeneity in phosphorylation cascades
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Figure 1. Illustration of the MERIDIAN Inference Approach
Cell-to-cell abundance variability of protein “a” is measured at four time points t1, t2, t3, and 

t4. From the single cell data, we determine the fraction ϕik of cells that populate the kth 

abundance bin in the ith experimental measurement (time). The histograms show ϕik across 

multiple experimental measurements. We find P(θ) using the maximum entropy approach 

while requiring that the corresponding distribution P[xa(t, θ)] over dynamic trajectories of 

xa(t, θ) simultaneously reproduces all experimentally measured abundance bin fractions.
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Figure 2. Illustration of the EGF/EGFR Pathway Leading to Phosphorylation of Akt
Extracellular EGF (red disc) binds to cell surface EGFRs leading to their dimerization. 

Dimerized EGFRs are autophosphorylated and lead to phosphorylation of Akt. Active and 

inactive receptors are removed from the cell surface through internalization into endosomes. 

Asterisk represents phosphorylation and the rate constants marked with an asterisk are 

associated with phosphorylated receptors. We only show a subset of all interactions in the 

model. See STAR Methods for details of the corresponding computational model.
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Figure 3. Predictions of pAkt Levels in In Silico Perturbations and Experimental Cell-to-Cell 
Variability in pAkt Levels Used to Infer the Model Parameter Distribution
(A–C) Comparison between single-cell heterogeneity in steady state pAkt levels (3 h of 

continuous stimulation with 1 ng/mL EGF) as observed in in silico data (black circles) and 

MERIDIAN-based predictions (dashed lines) in (A) the “wild type” parametrization of the 

EGFR pathway (green), (B) a perturbation representing EGFR overexpression (blue), and 

(C) a perturbation representing PTEN loss (red).

(D) The distribution of pAkt levels at 0, 5, 15, 30, and 45 min after exposure to 10 ng/mL 

EGF are shown. The colored circles represent the experimentally measured pAkt 

distributions used in the inference of the parameter distribution. The black dashed lines 

represent MERIDIAN-fitted distributions. The inset shows the experimentally measured 

population average pAkt levels across multiple time points. Error bars in the inset represent 

population standard deviations.
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Figure 4. Prediction of pAkt and sEGFR Levels at Late Times after EGF Stimulation
(A and B) Experimentally measured distributions (black circles) and the corresponding 

computational predictions (red circles and dashed red lines) of cell-to-cell variability in pAkt 

levels at 180 min after stimulation with (A) 0.1 ng/mL and (B) 10 ng/mL EGF.

(C) Experimentally measured mean pAkt levels (black circles) and standard deviation in 

pAkt levels (blue circles) at 180 min after sustained stimulation with EGF (x-axis) and the 

corresponding predictions (red circles and dashed red lines).

(D and E) Experimentally measured distributions (black circles) and the corresponding 

predictions (red circles and dashed red lines) of cell-to-cell variability in sEGFR levels at 

180 min after stimulation with (D) 0.125 ng/mL and (E) 0.25 ng/mL EGF.

(F) Experimentally measured mean sEGFR levels (black circles) and standard deviation in 

sEGFR levels (blue circles) at 180 min after sustained stimulation with EGF (x-axis) and the 

corresponding predictions (red circles and dashed red lines). The error bars in experimental 

data represent standard deviation. The error bars in model predictions represent the 

estimated uncertainty.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-EGFR Thermo Fisher MA5-13319, 1:100

Chemicals, Peptides, and Recombinant Proteins

Human EGF Peprotech CYT-217

Collagen type 1 (rat tail) Sigma-Aldrich C3867

Triton X-100 Sigma-Aldrich T8787

Odyssey blocking buffer LI-COR 927–40000

Hoechst 33342 Thermo-Fisher 62249

HCS CellMask Green Thermo-Fisher H32714

Tween 20 Sigma-Aldrich P9416

Critical Commercial Assays

MycoAlert Lonza LT07-705

Experimental Models: Cell Lines

MCF 10A ATCC CRL10317

Software and Algorithms

MATLAB MathWorks

Github code https://github.com/dixitpd/MERIDIAN

Cell Syst. Author manuscript; available in PMC 2021 February 26.

https://github.com/dixitpd/MERIDIAN

	Abstract
	Graphical Abstract
	In Brief
	INTRODUCTION
	RESULTS
	Outline of MERIDIAN
	Derivation of P(θ¯) using MERIDIAN
	MERIDIAN Performance on Synthetic Data
	Computational Model of the EGFR/Akt Signaling Network
	Parameter Inference Using Synthetic Data
	Prediction of Single-Cell Dynamics Using the Inferred Distribution

	Using MERIDIAN to Model Experimental EGFR/Akt Heterogeneity in MCF10A Cells
	Prediction of Single-Cell Dynamics


	DISCUSSION
	Comparison of MERIDIAN with Previous Work
	Possible Extensions of the MERIDIAN Framework
	Using MERIDIAN with Inherently Stochastic Network Models
	Constraining Moments in MERIDIAN
	Using MERIDIAN with Live Cell Imaging Data

	Conclusions

	STAR★METHODS
	LEAD CONTACT AND MATERIALS AVAILABILITY
	EXPERIMENTAL MODEL AND SUBJECT DETAILS
	METHOD DETAILS
	Generalization of Equation 5 for Multiple Species
	Inference of Lagrange Multipliers from Data Is Convex
	Numerical Estimation of Lagrange Multipliers
	Making Predictions Using P(θ¯)
	Possible Extensions of MERIDIAN
	Using MERIDIAN with High-Dimensional Data
	Speeding up MERIDIAN Inference Using Neural Networks

	Model of the EGFR/Akt Signaling Pathway
	Implementation of MERIDIAN with Synthetic Data
	Generating In Silico Data from Synthetic Parameter Distributions
	Inference of Lagrange Multipliers

	Applying MERIDIAN to Study EGFR/Akt Pathway in MCF10A Cells
	Binning Single Cell Data
	Numerical Inference of Lagrange Multipliers
	Inversion of Covariance Matrix


	QUANTIFICATION AND STATISTICAL ANALYSIS
	DATA AND CODE AVAILABILITY

	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Table T1

