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Abstract

Purpose: Clinical exams typically involve acquiring many different image contrasts, to help 

discriminate healthy from diseased states. Ideally, 3D quantitative maps of all of the main MR 

parameters would be obtained for improved tissue characterization. Using data from a 7-min 

whole-brain multi-pathway multi-echo (MPME) scan, we aimed to synthesize several 3D 

quantitative maps (T1 and T2) and qualitative contrasts (MPRAGE, FLAIR, T1-weighted, T2-

weighted and proton density (PD)-weighted). The ability of MPME acquisitions to capture large 

amounts of information in a relatively short amount of time suggests it may help reduce the 

duration of neuro MR exams.

Methods: Eight healthy volunteers were imaged at 3.0T using a 3D isotropic (1.2 mm) MPME 

sequence. Spin-echo, MPRAGE and FLAIR scans were performed for training and validation. 

MPME signals were interpreted through neural networks for predictions of different quantitative 

and qualitative contrasts. Predictions were compared to reference values at voxel and region-of-

interest levels.

Results: Mean absolute errors (MAEs) for T1 and T2 maps were 216 ms and 11 ms, respectively. 

In ROIs containing white matter (WM) and thalamus tissues, the mean T1/T2 predicted values 

were 899/62 ms and 1139/58 ms, consistent with reference values of 850/66 ms and 1126/58 ms, 

respectively. For qualitative contrasts, signals were normalized to those of WM, and MAEs for 

MPRAGE, FLAIR, T1-weighted, T2-weighted and PD-weighted contrasts were 0.14, 0.15, 0.13, 

0.16 and 0.05, respectively.

Conclusions: Using an MPME sequence and neural-network contrast translation, whole-brain 

results were obtained with a variety of quantitative and qualitative contrast in about 6.8 minutes.
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Introduction

MRI exams typically involve a number of different pulse sequences that generate a number 

of different image contrasts. However, only a handful of basic MR parameters are at the 

source of these various contrasts. If these parameters could be rapidly and quantitatively 

evaluated, then most of the information MRI has to offer would be quickly harvested, 

opening the door for MRI exams of considerably reduced duration. Furthermore, 

quantitative parameter maps lend themselves to the use of threshold values that have 

physical meaning and rationale, and as such they may prove better-suited for discriminating 

healthy and diseased states compared to more traditional qualitative MRI contrasts. 

Synthetic imaging involves using quantitative knowledge about tissues, toward emulating the 

qualitative grayscale contrasts that would have been obtained if scans had been performed 

using given pulse sequences.

Motivated by the considerable promise of quantitative MRI, several different methods have 

been introduced over the years toward this goal. These may differ in a number of ways, most 

notably on the particular set of parameters they can map, whether these parameters are 

captured jointly or in a serial manner, and on the overall scan efficiency of the approach. For 

example, over the years, methods have been proposed that evaluate the longitudinal 

relaxation (T1) (1-4), the transverse relaxation (T2 and T2*) (5-8), susceptibility effects 

(9-11), the apparent diffusion coefficient (ADC) (12-14) or the B1
+ field (15-17). As such, 

one could readily string together several of these mapping methods and, in the process, map 

multiple parameters. However, scan time could readily grow beyond reasonable bounds 

when compounding several methods in such manner. Other, sometimes more elaborate 

methods may be geared instead toward jointly estimating several parameters (18-21).

The methodology developed here can jointly map a few of the main MR parameters while 

also synthesizing some of the main image contrasts typically employed in clinical 

neuroradiology. The proposed approach involves a single 3D scan, with all required 

contrasts sampled every TR, which in principle should provide robustness to geometrical 

distortion and/or motion. The rich information content harvested by the proposed multi-

pathway multi-echo (MPME) pulse sequence is translated into better-known and arguably 

more useful image contrasts, and this ‘contrast translation’ is performed using machine 

learning methods. More generally, the purpose of this study was to achieve a variety of 

quantitative and qualitative contrast types, over a relatively short period of time, with whole-

brain coverage and spatial resolution consistent with current clinical neuroimaging 

protocols.

Methods

Magnetization pathways and MPME acquisition

Magnetization pathways are typically numbered such that the 0th pathway is found nearest to 

k-space center flanked by the +1st and −1st, in opposite k-space directions, while higher-

numbered pathways are found increasingly far from the 0th pathway and tend to offer 

increasingly small signals. Acquisition of multiple signal pathways was introduced about 30 

years ago (22-24), and a number of dedicated imaging sequences have been developed since, 

Cheng et al. Page 2

Magn Reson Med. Author manuscript; available in PMC 2021 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



most notably DESS (25) (2 pathways: 0th and –1st) and TESS sequences (20) (3 pathways: 

+1st, 0th, and –1st). Going a step further, we developed a multi-pathway sequence that 

acquires multiple pathway signals at a few different echo times every TR. In prior work (21), 

this multi-pathway multi-echo (MPME) sequence was applied to the problem of quantitative 

MRI, and 3D parameter maps were analytically calculated from the MPME signals for T1, 

T2, T2*, M0, B0 and B1
+. Because T1 and B1

+ information are entangled in most signals 

acquired by MRI, the accurate mapping of T1 often requires some knowledge of B1
+ to be 

available as well; as shown in Fig. 1, a strength of MPME imaging is that different pathway 

signals tend to capture variations in T1 and B1
+ differently thus providing information about 

both (simulation performed with TR = 20 ms; T2 = 100 ms; T2* = T2; −2nd, −1st, 0th, +1st 

and +2nd pathways; flip angles ranging from 1 to 45°, T1 values from 100 to 1200 ms). 

Compared to the prior work in Ref. (21), the present MPME acquisition gathers four 

pathways (instead of three), at two different echo times (instead of three), and signals are 

interpreted through neural networks (instead of analytically), to generate a combination of 

quantitative and qualitative contrasts relevant to neuroradiology (instead of only quantitative 

maps).

As depicted in Fig. 2, all four pathways were sampled in two macro-readout windows, 

leading to 8 separate 3D k-space matrices for image reconstruction, i.e., pathway signals 

were extracted from the macro-readout window and reconstructed separately. The readout 

direction was placed along B0, and a PROPELLER-like scheme (26, 27) was implemented 

in the ky-kz plane to repeatedly sample the central k-space region for increased motion 

robustness. Acceleration was achieved with a non-uniform subsampling scheme (28) and 

associated parallel imaging reconstruction. Compared to rectangular Cartesian sampling, the 

combined effect of PROPELLER-like over-sampling and non-uniform under-sampling gave 

a net acceleration factor of about 1.55. The resulting sampling pattern in the ky-kz plane is 

depicted in Fig. 3. Spatial resolution and acceleration factor were kept constant for all 

volunteers, and as a consequence small variations in head size and FOV among volunteers 

led to corresponding variations in matrix size and scan time (see Table 1).

Subject recruitment and MR scans

Eight healthy volunteers (1/7 female/males, 32.0±8.8 years old) were scanned, following 

informed consent using an IRB-approved protocol. All imaging scans were performed on a 

3.0T Trio system (Siemens Healthineers, Erlangen, Germany) using a product 12-channel 

head matrix. TR for the MPME scan was set near its minimum possible value, for the 

gradient strength and slew rate available on this particular scanner and the selected spatial 

resolution (1.2 mm isotropic).

Further scans, with product pulse sequences, were required for training and validation 

purposes. More specifically, the ‘magnetization prepared rapid gradient-echo’ (MPRAGE) 

(29), the ‘fluid-attenuated inversion recovery’ (FLAIR) (30), the spin-echo (SE) and the 

inversion-recovery SE (IR-SE) product sequences were employed. 2D single-echo SE scans 

were performed sequentially using four different TE settings, allowing T2 to be calculated. 

Similarly, 2D IR-SE scans were performed with four different inversion time (TI) settings, 

allowing T1 to be calculated. The 2D SE and IR-SE scans were performed for only one axial 
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slice per volunteer, selected to contain key brain structures such as the caudate nucleus, 

putamen and/or thalamus. The MPRAGE and FLAIR sequences were chosen because they 

are common components of clinical neuroimaging protocols. Scan parameters are listed in 

Table 1; SE scans performed with the setting TE = 90 ms were interpreted here as models of 

T2-weighted contrast to be emulated through contrast translation, and similarly, IR-SE scans 

performed with TI = 800 ms were interpreted as models of T1-weighted contrast to be 

emulated here.

Image reconstruction

Raw data were collected for all scans and were reconstructed off-line. Through zero-filling, 

the reconstructed matrix size and resolution were adjusted so that all scans for a given 

volunteer would have matching voxel locations. Software from the BART toolbox (31) and 

the NCIGT fast-imaging library (32) were employed for reconstruction. Processing was 

performed in Matlab (R2010a, 64-bit) on a 64-bit linux machine (Intel i7–4820K 3.7GHz, 

64GB of memory). Using one of the 2D T2-weighted SE images (TE = 90 ms) as a 

reference, the best-matching slice from the 3D MPME and MPRAGE scans were selected. 

As a result, a collection of 18 different images with different contrasts were available for this 

same 2D axial slice: 8 images from the MPME scan (4 pathways × 2 echo times), 4 from the 

SE scans performed with different TE settings, 4 from the IR-SE scans performed with 

different TI settings, 1 from MPRAGE and 1 from FLAIR.

Images acquired with different sequences may be distorted in different ways and volunteers 

may move during their exam; for these reasons, a registration step was included in the 

reconstruction process. Still using the TE = 90 ms 2D SE image as a reference, all other 

images were registered to it using the six degree-of-freedom registration algorithm FLIRT 

(FSL, Oxford, UK) (33). Worth noting, a fully-trained version of the proposed method 

would not require any such registration step, as all acquired data would come from the same 

MPME scan. The registration step is needed here only for training and validation purposes, 

so that reference and MPME data could be mixed and compared on a pixel-by-pixel basis.

Reference T1 and T2 maps were calculated from the SE and IR-SE images, respectively. A 

proton density (PD)-weighted image was also calculated by removing the T2 weighting from 

the S0 map as obtained through the T1 fit. A mask that selected brain tissues and removed 

background signals was generated using the BET software (33) to mask out background 

voxels before performing machine learning. Again, a fully-trained version of the proposed 

method would not require such background-masking step, but it was needed here to limit 

training and validation to signal-containing voxels.

Generating contrasts, first step: B0 maps were evaluated in a conventional manner

In a first step, B0 maps were calculated using a linear regression of the phase information 

from the multi-TE MPME data. Weights were used to inhibit phase noise from pathway 

images with lower SNR. Alternately, one could include B0 in the training step below and 

rely on machine learning for evaluation. In our experience, because MPME scans readily 

provide the needed multi-echo information, it was preferable to calculate B0 separately and, 

in so doing, to keep the machine-learning step as lean and straightforward as possible. B0 
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maps were obtained by unwrapping the phase information with PRELUDE (33) and then 

performing a weighted linear regression with respect to TE. Different pathways provided 

different measurements of B0, which were combined in an SNR-optimum fashion as 

described in (34). Once phase information was converted into B0 maps, there was no further 

need for the phase channel of the MPME images and all further processing steps were 

performed on magnitude data.

Generating contrasts, second step: T1, T2, T1-, T2-, PD-weighted, MPRAGE and FLAIR

A multilayer perceptron (MLP) or feedforward neural network (NN) was employed here to 

learn a mapping from MPME signals to the desired image contrasts and maps. An 

underlying assumption of the present work is that neighboring voxels can contain different 

tissue types and as such should be considered mostly independent. Convolutional neural 

networks (CNNs), the most popular type of neural architecture used in image processing, as 

used in computer vision and image synthesis, are working on pixel regions, and for this 

reason did not prove well-suited for voxel-by-voxel contrast translation. As for recurrent 

neural networks (RNNs), they are typically employed to treat time-dependent data, which is 

not necessarily the case here. The present application involved a relatively small number of 

inputs and presumably for this reason a relatively simple NN proved appropriate.

While voxel-by-voxel processing was desired, signal may readily bleed from one voxel to 

the next due to the shape of the imaging point-spread-function, motion and/or errors in 

registration. For this reason, a 3×3 window was extracted around each voxel. Nine different 

input contrast channels were available per voxel: the 8 MPME signals (4 pathways × 2 echo 

times) and the B0 value as calculated above. Accordingly, the number of input values was 

the window size times the number of contrast channels, 3×3×9=81. These 81 input values 

were flattened into a vector to form the network input (see Fig. 4). In contrast, there were 

only 7 output channels: T1, T2, T1-weighted (TI = 800 ms), T2-weighted (TE = 90 ms), PD-

weighted, MPRAGE-like and FLAIR-like contrasts for a given voxel, the one located in the 

middle of the 3×3 patch. The model architecture consisted of three hidden layers with 

rectified linear unit activation, and an output layer with linear activation. The number of 

neurons in the hidden layers increased with depth (256, 512 and 1024, respectively). The 

total number of trainable parameters of the network was 727,052. The mean absolute error 

was employed as the loss function, and the Adam update rule (with learning rate = 1e−5, 

beta1 = 0.9, beta2 = 0.999) was used to train the network using the backpropagation 

algorithm (35). The network was implemented using Keras v.2.2.0 (Tensorflow 1.5.0 

backend) in Python 3.6 and trained on an Nvidia Titan Xp GPU (Nvidia Corporation, Santa 

Clara, CA, USA). The NN was trained to emulate the following quantitative and qualitative 

contrasts (Table 1): T1, T2, MPRAGE, FLAIR, IR-SE T1-weighted (TI = 800 ms), SE T2-

weighted (TE = 90 ms), and PD-weighted contrasts. Image reconstruction was performed by 

sequentially feeding each 1×1×81 tensor to the network and obtaining a tensor of size 1×1×7 

representing these seven output contrasts for the central voxel. Presumably due to the 

relatively small size of the network along with good information content at the input, 

regularization was not required here.
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Proper scaling was crucial as neural networks learn by minimizing prediction errors, which 

tend to scale with the size of the signal being predicted. For example, because T1 tends to be 

an order of magnitude or so larger than T2, unscaled training would tend to place greater 

emphasis on correctly predicting T1 compared to T2, while placing arbitrary importance to 

arbitrarily-scaled signals such as MPRAGE or FLAIR. For these reasons, all 88 channels 

involved in training (81 input and 7 output channels) were scaled to fit between 0 and 1. 

Scaling factors were identical for all volunteers, and the scaling was inverted after NN 

predictions to recover quantitative maps with proper physical scaling. More specifically, the 

input T1, T2, and B0 values were scaled by 1/4000 ms, 1/200 ms and 1/180 Hz, respectively, 

while the scaling required for the arbitrarily-scaled T1-, T2-, and PD-weighted, MPRAGE, 

FLAIR and each one of the MPME pathway is of little interest here, except to say that the 

same scaling factor was used for both echoes of the MPME acquisition. After scaling, 

wherever/whenever needed, all channels were truncated to fit between 0 and 1.

As a direct consequence of the present voxel-by-voxel processing, a large number of 

separate ‘experiments’ were available for training and validation purposes. Excluding dark 

voxels located in air, each volunteer contributed on average about 12,300 signal-containing 

voxels. Data from seven out of eight subjects were used for training, which amounted to 

about 86,100 voxels, while data from the remaining subject was used for validation. More 

specifically, a leave-one-out approach was implemented: validation results for volunteer 

number n were obtained by training a network, NNn, using data from all volunteers but 

volunteer number n. With n ranging from 1 to 8, a total of eight separately-trained but 

presumably similar NNs were obtained. This leave-one-out approach allowed a relatively 

large number of data points to be used for training and a relatively large number of data 

points to be generated for validation, while still ensuring that separate data were used for the 

two.

To test the effect of N, the number of recruited volunteers, reconstructions were performed 

while varying N from its actual (maximal) value of N=8 all the way down to N=2, whereby 

one volunteer would provide training data and the other volunteer would provide validation 

data. More specifically, for each volunteer number n ranging from 1 to 8, and with N ranging 

from 2 to 8, then (N−1) volunteers other than volunteer number n were randomly shuffled 

for training purposes. These results were used to help evaluate the effect of N, in the range 

from 2 to 8.

Validation

Once a given network had been trained, it could convert a 3D MPME dataset into 3D maps 

of T1, T2, MPRAGE, FLAIR, T1-weighted, T2-weighted, and PD-weighted contrasts. 

However, reference results derived from the 2D SE and 2D IR-SE scans were available only 

over a single 2D plane within this 3D volume. For this reason, validation could only be 

performed over the 2D plane where reference results and MPME-derived results were both 

available. As stated above, such 2D plane contributed on average about 12,300 signal-

containing voxels per volunteer, which means that all eight volunteers combined into about 

98,400 data points for validation purposes.
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Predicted and reference values were compared, for each one of the seven quantitative and 

qualitative contrasts generated by the NNs. Using T1 as an example, the error on T1, (T1,NN 

– T1,ref), was plotted against the mean value, (T1,NN + T1,ref)/2. This is very similar to a 

Bland-Altman plot, except for the fact that the Bland Altman method requires independent 

measurements while repeated measurements at different location (voxels) were available 

here instead. Due to the relatively large number of data points per plot, about 98,400 of 

them, the density of points was displayed as a grayscale as opposed to plotting individual 

points. In addition to global (i.e., whole brain) analysis as described above, white matter and 

thalamus ROIs were manually contoured in both reference and prediction maps for T1 and 

T2, enabling an ROI-based (as opposed to pixel-based) validation step.

Results

Training

Figure 5 shows the type of MPME-related information that was provided as input to the 

NNs: four different pathways [−2, −1, 0, +1] at two different echo times, as well as a field 

map (B0). Note how different the image contrast can be from one pathway to the next; these 

differences in contrast further confirm what was suggested by simulations in Fig. 1, i.e., that 

different pathways contribute very different information content. Training was performed for 

40 epochs, which was empirically determined to prevent model overfitting. We have found 

the choice of training epochs to be a forgiving hyper-parameter as similar convergence 

behavior and visual results have been obtained with a range of settings, without overfitting; 

more specifically similar results were obtained with 20 or 40 epochs, and results for 40 

epochs are reported here. The average training time for one single NN was 40±1 s, and it 

took another 102±1 s on average to perform contrast translation for the whole brain volume. 

In an ideal scenario, all of the trained networks would be identical, but of course in practice 

they would not be expected to be so. As usual with NNs, individual values at individual 

neurons could not readily be interpreted in meaningful ways, and the same can be said of 

their differences. But the rationale for training eight separate networks was that for each 

volunteer, different data were used for training and for validation purposes.

Validation

T1 and T2 predictions obtained while varying the number of volunteer datasets, N, are shown 

in Fig. 6 for white matter (Fig. 6a, c) and thalamus tissues (Fig. 6b, d). These results showed 

only subtle N-related effects. Images in Fig. 7 were meant to visually emphasize and help 

appreciate the 3D nature of the datasets generated by the proposed method. All of these 

contrasts were, by nature, essentially perfectly registered to each other as they all stemmed 

from the same 3D MPME dataset. In contrast, the validation process in Fig. 8 and 9 involved 

only one single 2D slice extracted from the 3D MPME-derived results, to spatially match the 

2D reference data. It is worth noting that the acquisition of reference data occupied most of 

the acquisition time in the overall exam (see Table 1) even though such reference data were 

in most cases only available over a 2D slice.

Figure 8 shows side-by-side comparisons between reference and predicted results for one 

subject (volunteer #3), and a full comparison of all 8 volunteers is provided in the same 
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format in Supporting Information Figure S1. Figure 9 includes data from all subjects and 

compares predicted and reference values for all 7 contrasts generated here: T1, T2, 

MPRAGE, FLAIR, T1-weighted, T2-weighted, and PD-weighted contrasts. In Fig. 9c-g, 

scaling was arbitrary, and signals were normalized so that a value of ‘1.0’ represented the 

signal strength of white matter for this particular contrast type. More specifically, the mean 

value of the white matter ROI was used to normalize both axes of the corresponding results, 

which is similar to a Bland-Altman plot. The mean absolute error for quantitative T1 and T2 

maps were 216 and 11 ms, respectively. Those for MPRAGE, FLAIR, T1-weighted, T2-

weighted, and PD-weighted contrasts were 0.14, 0.15. 0.13, 0.16 and 0.05, respectively. The 

95% limits of agreement were 1061 and 51 ms for T1 and T2, and 0.69, 0.69, 0.63, 0.77, and 

0.27 for MPRAGE, FLAIR, T1-weighted, T2-weighted, and PD-weighted contrasts, 

respectively.

Looking at ROIs for white matter and thalamus tissues, the predicted T1 and T2 values were 

found comparable to reference values (Fig. 9h-i). More specifically, predicted and reference 

values in white matter were (mean ± standard deviation): 899±87 and 850±63 ms for T1, 

62±5 and 66±9 ms for T2, respectively. In the thalamus predicted and reference values were: 

1139±133 and 1126±127 ms for T1, 58±5 and 58±8 ms for T2, respectively. Furthermore, 

the average SNR values in the white matter ROI were 12.7, 19.9, 13.1, 11.3, and 57.9 for 

predicted MPRAGE, FLAIR, T1-, T2-, and PD-weighted contrasts, respectively.

Discussion

MPME scans are rich in terms of information content, and machine learning was employed 

to translate the information from these pathways into more traditional formats such as 

parameter maps and commonly-used contrast types. Using a single 3D whole-head 

acquisition, quantitative T1, T2, and B0 maps were generated along with synthetic T1-

weighted, T2-weighted, PD-weighted, MPRAGE, FLAIR contrasts, with clinically-relevant 

1.2 mm isotropic resolution, in 6.8±0.5 minutes of scan time. Ideally such scans might 

provide most of the information MRI has to offer, suggesting that considerable reductions in 

exam duration might be achievable for brain MRI.

The reference results in Fig. 8, which involved fairly long scan times and were for the most 

part limited to a single slice, maybe not surprisingly had better image quality than our 

predicted results; on the other hand, as shown in Fig. 7, our results achieved full-brain 

coverage in a relatively short scan time. Some of the generated contrasts, such as T2-

weighted and FLAIR, tended to be readily better captured than others, such as MPRAGE. 

These observations should be taken in consideration in future work, when further optimizing 

the MPME acquisition and NN reconstruction parameters toward improving image quality.

The voxel-by-voxel comparison presented in Fig. 9 was sensitive to many different types of 

errors, not just errors in contrast translation. For example, any distortion, displacement or 

rotation of the MPME data with respect to the reference SE, IR-SE, MPRAGE and/or 

FLAIR data would inevitably create disagreements and contribute to errors. As such, the 

width of the 95% limits of agreement from Fig. 9 could be considered a worst-case scenario 

rather than an accurate description of errors associated with contrast translation.
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Once trained, a given NN should be able to handle MPME data obtained with different FOV, 

spatial resolution and/or receive coils fairly seamlessly as such changes affect all pathways 

and echoes in a same way, i.e., with a common scaling. In contrast, changes that would 

affect the relative signal strength of pathways and/or echoes, such as changes in TR, TE or 

field strength, might call for NN re-training. Small variations in flip angles, on the other 

hand, should readily be handled by the NN as such variations were already present in the 

training data. Short of fully re- training a NN, the use of pre-NN processing could possibly 

handle some degree/types of changes, for example among mostly-similar scanners. 

Compared to the analytical reconstruction from our prior work with MPME data (21), a 

major advantage of the present neural translation is how it handles noise: compared to 

results from (21), and despite a 40% reduction in scan time in the present work, T1 and T2 

noise in white matter went down by roughly 1.9- and 4-fold, respectively.

The proposed MPME sequence used, for the most part, a traditional 3D Cartesian k-space 

grid. A fairly conservative acceleration setting of 1.55-fold was obtained as a result of k-

space oversampling at the center and under-sampling at the edges. In future acquisitions, 

more aggressive settings for the acceleration factor could readily enable further reductions in 

scan duration and/or further improvements in spatial resolution. MR systems with better 

gradient performance could reach shorter TR settings and as such could enable further 

reductions in scan times and/or more readout groups to be sampled (see Fig. 2). Even on a 

better-performing scanner the number of sampled pathways would presumably remain 

unchanged; signal strength and SNR tend to drop rapidly with pathway number and only 

pathways −2nd through +1st were considered sufficiently useful to be sampled here.

It might be worth noting that all maps and image contrasts generated through the proposed 

approach were, by nature, registered to each other in space, since they were all derived from 

the same 3D MPME scan. Because all image contrasts were acquired every TR interval, 

motion could not cause any misalignment between pathway and/or echo images; while 

motion could certainly create artifacts, it could not spatially displace the raw pathway and 

echo images with respect to each other. The registration algorithm involved in the present 

work was needed only for training and validation purposes, to ensure that the MPME scan 

was registered with the reference standard spin-echo, MPRAGE and FLAIR scans. 

Ultimately, using a fully-trained version of the proposed method, no registration step would 

be required as all quantitative and grayscale contrasts would naturally be in spatial 

alignment. In contrast, in most current multi-parametric studies, separate acquisitions may 

suffer from different types/amounts of distortion. Even if the acquisition bandwidth, RF 

waveform and shimming parameters were matched between separate scans motion in-

between scans would still lead to spatial shifts, a problem the present method is essentially 

immune to.

A limitation of this study comes from the number of quantitative maps and qualitative 

contrasts available for training and validation. Only the reference data that we opted to 

include in the acquired protocol (Table 1) could take part in the training and validation 

process. For example, the protocol did not include a B1-mapping sequence and as such the 

neural network could not learn to generate explicit B1 maps. But this in no way implies that 

B1 was not taken into account when generating T1 maps; as long as MPME scans captured 
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B1 information (see Fig. 1), this information could be drawn upon by the NN to implicitly 

contribute to any of its predictions, for example T1. Diffusivity, B1 and many different 

qualitative contrasts would be of considerable interest as potential outputs for the NN, but in 

practice the overall exam time was limited and choices had to be made. As such, the list of 

contrasts generated here (T1, T2, B0, T1-weighted, T2-weighted, PD-weighted, MPRAGE 

and FLAIR) should not be thought of as an exhaustive list of contrasts that could be 

generated from MPME datasets, but rather as what we managed to achieve in this particular 

study.

Further limitations include a small number of healthy subjects, but even a small number of 

subjects generated a large number of samples for training and validation purposes: the 

processing was in essence performed on a voxel-by-voxel basis, and about 98,400 signal-

containing voxels (i.e., air regions excluded) were available, an arguably sufficiently-high 

number for the type of machine learning algorithm employed here. Other medical 

applications of machine learning, for example to generate diagnostic or prognostic 

information, may require thousands of subjects as each subject may represent a single 

sample point. In contrast, in the present work, machine learning was used to generate signals 

at the level of individual voxels and as such, several tens of thousands of samples were 

readily obtained even from a small number of volunteers. That said, clearly, more data from 

a greater number of subjects from diverse segments of the population and including patients 

would be preferable.

Although very different in many ways, several interesting parallels can be drawn between 

the proposed approach and the popular MR fingerprinting approach (18). Both methods 

require prior knowledge: in fingerprinting it is generated though simulations and it takes the 

form of a dictionary, while in the present approach it takes the form of the reference scans 

employed for training. Both methods form a prediction by comparing actual acquisitions to 

their prior knowledge: in fingerprinting this takes the form of a matching algorithm, while in 

the present approach it is ‘baked in’ the trained NN. An important characteristic of the 

present approach, the use of several pathways, has also to some degree been explored in the 

context of MR fingerprinting (36). To generate spatially-resolved maps/images of several 

distinct parameters, both methods must sample many different k-space locations as well as 

many different MR contrasts, but they settled on different trade-offs: fingerprinting is greatly 

accelerated and samples relatively few k-space locations but samples a relatively large 

number of different contrasts, while the present method samples only 8 different contrasts (4 

pathways × 2 echoes) but employed minimal k-space acceleration and captured a relatively-

large amount of spatial information in 3D. Because all 8 contrasts sampled here can be 

acquired in a same TR, the present approach tends to have a speed advantage.

In conclusion, a method for quantitative and synthetic MRI was proposed that relies on a 

single 3D scan with a multi-pathway multi-echo sequence of our own design, along with 

machine learning for contrast translation. Full-brain coverage was achieved in 6.8±0.5 

minutes with clinically-relevant resolution, providing an array of quantitative values as well 

as grayscale image contrasts.
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Fig 1: 
The present simulation shows how signals from different pathways can behave very 

differently as the flip angle and/or T1 are varied. Signals from −2nd (a), −1st (b), 0th (c) +1st 

(d), and +2nd (e) pathway were scaled differently for optimized illustration in the same color 

scale. The notation Fi
+ refers to the steady-state signal from the ith pathway right after an RF 

pulse. For T1 values typically associated with biological tissues at 3T (e.g. T1 ~ 1000 ms), 

the signal strength of the +2nd pathway was noticeably weaker than those of other pathways, 

and for this reason the +2nd pathway was not sampled here.
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Fig 2: 
A 3D multi-pathway multi-echo (MPME) sequence of our own design was used to acquire 

four signal pathways at 2 different echo times. The numerals indicate the pathway number, 

from −2nd to +1st, and the gray arrows indicate the timing of each signal formation. TRG1 

and TRG2 define the length of the time interval from the center of the RF pulse to the center 

of the corresponding readout group, i.e., TRG is to readout groups what TE would be to 

individual echoes.
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Fig 3: 
In a manner that bears resemblance to the PROPELLER acquisition scheme, the ky-kz plane 

was covered using a series of rotated blades, e.g., see green rectangle. The acquisition of 

each blade was accelerated using a non-linear subsampling scheme. Because all blades 

combine at the center the overall effect was to oversample the central region, thus providing 

resilience in the presence of motion. By oversampling the center while subsampling the 

edges, the net result was an acceleration factor of roughly 1.55-fold compared to a full 

Cartesian sampling. The grayscale bar shows the overall sampling density of the k-space 

acquisition.
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Fig. 4: 
Schematic representation of the four-layer NN employed here. It accepted 81 entries in its 

input layer and generated 7 values in its output layer (T1, T2, MPRAGE, FLAIR, T1-, T2-, 

and PD-weighted).
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Fig. 5: 
Inputs to the NN came from 9 different types of MR-related signals: 4 pathways acquired 

twice in 2 separate readout groups (RG), along with B0 information. For each voxel location 

of the output, a 3×3 patch centered on that location was selected at the input, leading to 

3×3×9=81 values in the input layer. The phase processing consisted of a weighted linear 

regression that equalized the phase noise in all pathway images, for optimum field map 

estimation, ω. The ‘+’ and ‘−’ signs refer to positive and negative pathways, respectively.
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Fig. 6: 
The purpose of these results was to explore the effect of N, the number of volunteers, on 

predicted T1 (a-b) and T2 (c-d) values. The number of subjects was varied from its actual 

(maximal) value of 8 all the way down to 2, whereby data from only one volunteer would be 

used for training and one for validation purposes. Reference T1 and T2 values are tagged 

with ‘ref’ for comparison. Overall, there were no drastic observable effect/improvement as N 
is increased beyond two possibly because: 1) each volunteer contributes about 12,000 signal-

containing voxels, 2) the NN is fairly simple and trained on a per-voxel basis, 3) the main 
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limiting factor at this point might be the spatial alignment of MPME and training data, an 

effect that might hide more subtle N-related effects.
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Fig. 7: 
The proposed method achieved whole-brain 3D coverage with isotropic resolution, as 

visually emphasized here in (a) T1 map, (b) T2 map, (c) FLAIR, (d) T1-weighted, and (e) 

PD-weighted contrasts. These contrasts would typically have to be acquired using separate 

pulse sequences, while they were all generated from one single MPME scan here through 

neural contrast translation.
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Fig. 8: 
A side-by-side comparison of reference (left) and NN-predicted values (right) is shown for 

one representative subject (volunteer 3). Results were qualitatively similar for other subjects, 

and data from all subjects were included in the quantitative evaluation presented in Fig. 9 

and in Supporting Information Figure S1. While reference results were available only over 

the 2D slice shown here, the predicted results were available over the whole brain as visually 

emphasized in Fig. 7.
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Fig. 9: 
Reference and predicted results were compared, for each one of the predicted signal types 

(T1, T2, MPRAGE, FLAIR, T1-, T2-, and PD-weighted). Each plot, similar to a Bland-

Altman analysis, combines results from all volunteers. Plots in (c-g) were normalized by 

defining ‘1.0’ as the signal level of white matter. Gray dashed lines represent the 95% limits 

of agreement, and solid red lines show the bias. Quantitative T1 (h) and T2 (i) values were 

further compared, for reference and predicted results, based on white matter (white boxes) 
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and thalamus (gray boxes) ROIs. The plots in (h,i) combine data from all 8 subjects. Outliers 

are shown with gray ‘×’ markers.
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Table 1:

MR imaging sequence parameters. Reference T1- and T2-weighted images are marked with bold font.

MPME scans Number of
pathways

TRG
(ms)

TR
(ms)

Flip angle
(°)

Matrix size Pixel 
bandwidth
(Hz/pixel)

Voxel size
(mm3)

Accel.
factor

Acquisition
time

volunteer 
#1-7

4 6.3, 13.1 20 15 160×176×176 638 1.2×1.2×1.2 1.55 6:41

volunteer #8 4 6.3, 13.1 20 15 160×192×192 638 1.2×1.2×1.2 1.54 7:58

Reference 
scans

TI
(ms)

TE
(ms)

TR
(ms)

Flip angle
(°)

Number of
slices

Pixel 
bandwidth
(Hz/pixel)

Voxel size
(mm3)

Accel.
factor

Acquisition
time

MPRAGE 900 3.76 1750 9 192 260 1.2×1.2×1 2 3:42

FLAIR 2026.6 88 6000 130 29 260 1.2×1.2×3 2 1:38

SE N/A 25, 50, 
90, 120

1000 90/180 5 260 1.2×1.2×2 1 10:48

IR-SE 50, 300, 800, 
2400

10 2500 180/90/
180

1 260 1.2×1.2×2 2.67 12:20

Abbreviation: TRG, time to readout group; Accel, acceleration; SE, spin echo; IR-SE, inversion-recovery spin echo; N/A, not applicable.
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