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SUMMARY

Translation of mRNA into protein is a fundamental yet complex biological process with multiple 

factors that can potentially affect its efficiency. Here, we study a stochastic model describing the 

traffic flow of ribosomes along the mRNA, and identify the key parameters that govern the overall 

rate of protein synthesis, sensitivity to initiation rate changes, and efficiency of ribosome usage. 

By analyzing a continuum limit of the model, we obtain closed-form expressions for stationary 

currents and ribosomal densities, which agree well with Monte Carlo simulations. Furthermore, 

we completely characterize the phase transitions in the system, and by applying our theoretical 

results, we formulate design principles that detail how to tune the key parameters we identified to 

optimize translation efficiency. Using ribosome profiling data from S. cerevisiae, we shows that its 

translation system is generally consistent with these principles. Our theoretical results have 

implications for evolutionary biology, as well as synthetic biology.

INTRODUCTION

Being a major determinant of gene expression and protein abundance levels (Lu et al., 2007; 

Kristensen et al., 2013), translation of mRNA into polypeptides is one of the most 

fundamental biological processes underlying life. The extent to which this process is 

regulated and shaped by the sequence landscape has been widely studied over the past 

decades (Dever et al., 2016; Hanson and Coller, 2018; Quax et al., 2015), revealing many 

intricate mechanisms that may affect translation dynamics. From a more global perspective, 

however, it has been challenging to integrate these findings to elucidate the key factors that 

govern translation efficiency. Indeed, translation is a complex process that depends on many 

parameters, including the initiation rate, site-specific elongation rates (which can vary 

substantially along a given transcript), and the termination rate. How does the overall rate of 

protein synthesis depend on these parameters? To make the problem more concrete, suppose 

that the goal is to achieve the fastest rate of protein production while minimizing the cost. 

Would choosing the “fastest” synonymous codon at each site do the job? If the local 

elongation rate changes at a particular site, would it necessarily affect the overall rate of 

protein synthesis? If not, then which parameters actually matter? Aside from achieving a 
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desired protein production rate, how does a translation system make efficient use of 

available resources, particularly the ribosomes? These are important questions in molecular 

and evolutionary biology, as well as synthetic biology, but challenging to answer because 

there are many parameters involved – for a transcript consisting of N codons, one has to 

analyze a model with about N parameters, which is seemingly intractable when N is large.

In this article, we develop a theoretical tool to answer the above questions. Our work hinges 

on analyzing a mathematical model that describes the traffic flow of ribosomes, which 

mediate translation by moving along the mRNA transcript. Beginning with MacDonald et al. 

(1968), most mechanistic studies of translation dynamics have been based on the so-called 

Totally Asymmetric Simple Exclusion Process (TASEP), a probabilistic model that 

explicitly describes the flow of particles along a lattice (Zia et al., 2011; Zur and Tuller, 

2016). As a classical model of transport phenomena in non-equilibrium, the TASEP has 

attracted wide interest from mathematicians and physicists (Blythe and Evans, 2007). To 

describe translation realistically, however, a generalized version of the model needs to be 

employed, taking into account the extended size of the ribosome and the heterogeneity of the 

elongation rate along the transcript. Under such general conditions, critical questions have 

hitherto remained open; in particular, identifying the parameters most crucial to the current 

and particle density has proven elusive.

Here we carry out a theoretical analysis of a generalized version of the TASEP and obtain 

analytic results that provide practical insights into translation dynamics. Our approach is to 

study the process in a continuum limit called the hydrodynamic limit, which leads to a 

general PDE satisfied by the density of particles. Upon solving this PDE, we obtain exact 

closed-form expressions for stationary currents and particle densities that agree very well 

with Monte Carlo simulations of the original TASEP model. Furthermore, we provide a 

complete characterization of phase transitions in the system. These results allow us to 

identify the key parameters that govern translation dynamics, and to formulate a set of 

specific design principles for optimizing translation efficiency in terms of protein production 

rate and resource usage. Using experimental ribosome profiling data of S. cerevisiae, we 

show that the translation system of this organism is generally efficient according to the 

design principles we found.

RESULTS

We first present our theoretical results on a mathematical model of translation and identify 

the key parameters that govern its dynamics. We then apply our theoretical results to 

formulate four simple design principles that detail how to tune these parameters to optimize 

the overall rate of protein synthesis and efficiency of ribosome usage. We then analyze 

ribosome profiling data of S. cerevisiae and demonstrate that its translation system is 

generally efficient, consistent with the design principles we found.

Theoretical Results on a Stochastic Model of Translation

Model description of the inhomogeneous ℓ-TASEP—At a high level, translation of 

mRNA involves three types of movement of the ribosome, as illustrated in Figure 1A: 1) 

Initiation – a small ribosomal subunit enters the open reading frame so that its A-site is 
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positioned at the second codon and then a large ribosomal subunit binds with the small 

subunit. 2) Elongation – the nascent peptide chain gets elongated by one amino acid and the 

ribosome moves forward by one codon. 3) Termination – the ribosome with its A-site at the 

stop codon unbinds from the transcript. An important point to note is that more than one 

ribosome can translate the same mRNA transcript simultaneously, so the movement of a 

ribosome can be obstructed by another ribosome in front, similar to what happens in a traffic 

flow on a one-lane road. Such interaction is what makes the dynamics difficult to analyze.

We model the flow of ribosomes on mRNA using a generalized TASEP, called the 

inhomogeneous ℓ-TASEP, on a one-dimensional lattice with N sites (see Figure 1B). In this 

process, each particle (corresponding to a ribosome in mRNA translation) is of a fixed size 

ℓ ∈ ℕ and is assigned a common reference point (e.g., the midpoint in the example 

illustrated in Figure 1B). The position of a particle is defined as the location of its reference 

point on the lattice. A configuration of particles is denoted by the vector τ = (τ1, … , τN), 

where τi = 1 if the ith site is occupied by a particle reference point and τi = 0 otherwise. The 

jump rate at site i of the lattice is denoted by pi > 0. During every infinitesimal time interval 

dt, each particle located at position i ∈ {1, … , N − 1} has probability pidt of jumping 

exactly one site to the right, provided that the next ℓ sites are empty; particles at positions 

between N − ℓ + 1 and N, inclusive, never get obstructed. Additionally, a new particle enters 

site 1 with probability αdt if τi = 0 for all i = 1, … , ℓ. If τN = 1, the particle at site N exits 

the lattice with probability βdt. The parameter α is called the entrance (or initiation) rate, 

while β is called the exit (or termination) rate.

The hydrodynamic limit—The key quantities of interest are the stationary probability 

〈τi〉 of any individual site i being occupied or not, and the current (or flux) J of particles in 

the system. In the corresponding translation process, these quantities reflect the local 

ribosomal density and the protein production rate, respectively.

In the special case of the homogeneous 1-TASEP (pi = p for all i and ℓ = 1), the stationary 

distribution of the process decomposes into matrix product states, which can be treated 

analytically (Derrida et al., 1993). Unfortunately, in the general case this approach is 

intractable, necessitating alternative methods such as the hydrodynamic limit. When ℓ > 1, 

deriving the hydrodynamic limit is not straightforward, however, as the process does not 

possess stationary product measures (Schönherr and Schütz, 2004). To tackle this problem, 

we mapped the ℓ-TASEP to another interacting particle system called the zero range process 

(ZRP, see The hydrodynamic limit of the inhomogeneous ℓ-TASEP of STAR Methods and 

Figure S1), whose hydrodynamic limit, assuming it exists, can be derived from the 

associated master equation. More precisely, we obtained the hydrodynamic limit through 

Eulerian scaling of time and space by a factor a = N−1, and by following its dynamics on 

scale x such that k = x
a , for 1 < k < N (Rezakhanlou, 1991). Implementing this limiting 

procedure for the ZRP and mapping it back to the inhomogeneous ℓ-TASEP, we found that 

the limiting occupation density ρ(x, t) ≔ ℙ(τk(t) = 1), assuming its existence, satisfies the 

nonlinear PDE
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∂tρ = − ∂x[λ(x)ρG(ρ)] + a
2 ∂xx[λ(x)G(ρ)] + O(a2), (1)

where G(ρ) = 1 − ℓρ
1 − (ℓ − 1)ρ  and λ is a differentiable extension of (p1, … , pN), such that λ(x) = 

λ(ka) = pk. More generally, this PDE takes the form of a conservation law with systematic 

and diffusive currents J and JD, given by

J(ρ, x) = λ(x)ρG(ρ) and JD(ρ, x) = λ(x)ρ
1 − (ℓ − 1)ρ .

As a ≪ 1, the systematic current dominates and solutions of (1) generically converge locally 

uniformly on (0,1) to so-called entropy solutions of

∂tρ = − ∂x[λ(x)ρG(ρ)] . (2)

Further details and relevant calculations are provided in The hydrodynamic limit of the 

inhomogeneous ℓ-TASEP of STAR Methods.

Particle densities, currents and phase transitions—The first order nonlinear PDE 

given by (2) can be solved using the method of characteristics (Evans, 2010), which 

describes the evolution of differently dense “patches” of particles over time. Solving for the 

characteristics yields two branches of solutions, which we call “upper” and “lower” 

branches, while the boundary conditions imposed by α and β determine which branch is 

taken by the stationary density of particles (see Phase transitions and profiles of STAR 

Methods). As a consequence, the behavior of the system is characterized by a phase diagram 

in α and β. Moreover, this phase diagram depends on only few parameters of the system (see 

Figure 1C): the size of particles ℓ, the jump rates at the boundaries, λ0 := λ(0) and λ1 := 

λ(1), and the minimum jump rate λmin := min{λ(x) : x ∈ [0,1]}. In particular, these 

parameters determine the critical initiation and termination rates, α* and β*, that are 

associated with phase transitions. More precisely, the critical initiation rate α* is given by

α∗ = λ0 − (ℓ − 1)Jmax
2 1 − 1 − 4λ0Jmax

[λ0 − (ℓ − 1)Jmax]2 , (3)

where Jmax =
λmin

(1 + ℓ)2
. Note that α* is determined by the jump rates λ0 and λmin. In the 

context of translation dynamics, this means that α* will be specific to each gene, as different 

genes will likely have different values of λ0 and λmin. For a fixed λ0 the critical rate α* 

increases as λmin increases. For a fixed λmin it turns out that α* satisfies

λmin

(1 + ℓ)2 ≤ α∗ ≤ λmin
1 + ℓ, (4)

where the lower bound is achieved as λ0 → ∞, while the upper bound is achieved when λ0 

= λmin. More generally, for a fixed λmin, the critical initiation rate α* decreases as λ0 
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increases. The critical termination rate β* is obtained from (3) by replacing λ0 with λ1. 

Hence, for mRNA translation, β* is also gene-specific, determined by the key elongation 

rates λ1 and λmin.

The resulting phase diagram, which generalizes previous formulas for the homogeneous 1-

TASEP (Derrida et al., 1993), is summarized as follows (see Figure 1D):

1. If α < α* and β > β * (LD I): In this regime the flux is limited by the initiation 

rate, leading to a low density profile. The corresponding current assumed by the 

system is

JL = α(λ0 − α)
λ0 + (ℓ − 1)α , (5)

while the site-specific particle density is

ρL(x) = 1
2ℓ + JL(ℓ − 1)

2ℓλ(x) − 1
2ℓ + JL(ℓ − 1)

2ℓλ(x)
2

− JL
ℓλ(x) . (6)

2. If α > α* and β < β * (HD I): Now the flux is limited by the particle exit rate, 

resulting in a high density regime. The associated current JR and density ρR are 

identical to JL ((5)) and ρL ((6)), respectively, with λ0 and α replaced by λ1 and 

β.

3. If α < α* and β < β* (LD II and HD II): The steady state is determined by the 

sign of JL − JR (computed as above). If it is positive (JL > JR), the system is in a 

low density regime with current and density given by JL and ρL, respectively. 

Conversely, if it is negative, the system is in a high density regime with JR and 

ρR as the current and density.

4. If α > α* and β > β* (MC): The system carries the maximum possible current 
(also referred to as the transport capacity of the system)

Jmax = λmin

(1 + ℓ)2 , (7)

which is limited only by the minimum elongation rate λmin. Its density is 

characterized by qualitatively different profiles to the left and right of xmin = arg 

minx λ(x): For x < xmin, ρ(x) is described by the upper branch (obtained by 

replacing JR with Jmax in the equation for ρR), while for x > xmin, ρ(x) is 

described by the lower branch (obtained by replacing JL with Jmax in ρL). That is, 

a branch switch occurs at xmin (where ρ(xmin) = (1 + ℓ)−2). We proved more 

generally that every global minimum of λ regulates the traffic of particles (like a 

toll reducing the traffic flow) in this fashion: incoming densities to the left of it 

are always described by the upper branch whereas outgoing particles on the right 

follow the lower branch. In particular, this implies that in the case of multiple 

global minima, the density between two consecutive minima must undergo a 
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discontinuous jump from lower to upper branch (for more details, see Phase 

transitions and profiles of STAR Methods and Figure S2).

Novel phenomena and applicability to discrete lattices—As shown in Figure 1E, 

for smooth rate functions the densities predicted by our analysis agree well with Monte 

Carlo simulations in all regimes of the phase diagram. In the context of translation 

dynamics, however, elongation rates are typically less regular, exhibiting substantial 

fluctuations throughout the entire transcript (see Figure 2A). Despite this lack of regularity, 

the hydrodynamic limit can still be employed to describe local averages of such a system. In 

particular, smoothing particle profiles by windows of length ℓ reproduces parameters that 

closely match hydrodynamic predictions (see Applicability to discrete lattices of STAR 

Methods and Figure S3). Hence, all subsequent analyses described below will pertain to 

elongation rate profiles smoothed by a ten-codon moving average. A noteworthy 

consequence of the above results is that local averages of elongation rates are more 

predictive of overall translation dynamics than their non-smoothed counterparts. In 

particular, the location at which branch switching occurs in the MC regime is governed by 

xmin = arg minx{px} ∕ N which may be, and in many cases is, considerably different from arg 

minx{px}/N (cf. Figure S3).

We highlight a few novel phenomena in our generalization of the homogeneous 1-TASEP: 

First, extending particles to size ℓ > 1 and lowering the limiting jump rate λmin reduces both 

the transport capacity Jmax and the critical rates (α* and β*) for entrance and exit, leading to 

an enlarged MC phase region. This is expected as fewer particles are needed to saturate the 

lattice, and distances between particles are larger, which in turn limits the number of 

particles able to cross a site per given time. This phenomenon is quantified precisely using 

our explicit expressions for α*, β*, and Jmax (see (3) and (7)). Second, the inhomogeneity in 

λ may deform the LD-HD phase separation from being a straight line in the homogeneous ℓ-
TASEP (Chou and Lakatos, 2004) to a generally nonlinear curve (see Figure 1D) determined 

by solutions (α, β) of

α(λ0 − α)
λ0 + (ℓ − 1)α =

β(λ1 − β)
λ1 + (ℓ − 1)β ,

corresponding to the condition JL = JR. This is a consequence of α and β affecting the 

system at different scales whenever λ0 ≠ λ1, resulting in a phase diagram that is no longer 

symmetric. Lastly, our observation of density profiles performing branch switching in the 

MC phase was indiscernible in the homogeneous case, as the high density and low density 

branches merge into a single value (viz. ρ = 1
ℓ + ℓ).

Application: Design Principles for Translational Systems

We sought to apply our theoretical analysis to understand how the translational system can 

be regulated and optimized with regard to protein synthesis rate and ribosome usage. The 

hydrodynamic theory developed above singles out the key parameters that determine the 

current and particle densities. We illustrate in Figure 3 how λ0, λmin, and xmin impact the 
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current capacity, its sensitivity to the initiation rate α, and the global particle density, 

suggesting the following principles:

1. The initiation rate α (and not termination rate β) should regulate the production 
rate J. As shown by our analysis of the current, any value of the current that lies 

below the system’s production capacity Jmax can be attained through either HD 

or LD regime. In order to avoid overuse of resources, however, a transcript 

should always operate in LD, where the main determinant for currents is the 

initiation rate α (cf. (5)). To guarantee LD profiles, termination rates merely need 

to exceed the critical value β*, whereas initiation rates are more tightly 

controlled, varying between 0 and α*. Within this interval, the current J increases 

with α according to (5), as illustrated in Figure 3A.

2. The minimum elongation rate λmin determines the production capacity Jmax. As 

α increases in the LD regime, the current J reaches a plateau that is associated 

with the maximal current (MC) regime (see Figure 3A). By (7), the maximum 

possible current is directly proportional to λmin, which therefore sets the range 

within which production rates may vary. Large values of λmin allow for both 

constitutively high expression of genes as well as highly variable protein levels, 

while small values of λmin guarantee constitutively low expression.

3. In the LD regime, the sensitivity of production rate J to α is moderated by λ0 

and varies across different values of α. Our theory predicts that for β > β* (i.e., 

provided that the termination rate is sufficiently high), the dynamic range of the 

initiation rate (i.e., the range of α within which the overall protein production 

rate J varies with α) is given by (0,α*), where the critical initiation rate α* is 

defined in (3). Furthermore, the degree to which J varies with α is fully 

determined by the elongation rate λ0, as shown in (5). Indeed, λ0 controls the 

time spent by particles at the start of the lattice, and can induce significant 

buffering if α is large enough, thereby modulating the effective rate of entrance 

associated with J. We illustrate this in Figure 3A, where we compare how the 

current varies as a function of α for different values of λ0 relative to λmin. Recall 

that the critical initiation rate α* satisfies the inequalities in (4), and that α* 

increases as λ0 decreases. Figure 3A also shows that for λ0 fixed, the production 

rate of a system closer to the MC regime (i.e., with α just below α*) is less 

sensitive to changes in α, and that this effect is more pronounced the closer λ0 is 

to λmin. More generally, the α-sensitivity of J increases as λ0 increases. While 

the dependence of J in α is sublinear for λ0 = λmin, it becomes linear as λ0 gets 

large (see (5)). This suggests in particular that changes in the free ribosome pool 

(changing the initiation rate globally) can impact the protein production rate 

differently across different genes.

4. Positioning λmin close to the start site can reduce the amount of ribosomes used. 

At maximum production capacity (MC regime), we have shown that the density 

profile follows the high density branch from the start of the lattice until the 

location xmin of λmin whereafter it adopts the low density branch. This 

characteristic branch switching phenomenon makes xmin critical for the purpose 
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of resource allocation. In Figure 3B, we illustrate how a small local change in the 

rate function can induce a large increase of average particle density when xmin 

changes substantially. Therefore, a way to limit the excessive usage of ribosomes 

induced by traffic jams at maximum capacity is to position the minimum rate 

close to the start. However, as previously shown, positioning it too close to the 

start (such that λ0 = λmin) would also decrease the sensitivity of the system to α.

Empirical Study: Translational Efficiency in Yeast

In light of the aforementioned principles, we explored the extent to which the translational 

system in yeast is efficient. For this study, we used elongation rates previously inferred from 

ribosome profiling data for a set of 850 genes in S. cerevisiae (Dao Duc and Song, 2018) 

(see Data processing of STAR Methods). These genes were selected in Dao Duc and Song 

(2018) based on length and footprint coverage, to yield robust estimates of rates. The 

advantage of using this particular dataset over most others lies in the fact that the inferred 

rates for this subset of genes faithfully reproduce ribosome profiling data, incorporating 

several experimental artifacts of ribo-seq such as undetected stacked ribosomes, thereby 

minimizing confounding from technical biases. Furthermore, primarily analyzing high-

coverage (and thus likely highly expressed) genes does not confound our study of design 

principles, but rather provides us an increased signal-to-noise ratio, as these genes are 

precisely those on which our design principles are expected to act most strongly.

We analyzed the location of these 850 genes in the phase diagram, and the distribution of the 

key parameters and variables that determine the ribosomal currents and densities. We found 

the aforementioned theoretical design principles being reflected as follows:

1. Translation mainly operates in LD regime. Upon computing α* and β*, we 

located the position of each gene in the phase diagram (see Figure 4A). Over the 

850 genes in our dataset, we found 841 in LD and the remaining 9 in the MC 

region. No genes were found in HD, suggesting no excessive usage of ribosome 

to achieve any protein level. As a result, the initiation rate is the main 

determinant and limiting factor of the current (Spearman’s rank correlation 

coefficient ρ = 0.979). The strength of this correlation nevertheless decreases as 

genes get closer to the MC regime, since J becomes less sensitive to α and λmin 

becomes its rate limiting factor (see Figure 4C). To quantify this reduction in 

correlation, we binned the data by quartiles of J and computed Spearman 

correlations within each bin, which yielded (in order of quartiles): 0.93, 0.72, 

0.64, and 0.58.

2. Wide ranges of currents are covered within production capacity. For each gene in 

our dataset, we examined the maximal protein production rate, which according 

to our theory is proportional to λmin. The data exhibit an overall range of λmin 

between 1.01 and 6.01 codons/second, and for any fixed λmin, currents are well 

spread out across [0, Jmax] (see Figure 4D). Given that genes cover almost all of 

the theoretically possible range of currents, we investigated whether certain 

configurations of λmin and J are associated with the biological function of 

specific genes. To do so, we compared ribosomal protein genes (known to be 
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highly expressed) and genes related to stress response (requiring variable 

expression over time, see Data processing of STAR Methods). We found that, 

while both sets of genes display comparable λmin, ribosomal genes are more 

likely to be close to their maximal production capacity (p < 7 × 10−3, see 

QUANTIFICATION AND STATISTICAL ANALYSIS of STAR Methods) and 

more consistently so (the coefficient of variation is 0.22 for ribosomal genes and 

0.36 for stress response).

3. λ0 (associated with sensitivity to α) is higher for genes that are either highly 
expressed or subject to varying expression demand. The impact of increasing α-

sensitivity is primarily twofold: First, for fixed production capacity, large 

currents may be attained with smaller initiation rates; and second, more 

substantial changes in currents may be achieved with small changes in α. To 

investigate the former we computed α*, the critical rate necessary for a gene to 

attain maximum capacity, across all genes whose λmin exceeded the median λmin 

of the data set (as large currents presuppose large capacities). Further binning 

this range into quartiles (to isolate the dependence of α* on λ0), we found that 

genes whose currents are at least 90% of the production capacity are significantly 

more sensitive (p < 0.008, 0.01, 0.05, and 0.004, respectively; see Figure 4E), 

requiring smaller initiation rates to reach peak production rate (cf. Figure 4C). To 

inspect the second aspect of λ0 as facilitator or inhibitor of rapid changes in 

current, we explored the ratio of λ0 to λmin again in ribosomal and stress 

response genes. For constitutively highly expressed genes like ribosomal genes, 

we expect this ratio to be small to maintain stable current close to MC (cf. Figure 

3), whereas genes with variable expression demands like the ones associated 

with stress response should exhibit larger ratios. Confirming this intuition, we 

found significantly reduced levels of λ0/λmin in ribosomal genes (p < 2 × 10−6), 

and significantly increased levels in stress response genes (p < 0.04).

4. The position of λmin is preferentially located early in the open reading frame. 

Upon analyzing the distribution of xmin from our dataset (see Figure 4B), we 

found it preferentially located in the codon positions between 30 to 40, consistent 

with genes forestalling excessive ribosome usage through enforcing branch 

switching early on. More specifically, we reasoned that both genes closer to MC 

and those highly sensitive to α run higher risk of incurring substantial ribosome 

cost and should thus locate xmin early in the coding sequence. Indeed, both the 

top quartile of genes close to MC (as measured by α/α*) and stress response 

associated genes showed significantly smaller xmin (p < 0.03 and 0.01, 

respectively). Moreover, genes with unusually large values of xmin are 

significantly less likely to be close to MC (top quartile of xmin: p < 1 × 10−3).

To check for systematic biases potentially present in our subsampled gene set and to show 

replicability of our main biological conclusions, we also analyzed two other independent 

(and much larger) datasets from Williams et al. (2014) (combined with polysome profiling 

from MacKay et al. (2004)) and Pop et al. (2014) (see Data Processing of STAR Methods). 

We inverted the solution of (2) to obtain approximate estimates of initiation rates, 

termination rates, and smoothed elongation rates for these datasets, and repeated our 
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analyses. As shown in Figure S4, the results are generally in excellent agreement with what 

is discussed above (Figure 4A,B).

DISCUSSION

While past quantitative studies of the TASEP under general conditions of extended particle 

size and/or rate heterogeneity have mostly been limited to numerical simulations or mean-

field approximations, (Lakatos and Chou, 2003; Shaw et al., 2003, 2004; Chou and Lakatos, 

2004; Dong et al., 2007), we used here a different approach that relies on studying the 

hydrodynamic limit of the process. In the case of homogeneous rates, previous studies 

(Schönherr, 2005; Schönherr and Schütz, 2004) established this hydrodynamic limit, but 

without further analyzing the subsequent PDE. After deriving this limit for inhomogeneous 

rates, we obtained closed-form formulas for the associated current, densities, and phase 

diagram, generalizing previous theoretical results for the TASEP (Derrida et al., 1993; 

Blythe and Evans, 2007) and its variants (Shaw et al., 2003; Chou and Lakatos, 2004; 

Stinchcombe and de Queiroz, 2011). Our approach has the advantage of revealing the key 

parameters that the current and densities depend on, enabling an immediate quantification of 

the process and its phase diagram. Such a quantification is difficult to achieve via 

conventional stochastic simulations or approximations used in the past several years (Zia et 

al., 2011; Zur and Tuller, 2016; Szavits-Nossan et al., 2018).

Our characterization of the current and densities in the phase diagram suggests that, in 

agreement with earlier experimental studies (Kosuri et al., 2013; Salis et al., 2009), 

translation dynamics should be mainly governed by the initiation rate, while the termination 

rate and most elongation rates have negligible impact. In particular, our results explain why 

having the initiation rate as the main limiting factor of the current (Plotkin and Kudla, 2011) 

minimizes ribosome usage. In addition, we discovered the importance of smoothed rather 

than raw elongation profiles in predicting translation dynamics, explaining the previously 

observed mild effect that any individual elongation change has compared to accumulated, 

neighboring changes (Levin and Tuller, 2018). This allowed us to identify two key 

parameters of the system, namely, the smoothed elongation rate λ0 immediately following 

initiation and the minimal smoothed elongation rate λmin. Previous studies have established 

some association between the sequence context in the early 5′ coding region and protein 

production levels (Frumkin et al., 2017; Boël et al., 2016; Ben-Yehezkel et al., 2015). For 

example, it has been shown that mRNA secondary structure in the first ~ 16 codons (which 

locally decreases the elongation rate) negatively affects the translation rate in E. Coli, while 

no significant contribution of mRNA folding in other regions was found (Frumkin et al., 

2017). By exposing α and λ0 as the only parameters that currents in LD depend on, our 

analysis suggests a direct explanation for such contrast.

We also highlighted the impact of λ0 on the sensitivity of the current to changes in α. In 

practice, initiation rates can vary at the individual gene level (e.g., through interactions with 

specific miRNAs (Humphreys et al., 2005)). According to our theory, the way that these 

variations impact the protein production rate depends on λ0; we hence suggest that this may 

explain why genes associated with stress response present higher values of λ0, as it 

facilitates the response to changes in α. At a more global level, our study shows how protein 
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levels can be more or less robust against changes in the ribosomal pool, which can 

simultaneously affect all initiation rates in a cell (Shah et al., 2013). Since the level of 

ribosomes present in a cell fluctuates over time (Wyant et al., 2018), it would be interesting 

to see if protein levels scale uniformly with these variations across genes, and if not, whether 

the differences in λ0 can explain it.

To the best of our knowledge, the role of the minimum elongation rate λmin has so far 

received attention only indirectly, through the study of what is known as the “5′ translational 

ramp” (Tuller et al., 2010). This ramp is a pattern of translational slowdown around codon 

position 30-50 followed by steadily accelerating elongation rates, which is mirrored by the 

spatial distribution of minimum elongation rates we found here. This ramp has been 

hypothesized to prevent crowding of ribosomes on the transcript (Tuller et al., 2010), for 

which we provide a theoretical basis, exposing λmin as a separator between crowded and 

freely elongating ribosomes. More generally, the complex interplay between the maximum 

current capacity, ribosome usage, and sensitivity to the initiation rate suggests various ways 

to set the parameters λ0, λmin and xmin, depending on the desired object to optimize. For 

example, allocating the minimum elongation rate near the beginning of the ramp region 

provides an optimal trade-off between high sensitivity and minimal traffic jams. On the other 

hand, it would be optimal for genes with housekeeping function to have a decreased 

sensitivity, which would push the minimum to earlier positions.

Our analysis can also help to answer the long-debated question regarding the implication of 

translation on codon usage bias (Hershberg and Petrov, 2008; Frumkin et al., 2018; Shah et 

al., 2013). Since highly expressed genes are enriched for synonymous codons translated by 

more abundant tRNAs (Yu et al., 2015; Hanson and Coller, 2018), it has been hypothesized 

that codon usage bias increases the overall protein synthesis rate by accelerating elongation 

(Hershberg and Petrov, 2008). However, recent studies have challenged such a hypothesis, 

suggesting that translational selection for speed is not sufficient to explain the observed 

variation in codon usage bias (Mahajan and Agashe, 2018). Synonymous changes of the 

coding sequence modify local elongation rates, but, according to our theory, such a 

modification impact the overall protein production rate only if the smoothed elongation rates 

λ0 or λmin are affected. In addition, our work implies that synonymous codon replacements 

that substantially change the location xmin of λmin affect the efficiency of ribosome usage, 

and hence are more likely to be under selective pressure. Aside from these cases, there 

should be little direct impact of synonymous codon usage on translation efficiency; this 

prediction is consistent with previous studies that tried to explain differences in expression 

using codon identity (Gustafsson et al., 2012), and to characterize the sensitivity of 

translational output with respect to changes in elongation (Levin and Tuller, 2018). Codon 

usage bias could affect the protein production rate indirectly, however, by reducing the cost 

of translation: replacing a codon by a “faster” synonymous codon helps to reduce the local 

ribosome density on the transcript, and this can in turn increase the availability of free 

ribosomes and therefore increase the initiation rate α slightly; in the LD regime, increasing 

α would increase the protein production rate. We note that other factors such as mRNA 

decay (Hanson and Coller, 2018), or reduction of nonsense errors or co-translational 

misfolding (Gilchrist, 2007; Frumkin et al., 2018) might be more important drivers of codon 

usage bias.
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Finally, it would be interesting to experimentally test our theoretical predictions, e.g., using 

cell-free expression protocols such as lysate-based systems, which have been developed to 

optimize protein synthesis and more recently refined to study translation dynamics (Moore 

et al., 2017; Rosenblum and Cooperman, 2014; Katranidis and Fitter, 2019). By designing 

an appropriate mRNA sequence and controlling different components (NTPs, ribosomes, 

tRNAs, specific amino acids), these systems allow to manipulate the initiation and 

elongation rates, and hence tune the key parameters identified by our theoretical analysis. 

For example, one can modify λmin or λ0 by changing the level of corresponding amino 

acids, and vary α by modifying the 5′ UTR sequence or changing the ribosome 

concentration. The flexible nature of such cell-free expression systems, coupled with precise 

measurement of protein levels (e.g., via isotope-labeled amino acids or reporter proteins), 

should help to verify our theoretical results. In particular, it would be interesting to 

experimentally demonstrate the existence of phase transitions, and by modifying the mRNA 

sequence, test our predictions on how to effectively control the robustness and sensitivity of 

the translation system. We are currently pursuing these research directions.

STAR METHODS

LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Yun S. Song (yss@berkeley.edu).

This study did not generate new reagents.

METHOD DETAILS

The hydrodynamic limit of the inhomogeneous ℓ-TASEP—We derive here the PDE 

governing the hydrodynamic limit of the open-boundaries inhomogeneous ℓ-TASEP. To do 

so we exploit a representation of its dynamics in terms of another interacting particle system, 

the so-called zero range process (ZRP), whose hydrodynamics can be found explicitly. This 

TASEP-ZRP duality provides an expedient and general tool for identifying explicit TASEP 

formulas; however, rigorously proving the validity of these formulas often requires more 

technical tools from probability theory. Since this work’s emphasis is on the application of 

TASEP to unraveling the key parameters of translation dynamics, we will here concentrate 

on showcasing the TASEP-ZRP framework, and keep a rigorous existence proof of the 

hydrodynamic limit, combining techniques from Rezakhanlou (1991); Covert and 

Rezakhanlou (1997) and Bahadoran (2012), to a separate manuscript.

Reduction to periodic boundaries and mapping to the ZRP.: The purpose of the 

hydrodynamic limit is to describe the local evolution of the macroscopic particle density in 

the large system limit. As such, it does not explicitly rely on the precise formalism by which 

particles enter and exit the lattice at the boundaries (which will only later be needed to 

impose boundary conditions on the resulting PDE (Bahadoran, 2012)). In particular, we are 

free to choose periodic boundary conditions for our limiting procedure without changing the 

resulting PDE (Schönherr and Schütz, 2004). This has the advantage of preserving the total 

number of particles, which is essential for establishing the correspondence between TASEP 

Erdmann-Pham et al. Page 12

Cell Syst. Author manuscript; available in PMC 2021 February 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and ZRP. In the following, we thus consider the ℓ-TASEP with M particles on a ring of N 
sites jumping to the right at rate pi, and take M, N → ∞ while M/N remains constant.

The ZRP is now obtained by reversing the roles of holes and particles: It consists of N − Mℓ 
particles (corresponding to the N − Mℓ holes in the TASEP) distributed across M sites 

(matching the TASEP particles) {1, … , M}, with multiple particles allowed to stack up on 

the same site. A ZRP configuration (ξi,t)1≤i≤M describes the number of particles ξi,t at each 

site i ∈ {1, … , M} and time t, and can be seen as a representation of spacings between 

particles i and i + 1 in the TASEP.

As a result, the TASEP dynamics are translated into ZRP dynamics as follows: If a site i at 

time t is occupied by at least one particle, then the topmost particle jumps to the left with 

rate mi,t = pk(i,t), where k(i, t) is the position of the ith TASEP particle (see formula (8) 

below) at time t. This jump occurs regardless of whether the destination site is occupied or 

not. That is, neither exclusion nor long range interactions are present, which will be key to 

establishing the hydrodynamic limit.

The correspondence between TASEP and ZRP states described above is so far only 

determined up to rotations of the TASEP lattice, hence we introduce one further variable ξ0,t 

∈ {1, … , N} to trace the position of particle 1. More explicitly, at time t, TASEP particle i is 

located at site

k(i, t) = ∑
j = 0

i − 1
ξj, t + ℓ(i − 1) (8)

on the TASEP ring. An illustration of this correspondence is given in Figure S1.

The hydrodynamic limits of the ZRP and TASEP.: The connection between the TASEP 

and the ZRP has been fruitfully used to derive hydrodynamic limits for homogeneous 

systems (Schönherr and Schütz, 2004; Schönherr, 2005). Here we generalize this approach 

to heterogeneous lattices and supply appropriate boundary conditions to the PDE, which 

become necessary when working with open rather than periodic boundaries.

We start with the master equation associated with the ZRP:

∂tξi, t = mi + 1, tzi + 1, t − mi, tzi, t, (9)

where zi, t = ℙ(ξi, t > 0) is the probability that site i is non-empty at time t. Our goal is to 

identify a PDE that describes the limit of (9) under Euler scaling, i.e., on time scale at and 

spatial scale ia. Denoting these scaled variables as t again in time and x, y in space such that 

k = ⌊x/a⌋ and i = ⌊y/a⌋, and assuming the existence of a continuously differentiable rate 

function λ such that λ(x) = pk, the master equation (9) becomes

a∂tc(y, t) = λ(x(y + a, t))z(y + a, t) − λ(x(y, t))z(y, t)

= a∂y[λ(x(y, t))z(y, t)] + a2

2 ∂yy[λ(x(y, t))z(y, t)] + O(a3), (10)
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where c(y, t) and z(y, t) are the continuum limits of ξi,t and zi,t, respectively. Under local 

stationarity (Kipnis and Landim, 2013), we may replace z in (10) using the fugacity-density 

relation z = c(1 + c)−1 to obtain the final hydrodynamic limit of the inhomogeneous ZRP as

∂tc = ∂y λ c
1 + c + a

2 ∂yy λ c
1 + c . (11)

The assumption of local stationarity is essentially justified by the one-block estimates in 

Covert and Rezakhanlou (1997), as long as one can ensure slow enough variation of λ(x(y, 

t)) in t. In our case, this smooth dependency is given, since in a small (on the Eulerian scale) 

time interval NΔt, we expect a particle to perform O(NΔt) jumps, and whence λ(x(y, t + 

NΔt)) − λ(x(y, t)) ∈ O(Δt).

To derive the corresponding PDE for the TASEP, we use (8) to establish the continuum 

relation between x, y and t. More precisely,

x(y, t) = ak(i, t) = a ∑
j = 0

i − 1
ξj, t + ℓ(i − 1) = ∫

0

y
c(u, t) du − a

2 c(y, t) − c(0, t)

+ ℓ(y − a) + O(a2) .
(12)

Upon recognizing that particle densities are related by ρ = (c+ℓ)−1 and changing coordinates 

according to (12), (11) yields the hydrodynamic limit of the TASEP

∂tρ = − ∂x[λ(x)ρG(ρ)] − a
2 ∂xx[λ(x)G(ρ)] + O(a2), (13)

where G(ρ) =
1 − ℓρ

1 − (ℓ − 1)ρ .

Phase diagram analysis—We now use (13) to provide a detailed derivation of the phase 

diagram described in the main text.

Reduction to conservation law.: Solutions of (13) converge locally uniformly (under mild 

conditions on λ, see Phase transitions and profiles) to viscosity solutions of the scalar 

conservation law

∂tρ(x, t) = − ∂x[λ(x)H(ρ(x, t))]
J(ρ(x, t), x)

,
(14)

where H(ρ) = ρG(ρ), which thus determines the phase diagram in the hydrodynamic regime. 

Setting ∂tρ = 0 identifies the stationary profiles of the TASEP as distributions satisfying

J (ρ, x) = Jc, (15)

where Jc = Jc(α, β, λ) is the critical current, set to belong to [0, Jmax], where Jmax is the 

transport capacity of the lattice
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Jmax = min
x ∈ [0, 1]

max
ρ ∈ [0, 1 ℓ]

J(ρ, x) =
λmin

(1 + ℓ)2
.

(15) has two solutions (see Figure S5A) of the form

ρ±(x) = 1
2ℓ +

Jc(ℓ − 1)
2ℓλ(x) ± 1

2ℓ +
Jc(ℓ − 1)

2ℓλ(x)
2

−
Jc

ℓλ(x) ,

any mixture of which may be a potential attractor picked by the system as t → ∞. Deciding 

precisely which mixture dominates requires analysis of the characteristic curves.

Solving the characteristic ODE.: Denoting the characteristic curves by xt and ρt with 

initial data x0, ρ0, their evolution is described by the system of ODE (Evans, 2010)

dxt

dt = λ(xt)H′(ρt), (16)

dρt

dt = − λ′(xt)H(ρt), (17)

where H′ and λ′ respectively denote the derivatives of H and λ with respect to their 

arguments. The solutions are easily verified to be

xt = F−1(t) (18)

ρt = H−1 J(ρ0, x0)
λ(xt)

(19)

as long as J(ρ0, x0) ∈ [0, Jmax]. The form of F follows from formally separating variables:

F(x) = ∫x0
x 1

λ(y)H′ ∘ H−1(J(ρ0, x0) ∕ λ(y))
dy,

while H−1(J(ρ0, x0)/λ(xt)) is understood to be the preimage compatible with ρ0, see Figure 

S5A. For the homogeneous ℓ-TASEP (18) and (19) depend linearly on each other, giving rise 

to straight line characteristic curves (see Figure S5B). In the more general heterogeneous 

setting, however, more complicated behavior emerges (Figure S5C). In particular, if J(ρ0, x0) 

< Jmax, then for all t ≥ 0,

J(ρ0, x0)
λ(xt)

< 1
(1 + ℓ)2

,
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so ρt < 1
ℓ + ℓ  for all t if ρ0 < 1

ℓ + ℓ , while ρt > 1
ℓ + ℓ  for all t if ρ0 > 1

ℓ + ℓ . Hence, the sign 

of dxt
dt = λ(xt)H′(ρt) remains the same for all t, and any characteristic curve xt starting at the 

left lattice boundary x0 = 0 or right lattice boundary x0 = 1 propagates towards the opposite 

end and fills the lattice entirely.

On the other hand, if J(ρ0, x0) > Jmax, then J(ρ0, x0)
λ(xmin) > 1

(1 + ℓ)2
, where xmin = arg minx λ(x), 

so H−1 J(ρ0, x0)
λ(xmin) > 1

ℓ . Recalling (19) and noting that it is physically not possible to have 

ρt > 1
ℓ , we conclude that the characteristic curve xt cannot reach xmin. Indeed, it follows 

from (16) and (17) that at some critical time tc before reaching xmin, the characteristic curve 

xt reverses direction while ρt crosses arg maxρH(ρ) = (ℓ + ℓ)−1, resulting in xt returning to 

its origin. Figure 1E of the main text and Figure S5D illustrate this behavior.

Computing initial densities ρ0.: As a consequence of the above, determining phase 

transitions in the α-β phase diagram reduces to establishing regimes in which J(ρ0, x0) 

exceeds or falls short of Jmax, which in turn is equivalent to finding an expression for ρ0 in 

terms of α and β. This is done by considering each lattice end separately and balancing 

currents:

The right lattice end x0 = 1: As described in the main text, ρ1 = ρ(1) decomposes into a sum 

of two contributions, the periodic part ρ1
+ and the troughs ρ1− (Chou and Lakatos, 2004). 

More explicitly,

ρ1 = 1
ℓ (ℓ − 1)ρ1− + ρ1

+ .

Since the current Jc is a conserved quantity of the system, the local currents across the last 

lattice site, the second to last lattice site and within the last ℓ sites must all be the same:

JR := J(ρ1, 1) = βρ1
+ = λ1ρ1− . (20)

Solving for ρ1 gives exactly 1
ℓ (1 − β

λ1
). Consequently, JR ≤ Jmax iff

β < β∗ = 1
2 λ1 − ℓ − 1

(1 + ℓ)2
λmin − λ1 − ℓ − 1

(1 + ℓ)2
λmin

2
−

4λ1λmin
(1 + ℓ)2

.

The left lattice end x0 = 0: Computing α* is more delicate as the effective jump rate is a 

combination of entrance rate and particle exclusion. To bypass this problem, we investigate 

the current of holes rather than particles, which is running in the opposite direction. With the 

loss of the particle-hole symmetry present in the simple 1-TASEP (Derrida et al., 1993), the 
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hole density ρh here assumes a more complicated form. It satisfies its own conservation law 

given by

∂tℎρℎ = ∂x[Jℎ(ρℎ, x)],

where

Jℎ(ρℎ, x) = λ(x)ρℎ 1 − ρℎ
1 + (ℓ − 1) ρℎ

and th = ℓt is the time scale of the holes, moving slower as their density is higher. Thus by 

balancing hole currents rather than particle currents at x0 = 0, we obtain, noting that the 

effective exit rate (of holes) is still α (as ℓ holes need to accumulate for exiting to happen),

Jℎ (ρ0
ℎ, 0) = αρ0

ℎ . (21)

Solving for ρ0
ℎ and using ρ0

ℎ = 1 − ℓρ0, we obtain ρ0 = α/[λ0+(ℓ−1)α]. Defining JL := J(ρ0, 0), 

we obtain α* by solving for α, JL = Jmax.

Phase transitions and profiles.: Using the densities obtained from (20) and (21) in the 

characteristic curves (16) and (17) yields the HD and LD regimes for parameter 

configurations (α > α*, β < β*) and (α < α*, β > β*), respectively. To describe the phase 

transition between HD and LD, we observe that for α < α* and β < β* both characteristic 

curves move into the lattice, meet, and move along a common shock with speed

vshock =
JR − JL
ρr − ρl

,

where ρl and ρr are the densities left and right of the shock. As ρr − ρl > 0 as long as α < α* 

and β < β* (cf. Figure S5A), vshock > 0 if and only if JR > JL. That is, the slower current 

pushes the faster one past the lattice boundaries and dominates the stationary behavior of the 

system. The HD and LD regimes are thus separated by incoming currents of equal 

magnitudes

JL =
α(λ0 − α)

λ0 + (ℓ − 1)α =
β(λ1 − β)

λ1 + (ℓ − 1)β = JR .

Lastly, we can use the behavior of characteristic curves for J(ρ0, x0) > Jmax to describe 

stationary profiles in the MC regime (α > α* and β > β*): Each characteristic curve reverses 

direction at a critical time tc and returns to its respective lattice boundary, while the density 

ρt it carries transitions from ρ− to ρ+ (on the left characteristic) or ρ+ to ρ− (on the right 

characteristic). Since the reversal of directions occurs strictly before reaching xmin, these 

characteristics provide density information on only part of the lattice. The uncovered regions 

are determined by the simultaneously propagating rarefaction waves (Evans, 2010), which 
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interpolate between xt and the characteristic curve xmaxt  associated with J(ρ0, x0) = Jmax (see 

Figure S5D). Together, these observations combine to produce the high density and low 

density profiles to the left and right of xmin, respectively, with critical current Jc = Jmax, as 

described in the main manuscript.

If λ has exactly one global minimum xmin, this description captures the density profile on 

the entire lattice. In the case of multiple global minima at {xmin,1, … , xmin,n} however, it 

describes ρ on [0, xmin,1] ⋃ [xmin,n, 1] only, leaving open fluctuations on the middle segment 

(xmin,1, xmin,n). Although unlikely to be encountered in practice, these singular rate 

functions exhibit interesting stochastic phenomena: The presence of high densities on the 

initial interval and low densities on the terminal one suggest the formation of a coexistence 

phase in-between. Indeed, the subsystem restricted to [xmin,1, xmin,n] may be regarded as a 

TASEP with entrance and exit rates α = β = λmin ∕ (1 + ℓ), positioning it at the triple point 

of the phase diagram, and computing the characteristics reveals one or multiple stationary 

shock fronts in the interior. Such macroscopic phenomenon in the homogeneous 1-TASEP 

has previously been associated on the microscopic level with a shock performing a random 

walk on the lattice with reflecting boundaries (Derrida et al., 1997). Numerical simulations 

seem to locate these shock around local maxima disproportionately often (cf. Figure S2), 

which might reflect dependencies of its diffusivity on λ.

Applicability to discrete lattices—The existence of a continuous limiting rate function 

λ : [0, 1] ℝ+ extending the discrete jump rates pk = λ(ak) is an important ingredient in our 

treatment of the hydrodynamic limit. That is, in order for density profiles to be accurately 

approximated by solutions to the PDE (2), the pk must vary smoothly across lattice sites. 

Microscopic systems like the translation machinery in cells, however, are typically subjected 

to substantial amounts of fluctuations, resulting in far rougher elongation profiles (see 

Figure 2A). Despite this lack of regularity, the hydrodynamic limit can still be employed to 

describe local averages of such a system. More precisely, fixing r ∈ {1, … , N}, we associate 

with an elongation rate profile {p1, … , pN} and the corresponding density profile {ρ1, … , 

ρN} their smoothed profiles {p1, … , pN − r + 1} and {ρ1, … , ρN − r + 1}, respectively, obtained 

through a moving r-codon average: pk = ∑i = k
k + r − 1pi ∕ r, and ρk = ∑i = k

k + r − 1ρi ∕ r. Moreover, 

we define {σ1, … , σN−r+1} to be the steady state density profile under the elongation rates 

{pk}. If {pk} extends to a smooth λ : [0, 1] ℝ+, then since ∣ pk − pk ∣ ∈ O(N−1), {pk}
extends to this same λ, and hence {ρk}, {ρk} and {σk} all converge to the solution ρ of (2). 

When {pk} does not extend to a continuous limit, then {ρk} generally does not either. 

However, by the same reasoning that establishes the hydrodynamics for the 1-TASEP with 

quenched disorder (Seppäläinen et al., 1999), {ρk} should still be close to {σk}, which, due 

to the greater regularity of {pk}, is well approximated by the hydrodynamic density profile 

under {pk}. Thus, {ρk} is ultimately well approximated by the hydrodynamic limit under 

{pk}.

To confirm this, we carried out an extensive simulation study on elongation rate profiles 

obtained from ribosome profiling data of yeast (see Data processing for more details on 
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data). Specifically, we performed the smoothing {pk} {pk} (Figure 2A,B), simulated 

density profiles {ρk} under {pk} (Figure 2A,C), and compared the corresponding smoothed 

densities {ρk} with the hydrodynamic prediction under {pk} (Figure 2D). A choice of r = 10, 

which is equal to the particle (ribosome) size ℓ in translation and the smallest window size 

guaranteeing smoothness of {pk} due to the ℓ-periodicity induced by traffic jams, resulted in 

excellent agreement both in densities and currents uniformly across transcripts while 

maintaining local structure.

Boundary conditions—The computation of initial densities in Solving the characteristic 
ODE yielded precise boundary values for x = 0 in the LD regime and x = 1 in the HD 

regime, respectively. Using the same principle of balancing currents, boundary conditions 

for all locations in the phase diagram can be computed. The results are listed in Table S1, 

which extend previous results obtained in (Lakatos and Chou, 2003) (who derived entries 

(1,1), (2,2) and (2,3) of Table S1). More precise information about the boundary layers can 

be gleaned from direct analysis of (13) rather than its limit (14).

Data processing—Initiation, elongation, and termination rates were obtained from an 

earlier work (Dao Duc and Song, 2018), where the rates were estimated from ribosome 

profiling data of S. cerevisiae for a set of 850 genes selected based on length and footprint 

coverage. The initiation and termination rates (α and β) were taken directly from that 

previous work. To compute the elongation rates relevant to the hydrodynamic limit, we 

applied a ten-codon moving average to their elongation rates (see Applicability to discrete 

lattices). To demonstrate replicability on larger datasets, we took ribosome profiles directly 

from Williams et al. (2014) and Pop et al. (2014) (combined with polysome profiling from 

MacKay et al. (2004) for normalization purposes, yielding 3098 and 2536 genes, 

respectively), smoothed them by moving averages of length ℓ = 10, and inverted the solution 

of (2) to obtain initiation rates, termination rates, and smoothed elongation profiles.

QUANTIFICATION AND STATISTICAL ANALYSIS

Hypothesis tests and p-values—To establish significance of a subset X of genes with 

respect to a statistic f (e.g., α, J or xmin) relative to a background set Y, we performed 

hypothesis testing on the median mf of f over samples in X. Under the null distribution of X 
being drawn uniformly at random, the probability of this test statistic exceeding m equals the 

probability of a hypergeometric variable with parameters N = |Y|, K = 2 |Ym|, n = |X|, where 

Ym is the set of genes in Y whose f exceeds m, exceeding ⌊|X/2|⌋. This p-value can be 

computed explicitly. Sets of ribosomal and stress response genes were taken from the 

Saccharomyces Genome Database (Cherry et al., 2011).

Agreement between theoretical prediction and simulation—In order to 

empirically verify our theoretical justification of the hydrodynamic limit, we simulated 

ribosome profiles and currents for all 850 S. cerevisiae genes studied in Dao Duc and Song 

(2018). For each gene, we considered four conditions: LD, HD, MC, and under the actual 

initiation and termination rates inferred in Dao Duc and Song (2018); these four conditions 

correspond to different rows in Figure S6. Absolute errors in ribosome density profiles and 

currents (first and last columns of Figure S6) are accurately predicted across all gene lengths
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—with a slight increase in prediction accuracy for longer genes (as expected, since the 

hydrodynamic limit becomes exact in the infinite length limit)—and across all regimes of 

the phase diagram. Due to two or more bottlenecks occasionally competing on the same 

transcript (i.e., when |{x : λ(x) = λmin}| > 1, cf. last paragraph of Phase transitions and 

profiles of STAR Methods), error distributions in MC exhibit heavier tails than in LD and 

HD. However, overall these outliers do not affect the quality of our theoretical prediction 

significantly. In particular, correlations between simulated and theoretical transcript-by-

transcript quantities—ribosome density profiles and mean occupancies (middle column), as 

well as currents (last column)—are consistently high, demonstrating good predictive power 

of our hydrodynamic framework.

In HD, predicted and simulated ribosome density profiles had quite low mean squared 

differences (second row, first column of Figure S6), but poor correlation (histograms in 

second row, second column). This seemingly contradictory result can be explained by 

typical fluctuations in theoretical density profiles being of the same order as typical 

fluctuations in the random noise (mean ratio of fluctuations = 0.037). That is, generic HD 

profiles are close to flat, allowing uncorrelated site-by-site noise to substantially reduce 

overall correlations.

DATA AND CODE AVAILABILITY

This study did not generate new data. Code, including the code used to generate all figures, 

is publicly available at https://github.com/songlab-cal/l-TASEP.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Illustration of the translation process, the inhomogeneous ℓ-TASEP with open 
boundaries, and its phase diagram.
A: Ribosomes initiate translation at the mRNA 5′ end, elongate the polypeptide by decoding 

one codon at a time, and eventually terminate the process by detaching from the transcript. 

B: Particles (of size ℓ = 3 here) enter the lattice at rate α and a particle at position i (here 

defined by the position of the midpoint of the particle) moves one site to the right at rate pi, 

provided that the move is not blocked by another particle in front. C: Example rate function 

with key parameters shown. D: The phase diagram is completely determined by λ0, λ1, 

λmin and ℓ. In this example, (λ0, λ1, λmin, ℓ) = (0.9, 0.3, 0.1, 10). All phase transitions are 

continuous in J and, unless λmin coincides with λ0 or λ1, discontinuous in ρ. E: Simulated 

results for ℓ = 3, N = 800, and λ as in C are compared with theoretical predictions. Dashed 

black and red lines represent upper and lower branches of solutions to (1). Circles are 

averaged counts over 5 × 107 Monte-Carlo steps after 107 burn-in cycles.
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Figure 2. Local averaging reproduces hydrodynamic limit in lattices with discontinuous rate 
functions.
Applying the hydrodynamic theory to smoothed jump rates correctly predicts smoothed 

density profiles and currents. A: Elongation rates of the yeast gene YHR025W arbitrarily 

chosen from Dao Duc and Song (2018) (see Empirical Study: Translational Efficiency in 

Yeast for further details). B: Smoothed elongation rates obtained by applying a ten-codon 

moving average to the raw profile in A. C: Density profile resulting from simulation (as in 

Figure 1E except with ℓ = 10, N = 357) under discontinuous profile in A. D: The 

hydrodynamic density profile (dashed red) associated with the smoothed elongation rates of 

B reproduces the smoothed density profile obtained from averaging the raw densities in C 
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by a moving ten-codon window. Similarly, simulated and predicted currents are in excellent 

agreement (0.1072 and 0.1077, respectively).
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Figure 3. Main determinants of current and particle densities.
A: We plot the current J in LD and MC against the initiation rate α, for various choices of 

λ0. While λmin governs the maximum current at which J reaches a plateau (coinciding with 

the transition from LD to MC), changing the size of λ0 results in changes in ∂αJ, the 

sensitivity of J with respect to α. Distinct configurations of λmin and λ0 give rise to vastly 

different dependencies of J on α, suggesting different responses to global changes in the 

ribosome pool. α3
∗, α1.5

∗ , and α1
∗ correspond to the α* value (in units of λmin) when λ0 = 

3λmin, λ0 = 1.5λmin, and λ0 = λmin, respectively. B: Two elongation rate profiles that differ 
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slightly in overall shape, but drastically in their position xmin of minimum elongation are 

plotted (top panel) together with their associated MC ribosome densities (bottom panel). The 

branch switching phenomenon has extreme consequences for equilibrium particle densities 

and hence ribosomal costs, with elongation rate profiles achieving minimum rates close to 

the initiation site (top, dotted black curve) benefiting from drastic savings (bottom, black 

curve) compared to otherwise similar profiles (red curves).
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Figure 4. Translation machinery in S. cerevisiae optimizes for ribosomal cost, flexible regulation 
and production capacity.
All rates are in codons per second, while currents are measured in ribosomes per second. A: 
850 genes of S. cerevisiae are located in the phase diagram, with size and hue of each data 

point reflecting current and minimum elongation rate, respectively. On a population level, 

systems of comparable production capacities (∝ λmin) fully exploit their dynamic range by 

adjustment of α, with highly expressed proteins likely situated inside or close to MC. B: The 

resulting resource cost considerations drive a significant number of transcripts to position 

their minimum elongation rate early on in the codon sequence, forcing ribosomal traffic 

jams to remain short. C: Initiation α is the main determinant of currents, at least for low to 

average current genes. For highly expressed genes, the correlation between α and J 
decreases due to stronger variation in λ0 and transitions into MC. D: Genes utilize the full 

dynamical range of currents set by λmin, through variation in α and λ0. Constitutively 

highly expressed genes tend to be closer to maximum capacity (red line), while genes with 

variable expression demands are distributed more broadly (see main manuscript). E: For 

fixed production capacity ∝ λmin, α* (the critical initiation rate at which genes reach 

maximum production capacity) tends to be smaller for genes with larger production rates. 

That is, larger λ0 (which are inversely related to α* for fixed λmin) seem to facilitate 
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attainment of large currents. Moreover, within highly expressed genes, those associated with 

variable expression patterns over time exhibit higher sensitivities (smaller α*), whereas 

genes with constitutive high expression are found closer towards maximal insensitivity 

(dotted red line) as these configurations ease stable expression.
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