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Abstract

Mammalian reproductive function includes puberty onset and completion, reproductive cyclicity, 

steroidogenesis, gametogenesis, fertilization, pregnancy and lactation; all are indispensable to 

perpetuate species. Reproductive cycles are critical for providing the hormonal milieu needed for 

follicular development and maturation of eggs but cycles, in and of themselves, do not guarantee 

ovulation will occur. Here we review the roles in female reproductive neuroendocrine function of 

two hypothalamic populations that produce the neuropeptide kisspeptin, demonstrating distinct 

roles in maintaining cycles and ovulation.
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The reproductive axis and estradiol feedback

Gonadotropin-releasing hormone (GnRH) neurons integrate central, peripheral and external 

cues to generate the central output that regulates fertility [1,2]. GnRH neurons reside 

primarily in the preoptic area (POA) and anterior hypothalamus. These neurons project to 

the median eminence and release GnRH near the primary capillaries of the hypophyseal 

portal vasculature, which carry this decapeptide to the pituitary where it activates the 

synthesis and secretion of the gonadotropins luteinizing hormone (LH) and follicle-

stimulating hormone (FSH) [1,3]. GnRH is released in an episodic, or pulsatile, manner that 

is critical for pituitary function [4–6]. High GnRH pulse frequency favors LH synthesis and 

release, whereas low GnRH pulse frequency preferentially promotes FSH [7–9]. FSH and 

LH regulate gametogenesis and steroidogenesis [10]. The sex steroids, including estradiol, 

progesterone and testosterone, feed back to the brain to regulate GnRH release, and on the 
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pituitary to regulate the responsiveness of gonadotropes to GnRH [11–16]. In males and 

during most of the female reproductive cycle, sex steroids suppress GnRH neuron activity 

and release via negative feedback [17–22]. During the preovulatory stage of the female cycle 

(late follicular phase or proestrus in rodents), a sustained elevation in estradiol causes a 

switch of estradiol action from negative to positive feedback, thus inducing elevated GnRH 

neuronal activity and causing a preovulatory surge of GnRH, and subsequent LH, release 

[6,23–25]. The LH surge triggers ovulation. There is some debate in higher primates about 

the necessity of the GnRH surge for ovulation, as an LH surge can occur without a change in 

episodic release in women [26], and an unchanging frequency of GnRH pulse administration 

can induce cycles in monkeys in which endogenous GnRH was ablated [4]. In this regard, it 

is worth noting that in monkeys GnRH surges have been observed along with the 

preovulatory or estradiol-induced LH surge [27,28]. In rodents and sheep, a surge release of 

GnRH is required for the LH surge [25,29,30]. The investigation of estradiol feedback 

regulation of the hypothalamus has focused mainly on ovarian estradiol as it is the 

predominant signal to generate the switch between negative and positive feedback. For a 

recent review on the possible role of local neurosteroids in these processes, the reader is 

directed to Terasawa, et al. [31].

With the help of the advanced genetic and other technical tools available, much of the work 

to understand central control of fertility has been done in rodents, specifically laboratory 

mice. To study systemic estradiol regulation, both stages of the estrous cycle characterized 

by negative (diestrus) and positive (proestrus) feedback, and hormone manipulation have 

been used [32,33]. With regard to the latter, one paradigm utilizes ovariectomy (OVX) with 

low estradiol replacement (OVX+E, negative feedback), followed by a subsequent estrogen 

injection several days later to induce positive feedback (OVX+E+E); this is referred as 

estradiol rise model [34]. Another paradigm utilizes OVX and with or without a constant 

high physiological level of estradiol [17]. This daily surge model exhibits a diurnal switch in 

estradiol feedback, with LH levels lower in estradiol-treated than OVX mice due to estradiol 

negative feedback in the morning (OVX+E AM), and higher in estradiol-treated mice in the 

afternoon due to positive feedback (OVX+E PM). As with LH in vivo, GFP-identified 

GnRH neurons in brain slices prepared from this model exhibit low firing rates and release 

frequency in OVX+E AM mice and high firing and release frequency in OVX+E PM mice 

[17,18]. Fast-synaptic transmission to and intrinsic membrane properties and ionic 

conductances of GnRH neurons are both altered by estradiol in this model [35–40]. Similar 

changes occur between positive feedback during the cycle [33,41]. Recent studies further 

demonstrated that GnRH neurons integrate fast-synaptic and intrinsic changes to increase 

firing rates during positive feedback [42].

Estrogen receptors involved in systemic estradiol feedback

The physiological responses to systemic estradiol in regulating reproductive functions are 

primarily mediated by two known subtypes of nuclear receptor, estrogen receptor α (ERα) 

and estrogen receptor β (ERβ) [43–45], as well as membrane-associated receptors (GPR30 

and mER) [46–48]. In rodents and humans, the two nuclear receptors are encoded by Esr1 
(human ESR1) and Esr2 (human ESR2), respectively. Both ERα and ERβ typically act as 

ligand-activated transcription factors [49], by either binding directly to estrogen response 
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elements (EREs) or interacting with other proteins to alter gene expression [50,51]. ERα and 

ERβ can also modulate non-genomic membrane-associated signaling cascades [47,52–55]. 

Genomic and nongenomic actions of ERs are evident for many reproductive processes 

[50,56]. For example, signaling via the estrogen response element (ERE) is needed for 

estradiol-induced changes in GnRH neuron firing rate [57], whereas non-classical signaling 

also plays a role in this response at the pituitary [58]. Mice with global knockout of ERα or 

ERβ show distinct reproductive deficits. ERαKO mice are infertile and have disrupted 

reproductive tracts including hypoplastic uteri, and large hemorrhagic cysts and absence of 

corpora lutea in the ovaries [59]. In contrast, ERβKO mice are fertile but have fewer and 

smaller litters [59,60]. Further, ERαKO, but not βERKO, female mice exhibit atypically 

elevated serum LH in ovary-intact mice compared to their littermate controls. Likely related 

to this, estradiol replacement in OVX ERαKO females does not reduce LH [61]. A neuron-

specific ERα KO mouse model shares similarly impaired negative feedback as the ERαKO 

mice, as well as disrupted positive feedback marked by an absence of estradiol-induced LH 

surge release [62]. Together these observations suggest that estradiol negative and positive 

feedback rely on estrogen signaling via ERα. Although tightly regulated by estradiol, GnRH 

neurons do not express detectable level of ERα; their response is thus at least in part 

attribute to estradiol action through upstream ERα-expressing neurons [63,64]. The 

upstream neurons that have by far been the subject of the most investigation for its role in 

estradiol feedback over the past fifteen years are kisspeptin neurons.

Kisspeptin signaling

The discovery of the link between KISS1 (produce kisspeptin) and KISS1R (produce 

kisspeptin receptors) genes and puberty and fertility comes from human studies. Patients 

carrying mutations in either of these genes exhibit idiopathic hypothalamic hypogonadism, 

impaired pubertal maturation, and low-amplitude LH pulses [65,66]. Transgenic mice that 

lack Kiss1 or Kiss1r exhibit a similar hypothalamic hypogonadism phenotype [66,67]. 

Kisspeptin is expressed in several organs including gonads, pancreas, colon, pituitary, and 

brain [68,69]. In mouse hypothalamus, kisspeptin expression is restricted to two regions: the 

arcuate nucleus and the anteroventral periventricular nucleus (AVPV) [70], Both populations 

express ERα, ~99% in the arcuate and ~70% in the AVPV [71]. Arcuate kisspeptin 

expression is similar in both sexes, whereas AVPV kisspeptin expression is more extensive 

in females [72]. When estradiol is elevated, kisspeptin mRNA expression is increased in the 

AVPV and decreased in the arcuate nucleus [73,74].

Projections from kisspeptin neurons to GnRH neurons vary with species [75–77]. In the 

mouse, kisspeptin fibers from the AVPV form direct appositions to GnRH cell bodies, 

whereas fibers from arcuate kisspeptin neurons are primarily apposed to GnRH processes 

that are running through the arcuate nucleus to the median eminence [78–80]. Both of these 

configurations support a direct kisspeptin-GnRH connection. In situ hybridization for Kiss1r 
and Kiss1r promoter-driven lacZ demonstrate GnRH neurons express kisspeptin receptors 

[81,82]. Bath application of kisspeptin to brain slices robustly increases GnRH firing activity 

and release [18,83,84]; kisspeptin injection in vivo increases GnRH release and subsequent 

LH release [85]. From a loss-of-function standpoint, blockade of kisspeptin action by 

injecting an antibody or a specific antagonist decreases GnRH activity, LH release and 
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estrous cyclicity [72,86]. Deletion of Kiss1r from GnRH neurons recapitulates the Kiss1r 
KO phenotypes; re-introducing Kiss1r expression to GnRH neurons in Kiss1r KO mice 

rescue the deficits [87]. These observations indicate kisspeptin-GnRH circuitries are critical 

for normal reproduction. The differential regulation of kisspeptin by estradiol in arcuate and 

AVPV kisspeptin neurons set up the working hypothesis that these regions have distinct 

roles in mediating estradiol negative and positive feedback, respectively [88].

Arcuate kisspeptin neurons and estradiol negative feedback

Evidence that suggested a link between arcuate nucleus neurons and LH pulses came from 

early lesion studies, well before the discovery of kisspeptin: ablation of the arcuate nucleus 

abolished LH pulses in rats and monkeys [89,90]. Further, correlation of peaks in neuronal 

multi-unit activity (MUA) in the mediobasal hypothalamus (MBH), which contains the 

arcuate, with pulsatile LH release was demonstrated in several species including monkeys, 

goats, sheep and rodents [91–94]. In rats, sheep and goats, only a small percent of GnRH 

neurons are in the MBH, suggesting other neurons in MBH are involved in generating MUA 

peaks and perhaps pulse generation.

Identification of a role of kisspeptin in fertility refocused attention on the arcuate region, as 

arcuate kisspeptin neurons exhibit two characteristics needed for steroid regulated 

GnRH/LH pulse frequency. First, their activity is associated with pulsatile LH release [95]. 

Second, they can directly sense steroid feedback [77]. This brings up the intriguing 

possibility that generation and steroid regulation of GnRH pulses may be combined into one 

system. Arcuate kisspeptin neurons coexpress two additional peptides involved in regulating 

reproduction: neurokinin B (NKB) and dynorphin A, and are often referred to as KNDy 

neurons [77,96,97]. Intracerebroventricular (ICV) injection of NKB and dynorphin alters LH 

pulse frequency and associated MUA activity peaks in goats, and LH pulse frequency in 

ewes: NKB increased the frequency of MUA peaks in the arcuate and LH pulse frequency. 

In contrast, dynorphin inhibited MUA peaks and LH secretion, whereas blocking its action 

increased frequency of both central and pituitary output [98,99]. Bath application of these 

two peptides to mouse brain slides has a corresponding effect on KNDy neurons; NKB is 

excitatory, dynorphin inhibitory [100–102]. These changes may be attributable to direct 

action of the peptides on KNDy neurons, as these neurons form interconnect circuits [102] 

and most KNDy neurons express the NKB receptor, NK3R, with a smaller percentage of 

these cells expressing the dynorphin-specific kappa-opioid receptor (KOR) [97,103]. Long-

term monitoring of KNDy neuron activity revealed that they exhibit spontaneous peaks and 

nadirs in firing rate [104]. This pattern can be altered when NK3R is activated; blocking 

KOR, however, did not affect the patterns [104]. This difference may be explained by the 

observation that fewer KNDy neurons express KOR than NK3R [105], although the higher 

efficacy of in vivo KOR blockade vs in brain slices may indicate dynorphin acts via cell 

populations not present in the brain slice to inhibit LH pulses in vivo. Together these 

observations point to a hypothesis that KNDy neurons form an interconnected network that 

is modulated by its peptide products to determine their rhythmic output to GnRH neurons, 

thus affecting LH pulses.
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To test the sufficiency of KNDy neurons to trigger a pulse of LH release, studies were 

conducted using Cre-dependent mice and adeno-associated viral (AAV) vectors. Activation 

of KNDy neurons using optogenetic channelrhodopsin2 (ChR2) in vivo triggers a pulse of 

LH release, confirming their capability to elicit LH release either directly or indirectly [106]. 

The calcium indicator GCaMP6 and fiber photometry were utilized to estimate bulk arcuate 

kisspeptin neuron activity based on fluctuations in calcium-sensitive fluorescence. Increases 

in fluorescence of KNDy neurons correlates with LH pulse release [95,107]. From a loss-of-

function standpoint, KNDy neuron ablation was achieved by delivering diphtheria toxin A to 

mice expressing the toxin receptor in kisspeptin cells. When done on postnatal day 20, when 

the diphtheria toxin receptor is primarily expressed in arcuate but not AVPV kisspeptin 

neurons [108], these mice exhibit persistent diestrus as adults, suggesting KNDy neurons are 

required for establishing/maintaining cyclicity [109]; of note, the integrity of the AVPV 

kisspeptin population was not assessed in adult mice in these studies. Similarly, blocking the 

release of neuropeptides and neurotransmitters from KNDy neurons using a Cre-dependent 

AAV expressing the light chain of tetanus toxin halted the reproductive cycle, with mice 

again remaining in diestrus; these mice also had decreased LH levels [110]. These in vivo 
studies further suggest KNDy neurons are at least a component of the pulse-generating or 

conveying system.

Besides displaying rhythmic activity, KNDy neurons are also capable of receiving and being 

regulated by steroids, including estradiol. This modulation happens at multiple levels. First, 

estradiol decreases kisspeptin, NKB and NK3R expression in these cells [73,74,97]. Second, 

estradiol reduces the excitatory effect of NKB and enhances the inhibitory effect of 

dynorphin on KNDy neuron firing rate [100,111]. The effects of steroids on KNDy neuron 

firing rate is complicated. In early short-term extracellular recordings of these cells, results 

were inconsistent but typically revealed no effect of castration in females or males 

[100,101]. More recent work examining OVX vs OVX+E females demonstrated a trend for 

estradiol to reduce firing rate; no statistical difference was revealed in two-way ANOVA 

analysis (Figure 1A) [112], but a direct comparison of these groups with greater power in a 

recent preliminary report revealed a suppression in OVX+E females [113]. There is only one 

study of long-term firing pattern, which was done in male mice. This work suggest sex 

steroids, including estradiol, modulate firing patterns of KNDy neurons but not the overall 

mean firing rate over a couple hours [104]. Fast synaptic inputs to KNDy neurons are also 

regulated by estradiol, as estradiol decreases glutamatergic input frequency (Figure 1C) and 

GABAergic input amplitude to KNDy neurons [112,114]. These suggest that estradiol may 

alter KNDy neuron activity both directly and via modulating afferent systems. With regard 

to the latter, the interconnected nature of KNDy neurons and their use of glutamate as a 

cotransmitter [71] may indeed be a direct KNDy neuron network effect, whereas GABA 

changes are more likely via distinct cells.

The importance of estradiol-sensing in KNDy neurons is demonstrated by two Cre-lox 

genetic mouse models: a kisspeptin-specific ERα knockout (KERKO) and an NKB (Tac2 
gene produce)-specific ERα knockout (TERKO) [115,116]. In KERKO mice, deletion of 

ERα from kisspeptin cells leads to advanced vaginal opening during development but 

disrupted cyclicity (persistent estrus) in adults [116]. In this model, however, ERα is 

removed from both AVPV and arcuate kisspeptin neurons as well as other kisspeptin cells 

Wang and Moenter Page 5

Neuroendocrinology. Author manuscript; available in PMC 2021 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



located centrally and peripherally, making the interpretation of a specific role of arcuate 

kisspeptin neurons difficult. In the TERKO model, ERα is removed largely from the arcuate 

kisspeptin neurons in the brain [115]. TERKO mice also exhibited advanced vaginal opening 

and prolonged estrus, similar to the KERKO mice, suggesting the phenotypes may largely 

attribute to KNDy neurons, and that ERα in kisspeptin cells, particularly KNDy neurons, is 

critical for reproductive function including puberty and cyclicity.

KERKO mice have also been used to study the mechanisms of how estradiol modulates 

KNDy neuron activity and LH pulse generation. To test if KERKO mice are able to respond 

to negative feedback regulation, plasma LH levels were measured in OVX and OVX+E 

control and KERKO mice. The post-OVX rise in KERKO mice was reduced compared to 

controls, but estradiol was able to reduce LH levels in both groups [117]. These findings led 

to the postulate that arcuate kisspeptin neurons may not be necessary to mediate negative 

feedback. Examination of LH pluses with frequent sampling revealed elevated pulse 

frequency in ovary-intact KERKO mice compared to estrous controls, suggesting frequency 

modulating effects of estradiol are likely at least in part mediated by ERα in kisspeptin cells 

[112]. Interestingly, KERKO mice are also less responsive to kisspeptin and GnRH 

challenge in terms of LH release [112]. Biophysical studies of KNDy neurons in KERKO 

mice further reveal several critical roles ERα plays. KNDy neurons in KERKO mice exhibit 

elevated firing rate (Figure 1 A), and received elevated spontaneous and action potential-

independent glutamatergic transmission compared to controls [112] (Figure 1 C). Further, 

when OVX vs OVX+E mice were compared, estradiol suppressed glutamatergic 

transmission and firing rate in controls but not KERKO mice (Figure 1 A and C). This 

suggests the lack of ERα in kisspeptin cells leads to a lack of response to estradiol in these 

cells [112]. The loss of ERα signaling and subsequent elevated LH pulse frequency may 

contribute to the disrupted cyclicity [112], as modulation of GnRH/LH frequency is critical 

for maintaining normal cyclicity.

Although informative to understand estradiol negative feedback on GnRH-KNDy network, 

this Cre-lox based KERKO model has its own caveats. Specifically, it is impossible to 

distinguish activational and organizational roles of ERα, as ERα is deleted as soon as the 

kisspeptin gene turns on, before birth in KNDy neurons and before puberty in AVPV 

kisspeptin neurons [108,118]. Further, ERα is deleted from all kisspeptin cells. Spatial and 

temporal precision is needed to dissect the role of KNDy neurons in reproduction. To 

overcome these caveats, a CRISPR-Cas9 approach was employed to reduce ERα in the 

arcuate kisspeptin neurons in adult mice [119]. This model utilized the Cre-lox system to 

express the Cas9 protein in kisspeptin cells. Then, in adult mice, an AAV vector that 

expresses an sgRNA that targets Esr1 (ERα gene) was injected into the arcuate region (Arc-

AAV-Esr1). As a control, an AAV vector targeting the lacZ gene was introduced in the same 

manner (Arc-AAV-lacZ); these mice were not different from control females for the 

parameters measured [119]. To reduce the caveats of CRISPR off-target effects, two 

independent sgRNAs were used and independently tested; no detectable differences were 

found between these. This approach achieved partial (~65%) knockdown of ERα in 

kisspeptin cells specifically in the arcuate region. Despite the partial nature of this 

knockdown, these Arc-AAV-Esr1 mice exhibited disrupted reproductive cyclicity, spending 

prolonged time in estrus, and reduced response to kisspeptin and GnRH administration 
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compared to Arc-AAV-lacZ; both of these responses are similar to the KERKO mode 

(Figure 2 A and C) [112,115,116,119]. In contrast to KERKO mice, which exhibit increased 

LH-pulse frequency, no changes of pulse frequency were observed in Arc-AAV-Esr1 mice 

(Figure 2A). This may be attributable to these mice being singly housed, whereas the 

KERKO mice examined for LH pulses were group housed; single housing can increase 

stress, which makes pulses harder to detect [120].

In brain slices, KNDy neurons in Arc-AAV-Esr1 mice also shared several biophysical 

similarities with cells from KERKO mice. Specifically, these neurons tend to be more active 

(Figure 1 B, p<0.05 two-tailed t-test of log-normalized data, p<0.14 two-tailed Mann-

Whitney U test of original data) and receive more glutamatergic inputs compared to Arc-

AAV-lacZ (Figure 1 D) [112,119]. Taken together, ERα in KNDy neurons is required to 

maintain the typical function of the KNDy neuron network and female cycles, independent 

of developmental roles.

AVPV kisspeptin neurons and estradiol positive feedback

As with the arcuate region and pulses, the AVPV region was associated with surge 

generation long before the discovery of kisspeptin. AVPV neurons are sexually dimorphic, 

with more neurons in females, and many express ERα [121,122]. They exhibit increased 

cFos expression, an immediate early gene with expression often correlated with increased 

neuronal activity, during the LH surge when GnRH release is elevated [123,124]. Lesions of 

the AVPV block the preovulatory as well as the estradiol-induced LH surge [125–127]. 

AVPV kisspeptin neurons, as a subset of AVPV neurons, share these characteristics: they are 

sexually dimorphic, ERα positive (more than 70%), and express cFos during the LH surge 

[78,88,128–130]. At least 1/3 of AVPV kisspeptin neurons communicate with GnRH cell 

bodies; these neurons almost all express ERα [131]. Elevated activity often correlates with 

neurotransmitter and neuropeptide release, thus cFos expression may indicate increased 

activity and release from AVPV kisspeptin neurons to their efferent projections including 

GnRH neurons. Besides expressing the potent GnRH stimulator kisspeptin, AVPV 

kisspeptin neurons coexpress tyrosine hydroxylase (~70%), and utilize GABA (~75%) and 

glutamate (~20%) [71,132], both of which excite GnRH neurons, as cotransmitters 

[133,134]. The role of dopamine, a product of TH-expressing neurons, on GnRH neuron 

function is not very well defined. When TH is knocked out of kisspeptin cells, mice exhibit 

normal reproduction [135], suggesting kisspeptin and GABA might be the main resource for 

GnRH excitation [136]. Together these observations help to build a model that AVPV 

kisspeptin neurons are regulated by estradiol to increase activity during the GnRH/LH surge.

To investigate this model at a more mechanistic level, studies were conducted to test if 

AVPV kisspeptin neurons are more excitable during estradiol positive feedback (proestrus) 

compared to negative feedback (diestrus). Extracellular recordings of GFP-identified 

neurons in brain slices were made of GFP-identified AVPV kisspeptin cells. These neurons 

firing more action potentials and exhibit a greater degree of rapid action potential bursts on 

proestrus compared to diestrus and estrus (Figure 1 E, left) [137,138]. Hormonal 

manipulations (OVX+ E, OVX+ E+ progesterone) suggest that it is primarily estradiol that 

mediates these changes as OVX+E mice recapitulate the firing characteristics observed in 
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cells from proestrous mice, whereas OVX+E+P mice are not different from those receiving 

only estradiol replacement (Figure 1 E, right). Several ionic conductances have been 

identified in AVPV kisspeptin neurons, including hyperpolarization-activated cation 

channels, T-type calcium channels, and persistent sodium channels [137,139,140]. All three 

of these channels have been demonstrated to promote burst firing and pace-making in other 

neurons [141–143]. Both electrophysiological recordings measuring ionic currents and 

mRNA expression of these ion channel genes in pooled AVPV kisspeptin cells suggest these 

conductances are upregulated by estradiol [137,139,140]. These increases in burst-related 

ionic conductances in AVPV kisspeptin neurons may contribute to the increased firing 

activity of these neurons during the time of the GnRH/LH surge provide a mechanism for 

how estradiol modulates AVPV kisspeptin neuronal firing to facilitate positive feedback. 

Besides exhibiting cycle/estradiol-dependent ionic conductances, AVPV kisspeptin neurons 

also received increased excitatory glutamatergic inputs (Figure 1 G) and decreased 

inhibitory GABAergic transmission during positive feedback [112,114], tilting the balance 

toward excitation during positive feedback. These observations suggest that estradiol-

sensing positive feedback circuitry may extend beyond AVPV kisspeptin neurons, as their 

upstream inputs are also modulated by estradiol.

To test if stimulation of AVPV kisspeptin neurons is sufficient to generate LH secretion in 
vivo, ChR2 was targeted to these cells. Photostimulation of AVPV kisspeptin neurons for 

~15 minutes induced LH release secretion of similar amplitude to the endogenous LH surge, 

but the time course was more similar to a pulse than a prolonged surge release [136]. These 

results demonstrate activation of AVPV kisspeptin cells likely increases GnRH and thereby 

LH release, but also suggest induction of surge release may need prolonged activation of 

AVPV kisspeptin neurons.

The KERKO model has also been used to study role of ERα in kisspeptin cells, including 

AVPV kisspeptin neurons, in positive feedback. KERKO mice remain in estrus and exhibit 

high circulating estradiol, thus an estradiol rise surge model was used to study estradiol 

positive feedback. KERKO mice failed to generate estradiol-induced LH surges, suggesting 

ERα in kisspeptin cells is required for estradiol positive feedback [117]. From a biophysical 

aspect, AVPV kisspeptin neurons from KERKO mice are less excitable (Figure 1 F) and 

receive fewer glutamatergic inputs compared to littermate controls (Figure 1 G). Further, 

these typically estradiol-sensitive parameters also no longer regulated by estradiol in OVX 

vs OVX+E mice (Figure 1 F and G) [112,119]. This indicates that ERα plays a necessary 

role in modulating the excitability of AVPV kisspeptin neurons to trigger LH surge [119]. 

Although informative, this model also has the caveats mentioned above regarding a lack of 

spatial and temporal precision. These caveats are potentially more serious in the AVPV 

population as kisspeptin cell number in the AVPV drops when estradiol is removed.

The CRISPR approach again provides space and time-specific regulation of ERα in AVPV 

kisspeptin neurons. Reduction of Esr1 in the AVPV region was achieved as above using 

kisspeptin-Cre targeting of Cas9 and delivery of sgRNAs targeting the Esr1 gene (AVPV-

AAV-Esr1) in adulthood [119]. In AAV-AVPV- Esr1 mice, ~35% of kisspeptin neurons 

express ERα vs 70% in control mice that received AAV-AVPV-lacZ. To test if ERα deletion 

in AVPV kisspeptin neurons alters neuronal firing properties in OVX+E mice, whole-cell 
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recordings were paired with post hoc testing (immunofluorescence of biocytin labeled 

recorded cells or single-cell qPCR) to determine expression of ERα in each recorded cell. In 

OVX+E mice with AAV-AVPV-Esr1, only ERα negative AVPV kisspeptin neurons 

exhibited decreased firing rate and bursts compared to AVPV-AAV-lacZ infected cells and 

AAV-AVPV-Esr1 uninfected cells [119]. These responses are similar to changes that occur in 

these cells in KERKO mice, suggesting the primary effect of estradiol on the intrinsic 

electrophysiological properties of these cells is activational.

From a systemic aspect, these mice maintained normal cyclicity for at least two months post 

surgery; in contrast, disruptions of cyclicity when the arcuate kisspeptin population was 

targeted began to emerge within three weeks (Figure 2 D) [119]. It is possible that the 

remaining ERα expressing AVPV kisspeptin neurons are sufficient to maintain cyclicity. 

Alternatively, cyclicity may be maintained by other neurons, such as the arcuate KNDy 

neurons. In a recent study, genetic deletion of ERα broadly in the preoptic area and AVPV 

region, but not arcuate of adult female mice produced persistent estrus and decreased the 

amplitude of the estradiol-induced LH surge using the estradiol rise surge-induction model 

[144]. In the area covered by this knockdown many cells besides AVPV kisspeptin neurons 

express ERα [145] making it difficult to ascribe these results to a specific cell type.

Despite having normal cycles, AVPV-AAV-Esr1 mice had, at best, blunted LH surges, both 

proestrus and estradiol induced (Figure 2 B). Although a reduced proestrous surge could be 

attributable to reduced estradiol levels, this caveat is minimized by the demonstration that 

estradiol-induced surges are also reduced. Further, the estradiol levels produced in the 

AVPV-AAV-Esr1 mice are sufficient to induce vaginal cornification. Consistent with blunted 

LH surges, ovarian histology showed reduced or absent corpra lutea in two-thirds of 

knockdown mice compared to AVPV-AAV-lacZ control mice [119]. These results support 

and extend much research in the field by demonstrating that ERα in AVPV kisspeptin 

neurons is important for positive feedback and LH surge generation.

Conclusion and future directions

Application of modern genetic approaches to the long-existing questions of where estradiol 

acts to bring about negative and positive feedback has brought more insights into the 

regulation of GnRH/LH pulses and surges. There is now strong evidence that arcuate and 

AVPV kisspeptin neurons play distinct roles in mediating the response to systemic changes 

in estradiol, regulating cyclicity and the LH surge, respectively. Because CRISPR-mediated 

changes were induced in adults, we can conclude that the observations are not attributable to 

a loss of ERα action during development (Figure 3).

Several major areas of investigation remain regarding the kisspeptin-GnRH circuitry. First, 

AVPV and arcuate kisspeptin neurons receive and process estradiol signals, but we do not 

know if estradiol action in their estrogen-sensitive afferents is critical. It is possible that 

reducing ERα in our target kisspeptin populations merely blocked processing of incoming 

signals from the true first-order responding cells. Are these signals from upstream cells 

required and, if so, what and where are these neurons. Further, do AVPV kisspeptin neurons 

require the input from arcuate kisspeptin neurons to mediate the switch from negative to 
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positive feedback? Multi-region spectrum-specific fiber photometry approaches may be 

applied to monitor simultaneously the activity of AVPV and arcuate neuronal activity in 

each distinct reproductive stage [146,147]. This approach could also be utilized to test if 

there is synchrony between arcuate kisspeptin neurons and GnRH neurons.

Second, how AVPV and arcuate kisspeptin neurons convey their feedback modulation to 

GnRH neurons is not completely understood. Does increased AVPV and/or arcuate 

kisspeptin neuronal activity lead to increased neurosecretion? Assuming from work on other 

systems that the answer is yes, are the cotransmitters and other peptides in these cells 

important or is kisspeptin the primary player? Further, is all of the kisspeptin communication 

received directly by GnRH neurons? Studies in global Kiss1r knockout mice have suggested 

that replacing these receptors only in GnRH neurons restore fertility [87]. Further work on 

these mice, however, has demonstrated that aspects of steroid feedback, gonadal structure, 

and gonadotropin release are not fully restored [148]. Consistent with this latter finding, 

kisspeptin treatment increases fast synaptic transmission to GnRH neurons, indicating there 

are indirect pathways involving at least GABA and glutamate through which this 

neuromodulator may influence GnRH output [149]. One population of interest in this regard 

are neurons that utilize nitric oxide (NO) as a neurotransmitter; NO has been proposed as a 

synchrony signal to GnRH neurons [150,151]. Further, nitric oxide synthase (nNOs) 

expressing neurons in the median preoptic nucleus (MnPO) region also express Kiss1r [152], 

making them another possible intermediate between kisspeptin and GnRH neurons. 

Comprehensive projection mapping and direct stimulation and/or inhibition of nNOs 

neurons in vivo are needed to test this postulate.

Third, it is still not clear how estradiol regulates gene expression profiles to change intrinsic 

neuronal activity of AVPV and arcuate kisspeptin neurons. Of particular interest in this 

regard are the mechanisms underlying the many-hour delay from achieving a surge-inducing 

level of estradiol and the onset of the GnRH/LH surge. The length of this delay and the 

ability to remove estradiol before the surge is initiated without affecting it imply genomic 

mechanisms [12], but detailed temporal profiling of gene expressing spanning this gap is 

lacking. Advanced single-cell and/or single-nucleus sequencing approaches may shed light 

on the steps involved in estradiol feedback regulation on these cells. Recently, two droplet-

based single-cell RNA-sequencing studies of the arcuate and POA region provide intriguing 

data for identify different populations of neurons and their transcriptomes, including the two 

kisspeptin populations; this detailed information allows potential reimagining of how 

different neuronal populations are related to one another [153,154]. Future studies should 

include studying these neurons at precise times under different hormone treatments and/or 

distinct cycle stages to reveal the time course of estradiol-dependent gene expression 

profiles, and generate hypotheses for future physiological investigations.
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Figure 1. 
Estradiol regulation of firing rate and EPSC frequency in arcuate and AVPV kisspeptin 

neurons of the hypothalamus. A, Firing rate of arcuate kisspeptin neurons is elevated in cells 

from KERKO compared to control mice. B, Firing rate is not different between cells from 

Arc-AAV-Esr1 and Arc-AAV-lacZ OVX+E mice. C, Spontaneous glutamatergic EPSC 

frequency is regulated by cycle stage (left) and estradiol (right) in arcuate kisspeptin 

neurons. E, estrus, K, KERKO. D, Knockdown of ERα targeted to the arcuate increases 

glutamatergic inputs to arcuate KNDy neurons. E, Firing rate of AVPV kisspeptin neurons is 

elevated during proestrus (left) and by estradiol (right). F, The firing rate decreases in cells 

from KERKO compared to control and is no longer estradiol-sensitive. G, Spontaneous 

glutamatergic EPSC frequency is regulated by cycle stage (left) and estradiol (right) in 

AVPV kisspeptin neurons. *, p<0.05; adapted from [112,119,137] with permission.
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Figure 2. 
Distinct roles of arcuate and AVPV kisspeptin neurons in regulating estradiol feedback and 

reproductive function. A, Knockdown of ERα in arcuate kisspeptin neurons did not alter 

LH-pulse frequency on estrus (left) but desensitized the LH response to kisspeptin and 

GnRH challenge. B, Knockdown of ERα in AVPV kisspeptin neurons blunted the 

proestrous (left) and estradiol-induced (right) surges. C and D, Knockdown of ERα in 

arcuate (C) but not AVPV (D) kisspeptin neurons alter reproductive cyclicity. Adapted from 

[119].
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Figure 3. 
Schematic diagram of estradiol feedback regulation on ERα in AVPV and arcuate kisspeptin 

neurons in adulthood. Knockdown of ERα in AVPV kisspeptin neurons blunted LH surge 

but did not alter reproductive cyclicity whereas knockdown of ERα in arcuate kisspeptin 

neurons disrupted the cyclicity. From [119].
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