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Abstract

Purpose: To evaluate repeatability of prostate DWI derived radiomics and machine leaning 

methods for prostate cancer (PCa) characterization.

Methods: 112 patients with diagnosed PCa underwent two prostate MRI examinations (Scan1 

and Scan2) performed on the same day. DWI was performed using 12 b-values (0–2000 s/mm2), 

post-processed using kurtosis function and PCa areas were annotated using whole mount 

prostatectomy sections. 1694 radiomic features including Sobel, Kirch, Gradient, Zernike 

Moments, Gabor, Haralick, CoLIAGe, Haar wavelet coefficients, 3D analogue to Laws features, 

2D contours and corner detectors, were calculated. Radiomics and four feature pruning methods 

(AUC, Maximum Relevance Minimum Redundancy (MRMR), Spearman ρ, Wilcoxon rank-sum) 

were evaluated in terms of Scan1-Scan2 repeatability using intraclass correlation coefficient, 

ICC(3,1). Classification performance for clinically significant and insignificant PCa with Gleason 

Grade Groups 1 vs >1 was evaluated by AUC in unseen random 30% data split.

Results: The ICC(3,1) values for conventional radiomics and feature pruning methods were in 

the range of 0.28 to 0.90. The machine learning classifications varied between Scan1 and Scan2 

with % of same class labels between Scan1 and Scan2 in the range of 61%−81%. Surface to 

volume ratio and corner detector based features were among the most represented features with 

high repeatability, ICC(3,1)>0.75, consistently high ranking using all four feature pruning 

methods, and classification performance with AUC>0.70.
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Conclusion: Surface to volume ratio and corner detectors for prostate DWI led to good 

classification of unseen data and performed similarly in Scan1 and Scan2 in contrast to multiple 

conventional radiomic features.
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Introduction

Qualitative evaluation by means of visual inspection and interpretation of the medical 

images is a routine clinical practice, while image-derived measurements have been shown to 

be promising aides to a radiologist in lesion detection and characterization (1). During the 

last decade, radiomics (2–4) including textures and machine learning (ML) have been 

applied extensively in medical imaging in general (5–7). Adoption of these methods in 

routine clinical practice has been limited by concerns related to poor repeatability and 

reproducibility (8) due to different degree of noise in the imaging data sets obtained from 

different imaging sessions (9). An increasing number of research groups are applying 

radiomics for prostate cancer (PCa) imaging (10–18).

Prostate cancer is the most common solid cancer among men in the western world (19). 

Development of methods for accurate patient-tailored diagnostic process and treatment 

planning could have a major impact on improved PCa detection, characterization and 

treatment planning, ultimately leading to improved outcomes of men with suspected or 

diagnosed PCa. Diffusion weighted imaging (DWI) is a cornerstone of prostate magnetic 

resonance imaging (MRI) (20), which has an increasingly important role in PCa detection 

and characterization (21). Aggressiveness of PCa is histologically determined by Gleason 

Score which is classified into Gleason Grade Group (GGG) (22). Various radiomics and 

machine learning methods (ML) have already been developed for PCa detection and 

characterization e. g. (23,24). However, radiomics and ML methods have not been evaluated 

in terms of their repeatability, which contributes to reservations of making imaging 

applications that would use prostate MRI more extensively coupled with machine learning in 

routine clinical practice. High short-term repeatability is a prerequisite towards a quantitative 

tailored treatment planning and therapy monitoring, a major determining factor of the 

potential role of ML for prostate MRI in routine clinical practice in the future (25–28).

Repeatability of prostate DWI has been studied with measurements of raw signal (28–34) 

using intra-class correlation coefficient ICC(3,1) (35). In addition, repeatability of prostate 

DWI has already been assessed for advanced DWI models such as VERDICT model, which 

was evaluated (32) in 14 PCa patients who underwent two repeated prostate MRI 

examinations. Fedorov et al. (36) calculated ICC values for apparent diffusion coefficient 

maps calculated using mono-exponential function for tumor region in 15 PCa patients 

scanned with two different scanners. While differences in study subjects and applied MRI 

acquisition protocols of these studies make a direct comparison of ICC values difficult (37), 

these studies demonstrated that raw imaging signal and texture features can be repeatable 
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(27). Recently, public access for prostate MRI of 15 subjects has been provided by Fedorov 

et al. (38). However, radiomic features for non-Gaussian DWI models (39–41) have not been 

evaluated in terms of short-term repeatability using the same scanner parameters.

While the area under the receiver operator characteristic curve (AUC) is conventionally used 

to evaluate binary classification performance for radiomic features, other techniques have 

been applied as well, particularly in conjunction with machine learning algorithms for PCa 

classification. In a study by Khalvati et al. (15), maximum relevance minimum redundancy 

(MRMR) (42) with classification sensitivity and specificity was used to maximize (AUC) in 

separation of prostate cancer from three non-cancer classes in 20 subjects, and MRMR was 

used together with Wilcoxon rank-sum test in (43). Spearman ρ value has already been used 

in feature selection process (44) as well. To the best of our knowledge, repeatability for 

feature selection and repeatability of machine learning has not been evaluated for prostate 

DWI.

In this study, we aim to answer three questions 1. How repeatable are DWI prostate 

radiomics? 2. Which features are to be considered to be both repeatable and with good 

performance? 3. How does repeatability affect machine learning performance in developing 

applications for PCa characterization? We evaluated radiomic features and feature selection 

methods, and trained classifier with machine learning using prostate DWI data, post-

processed using kurtosis function. One-hundred-twelve patients with PCa underwent two 

MRI examinations performed on the same day. We evaluated the short-term repeatability of 

radiomics, feature selection methods and ML classifiers based on selected radiomics, for 

repeatability and PCa characterization.

Methods

The study was approved by the institutional review board and each patient gave written 

inform consent before enrollment to the study. Between March 2013 and February 2016, 115 

patients with histologically confirmed PCa scheduled for robotic-assisted laparoscopic 

prostatectomy underwent MR examination performed using a 3T MR scanner (Ingenuity 

PET/MR, Philips, Cleveland, USA) and their whole mount prostatectomy sections were 

available for scientific studies. In one PCa patient, gonadotropin-releasing hormone 

antagonist (Degarelix, Ferring Pharmaceuticals) was started 10 days before the MR 

examination while none of the remaining patients had any hormonal, surgical and/or 

radiotherapy treatment related to prostate before or at the time of imaging.

Three patients were excluded from the final data set due to the presence of severe motion 

(n=1) and/or susceptibility artifacts (n=2). Patients’ characteristics of the 112 included 

patients are summarized in Supporting Information Table S1. 51 (45%) of the 112 included 

patients were part of previous studies optimizing b-value distributions for prostate DWI (29) 

and evaluating different mathematical models for PCa DWI (45–47).

MR examination

Two prostate MRI examinations (3 Tesla Philips Ingenuity PET/MR, Best, Netherlands) 

were performed on the same day shortly after each other. Following the first MRI 
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examination, the patient was taken out of the MRI room and asked to rest for 10–15 minutes. 

Following re-positioning of the patient on the MR table, the second MR examination was 

performed.

Diffusion weighted imaging was performed with spin echo sequence, single-shot echo-

planar read-out, monopolar diffusion gradient scheme, and the following parameters: 

repetition time/echo time (TR/TE) 3141 ms/51 ms, field of view (FOV) 250×250 mm2, 

acquisition matrix 100×99, reconstruction matrix 224×224, slice thickness 5 mm, three 

diffusion directions per each b-value, diffusion gradient timing (Δ) 24.5 ms, diffusion 

gradient duration (δ) 12.6 ms, diffusion time (Δ − δ/3) 20.3 ms, 12 b-values of (number of 

signal averages) 0 (2), 100 (2), 300 (2), 500 (2) (2), 700 (2), 900 (2), 1100 (2), 1300 (2), 

1500 (2), 1700 (3), 1900 (4), 2000 (4) s/mm2. Transversal T2-weighted images were 

acquired using a single-shot turbo spin-echo sequence with the following parameters: TR/TE 

4668/130 ms, FOV 250×320 mm2, acquisition matrix size 250×320, reconstruction matrix 

size 512×672, and slice thickness 2.5 mm. Additional MRI data were collected but not 

evaluated in the current study (48,49) since test-retest data for the additional MRI sequences 

were obtained only in a small sub-group of patients.

Histopathological analysis and cancer delineation on MRI

Following robotic-assisted laparoscopic prostatectomy, the prostate gland was fixed in 

formalin. The whole mount prostatectomy sections were processed at 5–6 mm intervals 

transversely in a plane perpendicular to the long axis of the prostate gland in a superior-

inferior direction, similar to axial images of MRI (47,50). Four μm thick whole-mount 

sections from each macro-block were cut and stained with hematoxylin and eosin. Each 

individual tumor focus was graded separately based on International Society of Urological 

Pathology (ISUP) guidelines (22): Gleason Grade Group (GGG) 1 - Gleason score ≤ 3+3, 

GGG 2 - Gleason score 3+4, GGG 3 - Gleason score 4+3, GGG 4 - Gleason score 

4+4/3+5/5+3, GGG 5 - Gleason score 4+5/5+4/5+5. Any Gleason pattern representing less 

than 5% of tumor volume was graded as tertiary grade (22). Only tumor foci >0.5 cm in 

diameter, defined using whole mount prostatectomy sections, were included in the analysis. 

The hematoxylin-eosin stained histological slides were first reviewed by one board certified 

staff pathologist and later re-reviewed by one experienced genitourinary pathologist. In case 

of disagreement between the two genitourinary pathologists, the opinion of a third 

genitourinary pathologist was asked for and consensus opinion was employed as the “ground 

truth” determination for diagnosis and grade.

Prostate cancer extent on each MRI acquisition (T2w, DWI) was manually delineated by one 

research fellow (8 years of prostate MRI experience) working in consensus with the 

genitourinary pathologist (8 years of prostate pathology experience), using whole mount 

prostatectomy sections as “ground truth”. Anatomical landmarks were used to align each 

MRI acquisition with mount prostatectomy sections.

Data analyses and modeling

Diffusion weighted imaging data sets were fitted using kurtosis function (34,47,51–53) to 

address potential non-Gaussian behavior when using high b-values in voxel-by-voxel basis, 
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and apparent diffusion coefficient (ADCk) and kurtosity (K) maps were created. Broyden-

Fletcher-Goldfarb-Shanno algorithm (54) was used to fit the kurtosis function to the DWI 

decay curve. Multiple initializations were used to minimize the possibility of local minima 

(29), and root mean squared error was used as the goodness of fit measure.

We applied a number of conventionally used feature extraction techniques (12,55) found in 

the literature such as Sobel (56), Kirch (57), Gradient magnitude, Zernike Moments (58), 

Gabor (59), Haralick (60), CoLlAGe (61), Haar wavelet coefficients (62) and Laws features 

(63) as texture methods. Additionally, features calculated with edge detector algorithms 

(64,65) and features derived from corner detectors were obtained.

First-order statistics were calculated (mean, standard deviation, median, range, 25th and 

75th percentile) from ADCk and K signal intensities and included as part of feature 

extractions. Features relating to the shape of the lesion in 2D were acquired as curvature of 

level-set regions applied on transaxial slices of the ADCk and K parameter maps (referred 

here as 2D Curvature). Low and high-pass filters were implemented before extracting 

statistics from signal to evaluate the performance of other implemented feature extraction 

techniques in relation to simple noise filtering to the data.

In order to utilize all three dimensions of the data, a three-dimensional version of Laws 

features was implemented (66). Shape feature of surface curvature (11,44) was extracted 

from 3D mesh after applying marching cubes algorithm to the binary lesion. All 3D feature 

extractions were preceded by resampling image data into isotropic voxel size. When 

applicable, all features were calculated from whole prostate, PCa lesions, and whole gland 

region excluding the lesion. Multiple parameters were applied to feature extraction 

algorithms where considered suitable. The feature extraction process was applied 

individually to first scan (Scan1), second scan within same day (Scan2), and using average 

feature value of two repetitions (see Fig. 1). In total, ADCk and K parametric maps were 

processed with 1694 features when statistics and different parameters were considered as 

separate features. The summary of applied features and number of features in their 18 

respective groups is listed in Supporting Information Table S2.

Assessment of the repeatability of radiomics

Short-term repeatability was evaluated for individual radiomic features and machine learning 

classifiers with ICC, varying between [0..1], where 1 denotes perfectly repeatable individual 

measurement in relation to variation between subjects and scans, and 0 signifying no 

repeatability. While ICC values are not directly applicable to other related studies due to 

differences between subjects in other cohorts, it gives good estimates for comparing between 

features and between machine learning approaches within the same dataset. To study 

repeatability of classification between significant and insignificant PCa, the 112 patients 

were split randomly into 70–30% (as e. g. (44)) development-testing sets stratifying ratio of 

cases containing at least one lesion with GGG 1, as a trade-off between amount of training 

data and statistical power in final evaluations with test data. In test dataset 34 cases was 

considered sufficient to make reasonable performance estimations with unseen data, while 

rest of the subjects were left to training to make it possible to compare between numerous 

individual features, while able to apply machine learning. The full data flow of the 
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experiment with radiomics applied to Scan1 and Scan2 in multivariate and univariate 

analysis, with and without help from information from ICC, is shown in Fig. 1.

Four conventionally used feature ranking methods were applied to reveal their effectiveness 

in terms of selecting features with high classification performance and repeatability:

1. Area under receiver operator characteristic curve (AUC) using leave-pair-out 

cross-validation (LPO-AUC) procedure to address for potential biases due to 

sample size (67) for estimating classification potential of individual features for 

differentiating PCa with GGG 1 vs >1. AUC is conventionally used as a 

performance metric for raw parameter map values of DWI models (15), giving 

expected classification potential between low and high groups.

2. Maximum Relevance Minimum Redundancy (MRMR) algorithm using GGG 

group 1–5 as target. MRMR is conventionally used as a feature pruning method 

and it considers also the correlation between variables within set of features, 

minimizing redundancy within chosen feature set.

3. Spearman correlation ρ between feature and GGG groups 1–5, which gives 

statistical test or non-linear association to all GGG, and used due to non-

normality of used features.

4. Wilcoxon rank-sum test for classification of PCa with GGG 1 vs >1, with 

continuity correction. Like Spearman correlation, Wilcoxon rank-sum test is used 

as statistical test between low and high GGG groups in non-parametric manner.

Two of the feature ranking methods (LPO-AUC and Wilcoxon rank-sum test) are close to 

each other due to evaluating binary classification, while the other two (MRMR and 

Spearman) were applied to evaluate pruning of features when using more detailed 

information of the target variable GGG. All of the evaluated ranking methods have limitation 

of addressing signal noise only based on single repetition at hand. We evaluated the effect of 

refining the ranking method together with ICC values. In addition, we calculated the number 

of common features shared by selections from Scan1 and Scan2 and median(range) of ICC 

statistics of selected features.

Regularized least-squares (RLS) and ridge regression (68) were used to assess the 

classification potential of different multivariate radiomic procedures for differentiating PCa 

with GGG 1 vs >1 using selected features.

Machine learning and feature extraction techniques were implemented with publicly 

available tools in Python v. 2.7 and v. 3.6, using Meshlab (69) tool in 3D surface processing. 

Machine learning was implemented using the publicly available RLScore (version 0.8.1, 

https://github.com/aatapa/RLScore) with AUC (LPO-AUC) (67) when evaluating the 

number of used features (from 2 to 5), and regularization parameters (from 1.0−1 to 1.0−6). 

Feature ranking criteria and statistical analyses were implemented using R (version 3.5.1, R 

Foundation for Statistical Computing, Vienna, Austria). Final comparison of radiomics 

performance was evaluated in testing set (51 lesions) in terms of agreement of their labeling 

(GGG 1 vs >1) between Scan1 and Scan2 (i. e. short-term labeling agreement), and AUC 
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calculated with both scans using trapezoidal rule with 95% confidence interval (DeLong) to 

describe uncertainty in AUC measurements.

Overview of ROIs and DWI data sets (ADCk and K maps of the training data set) is 

provided at <<to be added upon acceptance of the manuscript>>. Free public access to post-

processing code of most relevant features is provided at <<to be added upon acceptance of 

the manuscript>>. Imaging data sets are available for non-commercial development pending 

executed material transfer agreement.

Statistical analysis

We evaluated mutual agreement between feature pruning methods and repeatability of their 

rankings with Kendall’s W (70) having values from 0 (no agreement) to 1 (perfect 

agreement between rankings). Non-linear monotonic association between repeatability 

estimates ICC and feature rankings with averaged feature values over repetitions were tested 

with Spearman’s ρ test. We tested performance difference in terms of ICC and ranking 

values of AUC, MRMR, Spearman and Wilcoxon, with non-parametric Kruskal-Wallis test, 

followed by Wilcoxon post hoc test to see significance of differences between feature groups 

where p<3.27e-04 was considered statistically significant.

We also tested for difference of final classification potential AUC when classifier was 

trained with Scan1 and Scan2 data, between using top 10 features suggested by four pruning 

methods, and by using top 10 features after pre-excluding features not presenting 

repeatability with ICC>0.8. All tests were implemented with R (version 3.5.1), raw p-values 

were reported if found statistically significant with level p<0.05, unless otherwise noted.

Results

In total, 170 PCa lesions were present, of those (16%, 28/170), (45%, 77/170), (18%, 

31/170), (17%, 29/170) and (3%, 5/170) tumors were to Gleason Grade Group (GGG) 1, 2, 

3, 4, and 5, respectively. The training data sets (Fig. 1) consisted of 78 patients with 119 

lesions, of those 17, 55, 22, 22 and 3 tumors were to GGG 1, 2, 3, 4, and 5, respectively. The 

testing data sets consisted of 34 patients with 51 lesions, of those 11, 22, 9, 7 and 2 tumors 

were to GGG 1, 2, 3, 4, and 5, respectively. The ICC of PCa lesion median intensity of the 

ADCk and K parameters was 0.786 (95%CI 0.784–0.789) and 0.780 (95%CI 0.778–0.783) 

in training set, and 0.889 (95%CI 0.887–0.891) and 0.857 (95%CI 0.855–0.860) in the 

testing set, correspondingly.

Classification Performance and Repeatability of Feature Groups

The classification performance and repeatability, ICC, of all 1694 radiomic features for 

median feature performance estimate values from Scan1 and Scan2 are presented in Fig. 2–

3 for ADCk and K, performance of ten highest-ranking features in Fig. 4–5 of each of the 18 

feature groups, and individual feature performance in Fig. 6–7. In Fig. 2–7, features with 

high repeatability but low classification performance in terms of AUC for GGG 1 vs >1 

indicate that the feature contains a repeatable signal that is not useful for detection of PCa 

with GGG 1 vs >1, while these features might potentially still be useful due to their 

repeatability in other application. In contrast, features with low repeatability, together with 
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high ranking, may contain more uncertainty in the ranking estimate itself. The 

corresponding plots for AUC, MRMR, Spearman ρ and Wilcoxon rank-sum methods are 

presented in Supporting Information Figures S1-S4 (ADCk) and S7-S10 (K). Feature group 

rankings with LPO-AUC and Spearman ρ demonstrated the biggest difference in their 

ranking of feature groups in comparison to other methods in Fig. 2–5, while differences 

between rankings were not found to be statistically significant (p>0.05).

There were significant differences between ICC distributions of feature groups (Kruskal-

Wallis p≤8.68e-11). A 3D Shape feature and 2D Corner detectors were found to be most 

repeatable groups in ADCk and K while their ICC difference was not found significant 

(p>0.05). With all features, 2D Corner detectors outperformed other feature groups in ADCk 

and K, except 3D Shape (p≤6.19e-05). Similarly, when only top 10 features were 

considered, 2D Corner detectors outperformed other feature groups (p≤3.0e-4) except five: 

3D Shape, Statistics, Statistics (Whole Gland), 2D Wavelet and 2D FFT Band in ADCk, 

while no difference was found in K.

For performance estimates with all features (Fig. 2–3), in AUC estimates 2D Curvature 

features outperformed other feature groups except 3D Shape, 2D Corner detectors, 2D Hu 

and Statistics (ROI Refinement) in ADCk, and in K, 3D Shape and 2D Hu (p≤7.04e-06). 

Best performing feature group was less prominent with MRMR ranking as in ADCk, 2D Hu 

had higher scores than 2D Corner detectors and 2D Gabor (p≤2.93e-04), while in K, 

CoLlaGe features had higher score than 2D Local Binary Pattern, 3D Laws, 3D FFT Band, 

Statistics, 2D Corner Detector and 2D Gabor (p≤8.14e-06). CoLlaGe was found second best 

feature group after 3D Shape feature in Wilcoxon test based rankings, with significant 

difference only to 2D Wavelets and 3D Laws in ADCk, and to 3D Laws in K, while no other 

major differences were between two best groups to the others. Similar to AUC, 2D 

Curvature features had highest ranking with Spearman method, with significant difference to 

all other groups except 3D Shape feature, 2D Corner detectors, 2D Hu, Statistics (ROI 

Refinement) in ADCk, to all other groups except 3D Shape feature and 2D Hu in K.

Considering only six feature groups with highest ICC (see above), with top 10 features (Fig. 

4–5) according to AUC ranking, 2D Corner detectors again outperformed all other feature 

groups except 3D Shape feature (p≤1.8e-04) with AUC=0.749 (95%CI 0.611..0.887) in 

ADCk, and all (p≤0.00167) except 3D Shape feature (p=0.154) and 2D Wavelets 

(p=0.00726) in K. In MRMR estimates, 2D Corner detector was considered significantly 

better only to Statistics, in ADCk and K (p≤7.15e-05). According to Spearman method 

rankings, 2D Corner detector was significantly better than Statistics (Whole Gland), 2D 

Wavelets and 2D FFT Band (p≤1.08e-5) in ADCk, while differences were not significant in 

K (p≥9.99e-4). Finally, with Wilcoxon performance estimate, 2D Corner detectors were 

ranked higher than 2D Wavelet, Statistics and Statistics (Whole Gland) (p≤1.6e-04) in 

ADCk, and Statistics in K (p≤1.7e-04).

Notably, conventionally used statistics from raw intensity values (Statistics, Statistics 

(Whole Gland), Statistics (ROI Refinements)) and naïve frequency-based filtering 

approaches (2D FFT Band) were shown to have good repeatability, in comparison to some 

texture features. Feature group of Statistics (i. e. basic statistics inside lesion), had better 
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ICC than 2D Local Binary pattern, 2D Haralick, 2D Zernike, 2D Hu, CoLlaGe and 2D Laws 

features, although not found statistically significant (p≥1.3e-03) in ADCk and significantly 

better ICC in K than CoLlaGe features (p=4.33e-05). In overall terms, 2D Corner detectors 

and 3D Laws features provided good repeatability together with four performance metrics.

Repeatability Analysis of Feature Ranking Methods with Individual Features

There was a moderate negative association between ICC and MRMR rankings of Scan1, 

Scan2, and averaged features values in ADCk and K with Spearman ρ from −0.579 to 

−0.494 (all p≤1.08e-104). Correspondingly, rankings of Spearman and AUC had weak 

association with ρ from −0.358 to −0.158 (all p≤6.310e-11) and ρ from 0.173 to 0.360 (all 

p≤9.279e-13) in ADCk and K. Wilcoxon feature pruning method had very weak association 

with ρ from −0.168 to −0.150 (all p≤6.753e-10) in ADCk, while no significant association 

was found in K (p>0.05).

Three repeatability metrics of agreement between selected features over repetitions, number 

of common features, and ICC of selected features, are shown for taking best features ranging 

from top 2 to top 25 features in Fig. 8 for AUC as feature pruning method. All of the three 

metrics showed improvement when inclusion criteria of high ICC features were applied for 

AUC, and similarly for MRM, Spearman and Wilcoxon as feature pruning methods (see 

supporting information figures). MRMR and Wilcoxon feature pruning methods 

demonstrated significant agreement (Kendall’s W) between Scan1 and Scan2 in ADCk 

(p=0.030 and p= 1.469e-11) and K (p=0.045 and p=1.104e-11) and with Wilcoxon method 

when only ICC>0.8 was considered (p=0.041).

For averaged feature values, AUC was found to give concordant ranking with Wilcoxon 

(p=0.036) in ADCk, while other agreements between rankings were not considered 

statistically significant (p>0.05). Similar to analysis with overall feature groups, among 

highly repeatable features having also adequate AUC, most represented feature groups in 

Scan1 and Scan2 among top 10 selected features was 3D Laws in ADCk (60%) and in K 

(51.25%). 2D Corner detector features were most represented feature group when ICC>0.8 

inclusion criteria was applied in ADCk (60%) and in K (76.25%). Also with ICC>0.8, 2D 

Corner detectors was the most represented feature group in all individual feature ranking 

methods in ADCk and K, except in Wilcoxon method, having 2D FFT Band (50%), 2D 

Corner detector (20%) and 3D Laws (20%).

Repeatability Analysis of Machine Learning

Repeatability analysis of ADCk parameter alone and combined ADCk and K are given in 

Table 1 and Table 2. Generally, the four ranking methods gave high rank to features which 

were fairly repeatable (Table 1, column C), while MRMR gave high ranking to features with 

low repeatability, resulting in selection of feature sets that had poor repeatability values. The 

final classification performance was not found to be significantly different between the four 

feature pruning methods (p>0.05). Classification labels (GGG 1 vs >1) varied between 

classifier trained with Scan1 and Scan2 (column F), meaning that classifiers labeled 

different cases in the test set to positive and negative depending on which repetition was 

used in training. There was a small variation between AUC estimates in the test Scan1 and 
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Scan2 with largest difference of 0.07 with LPO-AUC and Spearman ρ in Table 2, while the 

differences were not found to be statistically significant (p>0.05). When additional 

information from repeatability was included (pre-inclusion of only features with high 

repeatability ICC>0.8), the selected feature sets were generally more consistent and labeling 

of classifiers trained with either Scan1 and Scan2 were in better agreement, particularly in 

Spearman ρ method.

The performance of machine learning when feature extraction signal was pooled together 

from both parameters ADCk and K (top 5 from ADCk and top 5 from K) of kurtosis 

function is shown in Table 2. The difference in AUC between Scan1 and Scan2 of testing 

set, suggesting that the four applied feature ranking methods still contained unaddressed 

noise which further propagated as fitting model with a suboptimal group of features. In 

comparison to reference method of taking ADCk or K median value (0.63 and 0.68) inside 

the lesion, individual features as representatives of univariate models improved the 

classification, and RLS classifier gave performance estimate up to 0.77, and same feature 

sets resulted up to 0.75 for classification of GGG 1 and 2 vs >2.

Discussion

Radiomics including textures and shape feature, and ML methods hold promise for 

improved patient’s care by introducing objective optimized medical image evaluation. 

Performance of radiomics is often evaluated in terms of AUC. Despite an exponentially 

increasing number of studies using radiomics and ML in medical imaging, only a handful of 

these studies evaluated the repeatability and reproducible of these methods (8), and 

uncertainty of given AUC classification estimate is rarely given. Although in the current 

study the found differences in machine learning classifications were not found statistically 

significant, we observed improvement in both reliability and performance of final 

classifications between GGG 1 and >1, when repeatability of features was taken into account 

in DWI radiomic feature selection (Table 1) and in classifier training (Table 2), having 

AUC=0.77 (0.64..0.89) similar to study by Starmans et al. (71) with 40 subjects. Further, we 

observed significant differences between repeatability values of the feature groups, 

suggesting of using most repeatable features.

In the current study, we evaluated short-term repeatability and diagnostic performance of 

commonly used radiomics together with machine learning for PCa classification using DWI 

obtained with 12 b-values up to 2000 s/mm2. Some of the conventional radiomics such as 

texture methods demonstrated high AUC but low repeatability, stressing the fact that high 

classification potential in training set does not necessarily mean good overall performance, 

specifically for classifying PCa between GGG 1 vs >1. Therefore, features with low 

repeatability but high classification performance for PCa classification should be considered 

with caution, as the feature may turn out to have poor short-term repeatability, while high 

short-term repeatability is needed for practical application of them in non-invasive PCa 

detection, characterization, therapy planning, and therapy monitory (5).

A number of factors affect the performance of radiomic features. For example, statistical 

descriptors can be particularly sensitive to the intensity of the image. Texture features of 
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DWI, among other radiomic features, have already demonstrated some promise for PCa 

detection and management, e. g. (23,24). However, a large variation in radiomics 

performance has been observed in multi-institutional studies (5). Texture features find 

texture patterns from the image and are less dependent on the intensity than statistical 

descriptors, but are sensitive to voxel level variations. Shape features (11,27) can rely 

partially or solely on the human delineation, and as such are expected to be more robust 

against voxel level intensity variations within and between images. In agreement of our 

findings, surface-to-area ratio has been shown to perform well for the detection of clinically 

significant PCa (11). In a small study of 8 women with cervical cancer who underwent test–

retest MRI, shape features and topological features demonstrated high repeatability (72) 

similar to the current study. Surface-to-area ratio has limitation of not incorporating 

information from absolute values of ADCk and K parameter maps which are known to 

correlate with PCa (46). However, their potential use may partially be in combination with 

other radiomic features.

Prostate MRI radiomic features as imaging-based markers are typically evaluated based on 

AUC values for PCa detection/characterization. Repeatability (same scanner/protocol) and 

reproducibility (different scanner/protocol) of radiomics and ML for prostate DWI in the 

same patients have not been evaluated so far. A study by Chirra et al. (73) evaluated external 

reproducibility of radiomics derived from prostate T2-weighted imaging but repeatability 

and reproducibility of radiomics and ML for prostate DWI in the same patients with PCa has 

not been evaluated. We found that the repeatability of the selected features was dependent on 

the applied feature ranking method. This may be due to all of the evaluated selection 

techniques focusing on metrics with which repeatability varies independently. We speculate 

that the within-subject variability propagates to the feature selection metrics, causing 

subsequently changes in the feature ranking order, depending on robustness of ranking 

methods. As the evaluated methods use only one repetition, they can potentially provide 

only indirect assessments of within-subject variations. We did not find any of the evaluated 

performance estimation methods to be considered as candidates for estimating repeatability, 

suggesting that to address repeatability, other means would need to be used, such as repeated 

scans. While we stress importance of direct measurements for repeatability, we suggest 

using Wilcoxon rank-sum test as feature selection criteria due to most consistent feature 

selections between repetitions. With our evaluated features using more top-ranking features 

caused the overall repeatability of feature selection to diminish. Thus, no warrant is given for 

blindly taking, for example, the top 10 of the best ranked features without knowledge of the 

repeatability of the feature selection process itself (Fig. 5). Careful optimization of radiomic 

parameters and feature ranking methods are needed to achieve both high diagnostic 

performance for PCa characterization as well as reliable labeling for clinical use.

This study has multiple limitations. We did not correct for possible correlation between 

multiple tumors in individual PCa patients. In 46 (41%, 46/112) patients, more than one PCa 

lesion was present. We focused on short-term repeatability of features extracted from the 

data and derived machine learning for practical application of separating GGG groups from 

each other. While most of the features have intuitive biophysical explanation such as shape 

or larger scale density variation in the tissue (textures, gradient methods) we did not perform 

separate evaluations for how well the radiomic features would correspond to histology. It is 
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to be noted that repeatability and reproducibility of radiomic feature are additional 

requirements to good classification performance together with correspondence to histology. 

We addressed classification between significant and insignificant PCa, due to significant 

implication on patient’s management. Classification to other GGG is left for future work. 

Modeling of PCa DWI signal decay is most commonly performed using the mono-

exponential model. However, kurtosis function has higher information content (fitting 

quality), similar repeatability, and robustness against noise (45–47), thus kurtosis function 

was used in the current study (39). Future studies are needed to evaluate the performance of 

radiomics derived using different function/models for prostate DWI. While we used kurtosis 

function to addresses the deviation of DWI signal decay at high b-values, it is important to 

stress that our results may still be influenced by the DWI acquisition parameters, such as TE, 

b-values (12 b-values in the range from 0 to 2000 s/mm2) and diffusion time (20.3 ms).

While we consider the applied features in this study to be a good representation of 

techniques given in related literature with all main types of features, the list does not 

consider all possibilities, and only one classifier was used in evaluations. Prostate cancer 

lesions on DWI data were manually delineated by one research fellow working in consensus 

with the genitourinary pathologist, using whole mount prostatectomy sections as “ground 

truth”. Other modalities besides DWI were not considered and it is left for future studies to 

explore effects of additional MRI sequences. Future studies are needed to evaluate the 

performance of calculated features using fully automatic tools for lesion delineation, as semi 

or fully automatic tool for ROI definition could be used in conjunction with feature selection 

methods in radiomics. Noting that only well repeatable features are to be expected to have 

link to underlying pathology, more detailed biophysical explanation of those features is left 

for future study. Although to best of our knowledge, the number of repeated DWI scans and 

radiomic features was the largest for evaluating short-term repeatability of prostate MRI 

derived features (38), it could be argued that the study is still limited by its sample size.

Conclusion

In this study, we have shown that: 1. Only a fraction of radiomics from ADCk and K had 

high repeatability, ICC(3,1)>0.8; 2. Shape and 2D Corner detector-based features were 

among the most represented features with high repeatability, ICC(3,1)>0.75 and high 

classification performance, AUC>0.70; 3. The applied feature selection method did have an 

a major effect on repeatability, ICC(3,1), and final classification performance, AUC, while 

the difference did not reach the level of statistical significance; 4. Although none of the 

feature selection methods selected the most repeatable features, Wilcoxon rank-sum test as 

feature selection criteria was found to be most consistent between repetitions. We 

demonstrated that radiomic features and ML methods should be addressed with caution if 

only single scan data are available and repeatability is unknown, and that repeatability 

improved performance in unseen data in terms of both absolute performance and stability of 

classifications between test and retest scan of unseen data.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1: 
Data flow of repeatability analysis for machine learning application using diffusion weighted 

imaging data of 112 patients with prostate cancer. The process for Scan1 and Scan2 is 

identical apart from data from acquisition time, containing DWI modelling, feature 

extraction and data split to training and testing sets. (A1) and (A2): Selection of features 

based on single repetition approach with Scan1 and Scan2, respectively. (B): Selection of 

features using average feature values of Scan1 and Scan2. (C1), (C2) and (D): Machine 

learning of classifier with single repetitions data Scan1, Scan2, and average of repetitions, 

respectively. (E): Final analysis of stability of trained classifiers and stability of final 

classifications. (U): Results of machine learning are compared to univariate analysis, 

including conventional DWI metrics.
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Fig. 2: 
Overall feature extraction scores of 1694 features in 18 feature groups, with four ranking 

methods and repeatability for ADCk (Apparent Diffusion Coefficient) of kurtosis function.
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Fig. 3: 
Overall feature extraction scores of 1694 features in 18 feature groups, with four ranking 

methods and repeatability for K (kurtosity) of kurtosis function.
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Fig. 4: 
Feature extraction rankings with four ranking methods and repeatability for top 10 features 

in each of 18 feature groups for ADCk (Apparent Diffusion Coefficient) of kurtosis function.
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Fig. 5: 
Feature extraction rankings with four ranking methods and repeatability for top 10 features 

in each of 18 feature groups for K (kurtosity) of kurtosis function.
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Fig. 6: 
Classification performance for prostate cancer classification repeatability for 1694 features 

derived from ADCk (Apparent Diffusion Coefficient) of kurtosis function, using the area 

under receiver operator characteristic curve (AUC). The scatterplots show repeatability of 

radiomic features (x-axis) with respect to AUC (y-axis), for all features (top), and features 

having high repeatability only (ICC(3,1)>0.8, bottom). Measurements are from single DWI 

scan (Scan1 and Scan2) and when radiomic feature values are averaged (Avg Scan 1&2).
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Fig. 7: 
Classification performance for prostate cancer classification repeatability for 1694 features 

derived from K (kurtosity) of kurtosis function, using the area under receiver operator 

characteristic curve (AUC). The scatterplots show repeatability of radiomic features (x-axis) 

with respect to AUC (y-axis), for all features (top), and features having high repeatability 

only (ICC(3,1)>0.8, bottom). Measurements are from single DWI scan (Scan1 and Scan2) 

and when radiomic feature values are averaged (Avg Scan 1&2).
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Fig. 8: 
AUC feature selection associations with repeatability using ADC (Apparent Diffusion 

Coefficient) and K (kurtosity) of kurtosis function with and without pre-selection of highly 

repeatable (ICC(3,1)>0.8) features.

Merisaari et al. Page 25

Magn Reson Med. Author manuscript; available in PMC 2021 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Merisaari et al. Page 26

Table 1:

Stability of machine learning results calculated independently in test (Scan1) and retest (Scan2) scans. (A) 

Feature pruning method. (B) Selection of 10 best ranking features according to pruning method. (C) Median 

and range of repeatability of features used in classifier training. (D) Agreement of binary classifications from 

classifiers trained with Scan1 and Scan2 data. (E) Area Under Receiver operator characteristic curve (AUC) 

when classifications are evaluated with Scan1 of test set. (F) AUC with Scan2. (G) Pooled estimate over 

Scan1 and Scan2 for AUC.

Pruning
method

(A)

Pruned
features

(B)
ICC median (range)

(C)

% of same
labels

(D)

AUC
(95% CI)

Scan1
(E)

AUC
(95% CI)

Scan 2
(F)

AUC
(95% CI)

Scan 1 and 2
(G)

Wilcoxon
rank-sum

test

ADCk
Top 10

0.438(0.000..0.953)
0.280(0.000..0.693) 80.4 0.682

(0.490..0.873)
0.495

(0.261..0.730)
0.586

(0.436..0.737)

MRMR ADCk
Top 10

0.296(0.000..0.813)
0.233(0.000..0.621) 70.6 0.673

(0.469..0.876)
0.630

(0.438..0.821)
0.649

(0.514..0.785)

Spearman
ρ

ADCk
Top 10

0.471(0.445..0.754)
0.476(0.414..0.654) 70.6 0.743

(0.558..0.928)
0.645

(0.465..0.826)
0.691

(0.563..0.819)

AUC ADCk
Top 10

0.471(0.445..0.754)
0.476(0.414..0.654) 70.6 0.743

(0.558..0.928)
0.645

(0.465..0.826)
0.691

(0.563..0.819)

Wilcoxon
rank-sum

test

ADCk
ICC>0.8 &

Top 10

0.823(0.804..0.953)
0.823(0.804..0.953) 84.3 0.783

(0.637..0.929)
0.750

(0.592..0.908)
0.770

(0.664..0.875)

MRMR
ADCk

ICC>0.8 &
Top 10

0.888(0.808..0.962)
0.836(0.800..0.962) 74.5 0.727

(0.538..0.916)
0.732

(0.566..0.897)
0.730

(0.607..0.852)

Spearman
ρ

ADCk
ICC>0.8 &

Top 10

0.904(0.800..0.951)
0.927(0.800..0.942) 72.5 0.686

(0.503..0.870)
0.723

(0.566..0.880)
0.706

(0.589..0.822)

AUC
ADCk

ICC>0.8 &
Top 10

0.904(0.800..0.951)
0.927(0.800..0.942) 72.5 0.686

(0.503..0.870)
0.723

(0.566..0.880)
0.706

(0.589..0.822)
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Table 2:

Stability and performance of machine learning optimizing repeatability using average of feature values 

extracted from prostate DWI with four feature ranking methods. The 95% confidence intervals are shown in 

parenthesis. Rows 1–4: Agreement between classifications and performance for Gleason Grade Group (GGG) 

1 vs >1 classification. Rows 5–8: Agreement between classifications and performance for GGG 1,2 vs >2.

Feature ranking
method

Pruned
features

% of same
labels

AUC
(95% CI)

Scan1

AUC
(95% CI)

Scan 2

AUC
(95% CI)

Scan 1 and 2

Wilcoxon rank-sum
test

ADCk & K
ICC>0.8 & Top 10 60.8 0.780

(0.607..0.952)
0.757

(0.572..0.942)
0.765

(0.640..0.890)

MRMR ADCk & K
ICC>0.8 & Top 10 80.4 0.781

(0.601..0.960)
0.725

(0.560..0.890)
0.747

(0.629..0.866)

Spearman ρ ADCk & K
ICC>0.8 & Top 10 72.5 0.686

(0.503..0.870)
0.723

(0.566..0.880)
0.706

(0.589..0.822)

AUC ADCk & K
ICC>0.8 & Top 10 64.7 0.782

(0.601..0.962)
0.709

(0.548..0.870)
0.743

(0.623..0.863)

Wilcoxon rank-sum
test

ADCk & K
ICC>0.8 & Top 10 72.5 0.705

(0.530..0.879)
0.791

(0.600..0.981)
0.745

(0.620..0.870)

MRMR ADCk & K
ICC>0.8 & Top 10 66.7 0.734

(0.550..0.918)
0.745

(0.557..0.934)
0.732

(0.606..0.858)

Spearman ρ ADCk & K
ICC>0.8 & Top 10 62.7 0.745

(0.551..0.940)
0.734

(0.563..0.905)
0.738

(0.613..0.863)

AUC ADCk & K
ICC>0.8 & Top 10 62.7 0.745

(0.551..0.940)
0.734

(0.563..0.905)
0.738

(0.613..0.863)
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